
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

COMPUTATIONAL INVESTIGATIONS OF QUASIRANDOM SEQUENCES IN GENERATING
TEST CASES FOR SPECIFICATION-BASED TESTS

Hongmei Chi

Department of Computer and Information Sciences
Florida A&M University,

Tallahassee, FL 32307-5100, U.S.A.

Edward L. Jones

Department of Computer and Information Sciences
Florida A&M University

Tallahassee, FL 32307-5100, U.S.A.
ABSTRACT

This paper presents work on generation of specification-
driven test cases based on quasirandom (low-discrepancy)
sequences instead of pseudorandom numbers. This approach
is novel in software testing. This enhanced uniformity of
quasirandom sequences leads to faster generation of test
cases covering all possibilities. We demonstrate by examples
that quasirandom sequences can be a viable alternative to
pseudorandom numbers in generating test cases. In this
paper, we present a method that can generate test cases
from a decision table specification more effectively via
quasirandom numbers. Analysis of a simple problem in
this paper shows that quasirandom sequences achieve better
data than pseudorandom numbers, and have the potential
to converge faster and so reduce the computational burden.
The use of different quasirandom sequences for generating
test cases is presented in this paper.

1 INTRODUCTION

Specification-based testing of software is to increase the
effectiveness of software testing (Muccini et al. 2004).
A formal software specification is one of the most useful
documents to have when testing software, since it is a concise
and precise description of functionality. Specification-based
testing focuses on obtaining test data from specification
(Stocks and Carrington 1993). Generating test data to
cover all specification is a challenge for a complex system
(Goodenough and Gerhart 1975).

We are developing an approach to deriving test data
from quasirandom sequences (Chi et al. 2006) instead
of pseudorandom sequences. In that paper, only one of
quasirandom sequences was considered. In the current pa-
per, we investigate the convergence rate of generating test
data from different quasirandom sequences. Quasirandom
sequences (Tezuka 1995) are constructed to minimize the
discrepancy, a measure of the deviation from uniformity
and therefore quasirandom sequences are more uniformly
9751-4244-0501-7/06/$20.00 ©2006 IEEE
distributed than pseudorandom sequences. This enhanced
uniformity of quasirandom sequences leads to faster conver-
gence rate in generating test data as well. In the past, pseu-
dorandom number generators, such as linear congruential
generators (Knuth 1997) have been used in the implemen-
tation of random testing. Recently, it has been recognized
that the convergence rate of Monte Carlo approaches based
on pseudorandom numbers is slow and that an important
improvement of the convergence rate can be achieved by us-
ing quasi-Monte Carlo methods (Niederreiter 1992). Quasi-
Monte Carlo methods are now successfully used in many
scientific computational fields, such as computer graphics
(Keller 1995) and computational finance (Papageorgiou and
Traub 1997). To our knowledge, approaches of generating
data in software testing are based on pseudorandom number
generators. To take advantage of quasi-Monte Carlo meth-
ods, we explore to produce test data by using uniformly
distributed sequences. This observation is the motivation
for the investigation described in this paper.

We will conduct theoretical and empirical exploration
of quasirandom sequences schemes appropriate for software
testing problems and evaluate the effectiveness of different
quasirandom sequences used in software testing. This ap-
proach is novel in software testing. The paper will explore
benefits of quasi-random numbers for generating test cases
in complex systems.

2 QUASIRANDOM SEQUENCES

Pseudorandom numbers are constructed to mimic the be-
havior of truly random numbers, whereas highly uniform
numbers, called quasirandom numbers, are constructed to
be as evenly distributed as is mathematically possible. Pseu-
dorandom numbers are scrutinized via batteries of statistical
tests that check for statistical independence in a variety of
ways, and are also checked for uniformity of distribution,
but not with excessively stringent requirements. Thus, one
can think of computational random numbers as either those
that possess considerable independence, such as pseudoran-
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Figure 1: Comparison of Pseudorandom Numbers and
Quasirandom Numbers in Two Dimensions (A: 2000 Pseu-
dorandom Numbers, Linear Congruential Generator; B:
2000 Quasirandom Numbers, Soboĺ Sequence)

dom numbers; or those that possess considerable uniformity,
such as quasirandom numbers (Niederreiter 1992).

