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ABSTRACT 

This paper presents the modeling of batch processes using 
discrete event simulation.  Discrete event simulation is of-
ten used for transactional-based processes; however, this 
paper describes an example of representing each batch as a 
single transaction in order to model process cycle time and 
utility usage.  An example is provided to demonstrate the 
use of this method for simulating water-for-injection usage 
in a biopharmaceutical process. 

1 INTRODUCTION 

Chemical and pharmaceutical manufacturing processes are 
often simulated to investigate proposed process changes or 
to better understand process dynamics.  This simulation 
may be performed using rigorous mathematical models to 
simulate chemical reactions, heat transfer, or fluid flow in 
the system.  However, the plant engineer is usually most 
concerned with evaluating cycle time and the timing inter-
actions between various phases of the process.  This analy-
sis is often performed to consider the effects of proposed 
process improvements on the overall cycle time of the 
manufacturing facility.  The impact of new changes on util-
ity usage is also of interest. 
 Manufacturing engineers often investigate cycle time 
using static methods such as Microsoft® Project or Micro-
soft® Excel to lay out the batch sequencing and scheduling.  
This paper considers discrete event simulation as a method 
of evaluating overall batch cycle time including interac-
tions over time.  An example is presented that evaluates the 
effects of proposed batch sequence improvements on an 
existing water-for-injection (WFI) system.  The simulation 
allows the user to identify the best path forward for meet-
ing the increased demand on this critical utility. 

2 DISCRETE EVENT SIMULATION 

Simulation is the process of building a model of a real or 
proposed system to study the performance of the system 
under specific conditions.  Simulation is especially power-
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ful because it allows the observation of the behavior of the 
model as time progresses (Ball 2001).  Process bottlenecks 
and delays can be identified so that cost-effective alterna-
tives can be investigated (Hwang 1997).  Most importantly, 
process simulation can be used without affecting the exist-
ing production activities (Micrografx 2001). 

Manual analysis of batch process cycle time can quickly 
grow complex as multiple consecutive batches are intro-
duced.  There are many variables that affect the process in-
cluding batch size and resource constraints (Hwang 1997).  
Discrete event simulation is a method of creating a model 
that can observe the time-based, dynamic behavior of a sys-
tem (Ball 2001).  Discrete event simulation differs from con-
tinuous simulation in that significant changes occur at dis-
crete time intervals (Park and Leemis).  This characteristic 
lends itself to the study of batch processing systems where 
the batch cycle time sets the discrete intervals. 

The major components of a simulation are entities, 
logical relationships, and the simulation executive (Ball 
2001). 

Entities represent tangible things found in the produc-
tion environment such as a vessel or a clean-in-place skid.  
The iGrafx® software used for the example in this paper 
refers to these entities as “resources” (Ball 2001).  Entities 
also can represent the transactions in the process.  These 
entities are then the users of the system resources  
(Schriber and Brunner 2005).  The transactions in the ex-
ample for this paper represent batches of product sequenc-
ing through equipment (resources).   

Logical relationships define how the entities relate to 
each other in time.  These relationships can be expressed 
either as constant time or as a mathematical expression.  
(Ball 2001)  Resource capacity constraints can also lead to 
delays in the process as transactions compete for resource 
availability (Schriber and Brunner 2005). 

The simulation executive is responsible for managing 
the simulation time.  Note that time in the simulation is not 
necessarily linear.  The simulation time will slow down or 
speed up depending on the computational activity during a 
time slice (Ball 2001).  The simulation executive will per-
form all operations that take place at a given simulation 
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time before advancing the simulation clock.  This simula-
tion time will not correspond to the wall-clock time 
(Schriber and Brunner 2005). 

A simulation does not provide a 100% realistic dupli-
cation of the actual process.  Computer simulation can 
generate large amounts of data that can lead to a false 
sense of security in the numbers (Ball 2001).  It is critical 
to clearly note all assumptions and unknowns that are in-
cluded in the model development.  Since the model starts 
in an idle state, simulation performance can also be af-
fected by the “run-in” phase as the model “loads up” to ap-
proach the steady state phase (Ball 2001).  It is very impor-
tant to calibrate each model to make sure it produces 
results that are close to reality before running simulation 
cases to predict future process performance (Domanski 
1999). 

There are various ways to implement a process simula-
tion including high-level computer languages, spread-
sheets, or simulation software applications.  The example 
in this paper was implemented in iGrafx® Process™ 2003 
for Six Sigma from the Corel Corporation.  This software 
allows the simulation to be built as a flow chart with each 
block in the flow chart representing a task or decision.  
Each block has a series of forms that allow the user to cre-
ate the logical relationships and enter parameters necessary 
to define the model.  The software includes animation that 
allows the process to be tracked during the simulation run.  
Built-in reports are included, and custom reports can be 
built to track desired parameters.  The software package 
includes a number of interfaces to other programs to assist 
in analyzing simulation results. 

3 EXAMPLE SIMULATION 

This paper considers an example simulation that was part 
of a Six Sigma project to improve WFI availability.  Dur-
ing the Measure phase of the project, it was noted that the 
current WFI availability was demonstrating a high level of 
performance.  Since the current performance was meeting 
the needs of the present production requirements, the pro-
ject focus shifted to WFI performance under future manu-
facturing needs.  

Future WFI performance was of concern because the 
downstream production area of the plant was just coming 
on-line.  This area is a significant user of WFI, and sus-
tained operation had yet to be demonstrated.  The second 
area of concern is that the plant was budgeted for increased 
production rates over the next few years.  WFI demand is 
expected to increase dramatically as production increases. 

Simulation was the obvious choice for evaluating WFI 
capability to meet future needs.  Since part of the manufac-
turing process was not yet continuously on-line, the in-
creased demand could not be demonstrated in real time.  
Furthermore, physical and logical changes are required in 
the existing manufacturing area to realize increased pro-
193
duction rates.  Simulation is necessary to evaluate the ef-
fect on WFI demand since these changes are not yet in 
place.  WFI is critical to current production rates, so ex-
perimentation with the existing system is discouraged.  
Simulation allows experimentation with no risk of nega-
tively impacting production. 

4 WFI USAGE MODEL DEVELOPMENT 

To be effective, a simulation must be developed and 
used in a methodical way.  One approach to simulation de-
velopment is: 

 
1. Project Definition 
2. Process Mapping (static diagram) 
3. Simulation Model (dynamic) 
4. Verification 
5. Validation 
6. Simulation of cases for study 
7. Findings, conclusions, and recommendations (Wat-

son 2004). 
 

The first step in creating the simulation is to map out 
the process in block diagram format.  Blocks are created 
for each major piece of equipment in the manufacturing 
process.  Each unit can then be further broken down into 
the major activities, e.g. SIP, Operation, and CIP.  Each of 
these blocks can then be split into WFI users or non-WFI 
users.  Fig. 1 shows a portion of the block diagram devel-
oped in iGrafx to model the process users of WFI. 

 

 
Figure 1:  Portion of WFI Block Diagram 

 
iGrafx® simulations are transaction-based.  In my ex-

ample, a batch is represented by a transaction moving 
through the model.  Each non-WFI block is simply a time 
delay.  The batch, or transaction, simply waits for a speci-
fied period of simulation time before proceeding to the 
next block.  An attribute was created to set the WFI usage 
rate and length of usage for each shape that uses WFI. 

WFI usage is modeled through the use of Scenario At-
tributes.  A scenario attribute is a dynamic variable that can 
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be updated by defined algorithms as the simulation pro-
ceeds.  Parameters and storage registers that are to be 
available to any model block should be set up as scenario 
attributes.  Parameters that are task-specific should be set 
up as transaction attributes.  For example, the WFI storage 
tank level is stored in a scenario attribute called 
“WFI_Storage.” 

A sub-process is set up that is called by each WFI user 
as shown in Fig. 2.  This sub-process calculates the amount 
of WFI used over a pre-defined period of simulation time.  
A separate sub-process is used to model the WFI still and 
generate WFI based on the level in the storage tank (also 
stored in a scenario attribute).  These sub-processes add to 
or subtract from the scenario attribute WFI_Storage as ap-
propriate to model the WFI system. 