From Fig. 1 we can see that pseudorandom numbers
tend to show clustering effects while quasirandom numbers
are uniformly distributed. Pseudorandom numbers are only
a substitute for true random numbers; while quasirandom
numbers tends to more uniformly distributed. There are
many applications that do not really require randomness,
but instead require numbers that uniformly cover the sample
space. Quasirandom sequences are more suitable for such
applications. In particular, fewer quasi-random samples are
needed to achieve a similar level of accuracy as obtained
by using pseudo-random sequences (Loh 2003; Spanier and
Maize 1994). Since the convergence rate of Monte Carlo
methods is asymptotically O(N− 1

2 ), where N is the number
of samples, while QMC methods can have an error bound
which behaves approximately O(N−1).

The original construction of quasirandom sequences
is related to the Weyl sequence and the van der Corput
sequence (Kuipers and Niederreiter 1974). Weyl sequence
is based on irrational numbers while the van der Corput
sequence is a one-dimension quasirandom sequence based
on digital inversion. This digital inversion method is the
central idea behind the construction of current quasirandom
sequences, such as Halton, Faure and Soboĺ (Soboĺ 1967)
sequences. Niederreiter (Niederreiter 1992) extended this
method to arbitrary bases and dimensions.

Before we begin our discussion of the use of quasir-
andom numbers to generate test cases, it behooves us to
describe, in detail, the standard and widely accepted meth-
ods of quasirandom number generation. The reason for
this is that many scrambling methods have been designed
specifically for one class of quasirandom sequence.

Well-distributed Sequence
An infinite sequence {xi} is well-distributed, if we have

lim
n−→∞

D∗n(z1, z2, . . . , zn) = 0, (1)
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where zi = (xi, xi+1, . . . , xi+s−1) ∈ (0, 1]s for any pos-
itive integer s and D∗n is the star-discrepancy, a measure
for uniformity. Therefore, if a sequence is well-distributed,
it is a low-discrepancy sequence. A well-distributed se-
quence has a slightly stronger property than uniformly dis-
tributed (quasirandom) sequences, namely, well-distributed
sequences are a subset of quasirandom sequences.

Weyl sequences (Tezuka 1995) are well-distributed and
used this paper for numerical experiments . The definition
of Weyl sequence is as follows:

Definition 1 If θ is an irrational number, then the
Weyl sequence n ∗ θ (mod 1), n=1,2,3,...., is uniformly
distributed.

Here (mod 1) is operation of keeping the fraction part
of any number, for example 2.345 (mod 1) = 0.345. The
Weyl sequence is easy to implement and well-distributed.
For different θ, the different dimensions of the Weyl sequence
can be generated.

The Van der Corput Sequence
The radical inverse function, which is the basis for the Van
der Corput sequence, is also central to many other methods of
quasirandom number generation. First we give the definition
of the radical inverse function: let b ≥ 2 be an integer, and
n a non-negative integer. Let n = n1 + n2b + ... + nwbw

be the b-adic representation of n, and define the vector
n = (n1, n2, ..., nw)T . Then the radical inverse function,
φb(n), is defined as

φb(n) =
n1

b
+

n2

b2
+ ... +

nw

bw
.

When b is prime, φb(n) is the nth term of the van
der Corput sequence. The radical inverse function simply
reverses the digit expansion of n, and places it to the right
of the “decimal” point. Moreover, moving from φb(n) to
φb(n + 1) can be implemented with rightward-carry ad-
dition of 1/b, and thus is very efficiently implemented.
The Van der Corput sequence is a basic one-dimensional
quasirandom sequence.