 

 
Figure 2:  WFI Usage Sub-process Block Diagram 

5 MODEL VERIFICATION AND VALIDATION 

One of the key steps in simulation development is the veri-
fication and validation of the model.  This is important 
both to make sure the model is behaving correctly as well 
as to increase the credibility of the model as cases are stud-
ied (Banks et al. 2005).  Verification is concerned with the 
accuracy of creating a model from the problem specifica-
tion.  That is, “Did you build the model right?”  Validation 
is the process of checking to see if the simulation behaves 
accurately and consistently to meet the study objectives.  
That is, “Did you build the right model?” (Ball 2001). 

The first step in building a model is to collect data on 
the real system under consideration (Banks et al. 2005).  
For the example model being discussed here, we collected 
data from a number of sources.  The upstream manufactur-
ing process has a long run history, and the site electronic 
data historian has collected detailed data on every batch 
produced.  Automatic reports are generated and archived to 
summarize the parameters for each batch.  We gathered a 
series of representative batches and collected batch cycle 
times and WFI usage data from the reports.  This data was 
summarized and statistically evaluated.  In most cases, the 
mean value for each process step was used in the model 
with consideration given to parameters with large standard 
deviations as well as data from batches that had extraordi-
nary circumstances that led to exceptionally long or short 
cycles. 
1931
We also collected data on the WFI generation system 
equipment.  Some examples of data collected were model-
ing the curve for generation rate based on level as well as 
the maximum generation rate.  We also collected storage 
tank levels for starting and shutting down the WFI still. 

An important step in verifying a simulation model is to 
take advantage of the knowledge of persons most familiar 
with the real process (Banks et al. 2005).  The initial model 
parameters were reviewed with manufacturing personnel 
from the upstream production area.  These individuals veri-
fied that the selected parameters did indeed give a reason-
able representation of the manufacturing process.  Simula-
tion runs were generated in order to evaluate the cycle 
times and production rates for this case.  Manufacturing 
personnel carefully reviewed this data and adjustments 
were made to more closely simulate the real process. 

Validation is an iterative process of comparing the 
model output to the actual system behavior.  The discrep-
ancies can then be used to adjust and improve the model 
(Banks et al. 2005).  For the most part, the adjustments to 
the example model were minor and could be easily ac-
counted for by the randomness seen in the real manufactur-
ing process.  The area process engineers were heavily in-
volved in making sure the simulation outputs “looked 
right” based on their experience with the actual manufac-
turing process. 

Verification of the downstream production process 
simulation was more challenging because only a limited 
number of batches have yet been manufactured.  Further-
more, many of these batches were run more slowly than 
expected as personnel moved up the learning curve for the 
process and operating procedures were verified.  Thus, the 
collection of data and verification of parameters relied 
more heavily on the subject-matter experts from the area 
than on historical data. 

Once the parameter data was collected, the simulation 
output was compared to the data from process runs as well 
as the expectations of the manufacturing engineers.  Sev-
eral iterations were made until the simulation behavior 
closely resembled actual system performance. 

6 ASSUMPTIONS 

A number of assumptions were necessary when developing 
the simulation model and the case data for study.   

 
 The simulation assumed a constant production 

yield.   
 An on-stream time was included to represent the 

planned shutdown for maintenance activities by 
limiting the number of days that constituted a 
simulation year to less than 365.   

 The WFI storage tank had the same initial level 
for each simulation run.   
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 The WFI generation equipment was assumed to 
run without an unplanned shutdown. 

 
Another important factor in this simulation analysis is 

that the simulation was not randomized.  All cases were 
run with fixed task times.  The real process has variation 
due to equipment problems, human factors, and other un-
expected delays.  Since this simulation was being used in a 
predictive manner to look at WFI usage rather than pre-
dicted cycle times, I did not introduce randomness to the 
cycle times.  We used best estimates for future cycle times 
and ran the batches back-to-back.  This assumption simu-
lates an aggressive demand for WFI. 

A number of manufacturing process improvements 
that are under consideration were included in the model.  
These improvements will be necessary to achieve the de-
sired production rates.  Manufacturing personnel were able 
to agree on reasonable estimates for the expected cycle 
times after these changes are implemented.  The model 
took these process changes into account for the simulation 
runs. 