The Halton Sequence
The Halton sequence is based on the Van der Corput se-
quence. It can be thought of as the natural s-dimensional
extension of the van der Corput sequence, and an s-tuple
of the Halton sequence is defined as (φb1(n), ..., φbs(n)),
where the bases, b1, b2, ..., bs, are pairwise coprime.

The Soboĺ Sequence
The Soboĺ sequence can be thought of as a permutation
of the binary van der Corput sequence, φ2(n), in each
dimension. The nth element of the jth dimension of the
Soboĺ sequence, xj

n, can be generated by

x(j)
n = n1ν

(j)
1 ⊕ n2ν

(j)
2 ⊕ ...⊕ nwν(j)

w . (2)
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Here ν
(j)
i is the ith direction numbers in the jth di-

mension and each ν
(j)
i is a binary fraction. There is another

commonly used expression for ν
(j)
i obtained by using the

integer m
(j)
i = ν

(j)
i ∗ 2i. Thus, the choice of q initial

direct numbers ν
(j)
i becomes the problem of choosing q

integers such that m
(j)
i < 2i. The initial direction numbers,

ν
(j)
i = m

(j)
i

2i , in the recurrence, where i ≤ q, can be chosen
through the m

(j)
i ’s, which can be arbitrary odd integers less

than 2i. For i > q, these direction numbers are generated
using the following q-term recurrence relation

ν
(j)
i = a1ν

(j)
i−1⊕ a2ν

(j)
i−2⊕ ...aqν

(j)
i−q+1⊕ ν

(j)
i−q ⊕ (ν(j)

i−q/2q).
(3)

In the above the bits, ai, come from the coefficients of
a degree q primitive polynomial over the finite field, F2.
Clearly, one should use a different primitive polynomial
to generate the Soboĺ direction numbers for each different
dimension.

The Faure Sequence
The Faure sequence can also be thought of as a permutation
of the van der Corput sequence, φb(n), in each dimension.
The nth element of the Faure sequence in the jth dimension,
x

(j)
n , is generated by

x(j)
n = φ(C(j)n). (4)

In equation (4), n = (n1, ..., nw)T is the vector of coef-
ficients in the b-adic representation of the integer n. The
generator matrix for the jth coordinate, C(j) = P j−1 for
(1 ≤ j ≤ s), is chosen among powers of the Pascal matrix
P , which is defined with b ≥ s, b prime, and 1 ≤ j ≤ b as:

P j−1 =
(

r − 1
k − 1

)
(j− 1)(r−k)) (mod b), k ≥ 1, r ≥ 1.

(5)
Here k is the row index and r is the column in-
dex of the Pascal matrix, and so the sequences
(φb(P j1n), φb(P j2n), ..., φb(P jsn)), with j1, j2, ..., js be-
ing distinct integers between 0 and b−1, are s-dimensional
Faure sequences. It is important to mention that the Soboĺ
sequence can also be defined in terms of a generator matrix.

Following the approach in our previous paper (Chi et al.
2006), we compare the effectiveness of generating test cases
by the other quasirandom sequences with well-distributed
sequences.

3 SPECIFICATION-BASED TESTS

Although a formal software specification is one of the most
useful document to have when testing software, most of
97
Table 1: Payroll Specification

Calculate employee pay, including overtime paid
at 1.5 times the hourly rate of hourly employees for
time in excess of 40 hours. Salaried employees are
not paid overtime, nor do they lose pay when they
work less than the normal work week of 40 hours.
Hourly employees earn less than 10 per hour. 

  

 

 CONDITIONS                                      | DECISION RULES  

------------------------------------------------- -------------- 

 hours>40                                        |  N Y N Y 

 rate<10                                         |  Y Y N N 

------------------------------------------------- -------------- 

 ACTIONS                                         | ACTION RULES 

------------------------------------------------- --------------   

 pay = hours * rate; pay = pay;                  |  X - - - 

 pay = 1.5 * rate * (hours - 40) + 40 * rate;    |  - X - - 

 pay = 40 * rate;                                |  - - X X 

 overtime  = 0;                                  |  X - X X 

 overtime = 1.5 * rate * (hours - 40);           |  - X - - 

------------------------------------------------- -------------- 

 

 
 Figure 2: Payroll Decision Table (DT1) Based on the Nar-

rative Specification in Table 1

software specifications are stated informally in practice and
that leaves a lot of ambiguities. Additional specification
notations are needed to clarify these statements. A decision
table is a rule-based specification in which responses are
specified in terms of combinations of conditions met by
input data. The decision table is a specification technique
that can be used as the basis for test case design (Glora
et al. 1995; Jones 2006). In this section we show by an
example how a decision table can provide the basis for
defining specification-based tests. We also show that how
quasirandom sequences produce the test data based on the
decision table. One measure for test case effectiveness is
a ratio (full functional coverage) of the number of rules
triggered by the set of test data to the number of rules in
the decision table. This full functional coverage measures
the thoroughness of testing based on the specification.

Consider the narrative specification in Table 1 (Jones
2005), which specifies software to compute the weekly pay
of employees. The first step in transforming this narrative
specification is to identify the stimuli and responses. From
the specification, we can deduce that the necessary stimuli
(input data) are the hours worked and the hourly salary rate.
According to the specification, the software must determine
whether an employee is hourly (rate ≤10) or salaried, and
whether the employee has exceeded 40 hours of work (hours
≥ 40). Figure 2 is a summary of all rules and actions for
Pay Specification in Table 1.

When testing complicated software with a static spec-
ification, it is difficult to determine manually whether each
rule has been covered and if there are anomalies in the
decision table specification (Chang et al. 2000). Jones
(2005) has developed a tool that uses test data to identify
7
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Table 2: Payroll Specification (Extended from Table 1)

Calculate employee pay, including overtime paid at
x times the hourly rate. Salaried employees are paid
overtime only if they work more than 50 hours, but
they do not lose pay when they work less than the
normal work week of 40 hours. Hourly employees
earn less than $30 per hour. Employees who work
more than 50 hours receive 1.5 times the hourly rate
for each overtime hour. Employees who work more
than 60 hours are paid 1.5 times the hourly rate for
hours up to 60, and 1.6 times the hourly rate for each
hour after 60. Employees who work more than 70
hours are paid 1.5 times the hourly rate for hours up
to 60, 1.6 times the hourly rate for hours between 60
and 70, and 1.7 times the hourly rate for each hour
after 70. Those who work more than 80 hours receive
1.5 times the hourly rate for hours up to 60, 1.6 times
the hourly rate for hours between 60 and 70, 1.7 times
the hourly rate for hours between 70 and 80, plus a
bonus of $100.

specification anomalies, while using the specification to de-
termine adequacy of the test data. We use quasirandom
sequences to provide the test data, and functional coverage
as the criterion for measuring the test data. The procedure
is simple: according Figure 2, we generate two-dimension
test data sets (hour, rate), and check functional coverage to
see how many decision table rules are satisfied (covered)
by one or more test data pairs. The measure of interest
for comparing pseudo-random and quasirandom generation
of data sets is the number of test data needed to reach
functional coverage of 1. The numerical results are shown
in Section 4.

4 NUMERICAL EXPERIMENTS

The numerical experiments are base on Decision Tables in
Fig. 2 and Fig. 3 . In order to compare the effectiveness
of quasirandom numbers, we use different quasirandom
sequences and well-distributed sequences to produce the
test data.

The quasirandom number generator is Halton Soboĺ
and Faure sequences and we used the same implementation
in Fox (1986) and Morokoff and Caflish (1994). The Weyl
sequence we used in this paper is same as in Chi et al.
(2006). The pseudorandom number generator we used in this
paper is one of linear congruential generators in Numerical
Recipe in C (Press et al. 1992). This generator is defined
as following:

Definition 2 The linear congruential generator de-
termined by xn = axn−1 (mod m) with a = 16807 and
m = 231 − 1 has a period of 231 − 2.
978
 
Conditions Decision Rules 

hours > 40 N N Y Y     

hours > 50     Y    

hours > 60      Y   

hours > 70       Y  

hours > 80        Y 

rate >= 30 N Y N Y Y Y Y Y 

Actions Action Rules 

regular_pay = hours * rate X        

regular_pay = 40 * rate  X X X X X X X 

over_pay = 0 X X       

over_pay = 1.5 * rate * (hours – 40)   X  X    

over_pay = 1.5 * rate * (20) + 1.6 * 
rate * (hours – 60) 

     X   

over_pay = 1.5 * rate * (20) + 1.6 * 
rate * (10) + 1.7 * rate * (hours – 

70) 
      X  

over_pay = 1.5 * rate * (20) + 1.6 * 
rate * (10) + 1.7 * rate * (10) + 100 

       X 

 

 

Figure 3: Payroll Decision Table 2 (DT2) Based on the
Narrative Specification in Table2

All results are shown in Table 3 is the floor of the
average of five different runs. For pseduorandom number
generator, we use different seeds for each run. For each
quasirandom sequence, different number(100, 200, 500,
1000, 1500) of initial points are skipped and this method
are proposed at Morokoff and Caflish (1994) and Owen
(2004). The results in our previous paper (Chi et al. 2006)
show that well-distributed sequences significantly converges
faster, i.e., covers all rules with fewer test data. We com-
pared different quasirandom sequences with well-distributed
sequences for generating test data and results are listed in
Table 3. It is not hard to see that the convergence rate
of quasirandom sequences is faster than pseudorandom se-
quences and slower than well-distributed sequences (Weyl
sequences). When the number of rules in decision table is
4 pairs, we could not see any advantage for quasirandom
sequences. However, when the number of rules increases
to 8 pairs, the advantage of generating test data by quasir-
andom sequences is fast to cover all cases. This experiment
is preliminary and we need to apply this method to more
complicated cases requiring large, complex decision table
specifications.

5 CONCLUSIONS

A scheme for generating test data via various quasirandom
sequences is proposed. The advantage of this scheme is
that we can provide test data based on a specification au-
tomatically. This scheme is an alternative to generate test
data manually or from pseudorandom numbers. Our nu-
merical results, though preliminary , are promising. Should
our observations about faster convergence (full coverage
with fewer test data) hold, uniformly distributed test data
generation may offer economical advantages over quasir-
andom and pseudo-random testing. A broader question is
whether uniformly distributed sequences testing is supe-
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Table 3: Test Results for Decision Tables (# Test Data for Full Functional Coverage)

Decision Table DT1 Decision Table DT 2
# rules # test data pairs # rules # test data pairs

pseudorandom 4 6 8 29
Halton 4 5 8 19
Faure 4 5 8 18
Soboĺ 4 5 8 17
Weyl 4 5 8 11
rior to pseudo-random testing, in terms of efficiency and
effectiveness. Addressing this question may require a repli-
cation of past studies such as in Abdurazik et al. (2000) and
Podgurski et al. (1999) and more other complicated cases
requiring large, complex decision table specifications.

In the future, we will extend the study given in this
paper to support the test-driven specifications when applied
to scrambled quasirandom sequences (Hong and Hicker-
nell 2003) and optimal quasirandom sequences (Chi et al.
2005). Unlike pseudorandom number generators, there are
only a few common choices for quasirandom number gen-
eration. However, by scrambling a quasirandom sequence,
one can produce a family of related quasirandom sequences.
Finding one or a group of optimal quasirandom sequences
within this family is an interesting problem, as such optimal
quasirandom sequences can be quite useful for enhancing
the performance of ordinary quasi-Monte Carlo. Ongoing
work includes the development of a library of scrambled
and optimal quasirandom generation routines to support
specification-based test generation.
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