For the example simulation in this paper the effects of 
run-in are minimized by extending the run time to a full 
year.  As the simulation run-time is extended, the steady-
state performance has a larger impact on the statistical re-
sults.  However, the run-in phase can add to the realism of 
the model.  For example, many sites take one or more 
process shutdowns each year for maintenance, product 
changeover, or media fill testing.  Since the process will 
restart from an idle state, the run-in phase for the model 
can be representative of the real world. 

7 WFI SCENARIOS FOR CASE STUDIES 

The purpose of this simulation study is to explore the im-
pact of increased production rates on the ability of the WFI 
system to meet user demands.  Several scenarios for up-
grading the WFI system were proposed, but there was little 
information available to identify the best solution. 

The first scenario for modifying the WFI system is to 
implement control logic changes to override the WFI Still 
output based on user demand.  The WFI Still output flow is 
adjusted according to a linear algorithm based on level in 
the WFI storage tank.  The proposed demand override al-
gorithm will consider user demand flow in addition to the 
storage tank level. 

Another proposal for upgrading the WFI system is to 
increase generation capacity.  This option would add a sec-
ond WFI generation system that could fill the existing stor-
age tank.  Two options were considered in the simulation 
study: the addition of a still with about half the output ca-
pacity of the existing still and the addition of an identical 
still to double WFI generation capacity. 

The final option under consideration was the addition 
of a second storage tank for WFI.  For this simulation 
1932
study, the proposed storage tank was considered to be iden-
tical to the existing storage tank.  For the purposes of simu-
lation, the two tanks are treated as one large tank, which is 
equivalent to running the two tanks in parallel. 

8 SIMULATION RESULTS 

The comparison of alternative designs is one of the most 
important uses of simulation.  The analysis of the data gen-
erated by the simulation can be used to predict the per-
formance of the system under different conditions (Banks 
et al. 2005).  The WFI Usage simulation was run for each 
of the WFI scenarios as described in the previous section. 

The iGrafx® software used for this simulation can cap-
ture the value of a scenario attribute over the run of the 
simulation.  The sampling rate is dependent on transaction 
activities.  It is not a constant sampling frequency, but the 
number of data points roughly corresponds to one sample 
every two hours.  Box plots of the storage tank level for 
each of the 5 runs are shown in Fig. 3. 
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Figure 3:  Box plot for WFI Upgrade Scenarios 

 
Box plots are used to show the effects of attribute pa-

rameters on continuous data.  Box plots show the percen-
tiles of the continuous variable at each level of the discrete 
parameters.  The plot is created by drawing a box with the 
top at the 75th percentile and the bottom at the 25th percen-
tile.  A line indicating the median value is then drawn in 
the box.  Lines called “whiskers” are drawn above and be-
low the box to indicate the extremes of the data (Hoerl and 
Snee 2002).  Outliers are indicated by an asterisk.  The 
formula for a box plot only allows the whiskers to be 
drawn to 1.5 times the range between the 25th and 75th per-
centiles (Six Sigma Academy 2002).  Points outside this 
range are considered to be inconsistent with the rest of the 
data (Hoerl and Snee 2002). 

Fig. 3 shows the box plots for each simulation run.  
Runs 1 & 2 use the existing WFI system with a demand 
override algorithm added for run 2.  Note that each of these 
runs shows the worst level performance: both actual level 
measured and the lowest 25th percentile.  These runs also 
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show the greatest variation in level.  This performance is 
clearly unacceptable since much of the data is below the 
alert level that leads to a manufacturing interruption.  Fur-
ther note that there is little difference in the data when the 
demand algorithm is added. 

Runs 3 and 4 show data when additional WFI genera-
tion is added to the system.  Run 3 represents the addition 
of a WFI still half the size of the existing still (150% gen-
eration capacity), while Run 4 is for the scenario of a sec-
ond still identical in capacity to the existing still (200% 
generation capacity).  The box plots indicate better per-
formance when compared to the system with only the cur-
rent WFI generation capacity.  The upper end of the data 
remains the same since we are using the same storage vol-
ume.  Note that the level never drops to the alert level.  
Even the outliers remain above this level.  The level shows 
much less variation than for other cases.  Interestingly 
there is no statistical difference between adding 50% or 
100% new generation capacity.  This validates the ultimate 
conclusion that more storage capacity is required to ac-
commodate future production rates. 

Run 5 represents the system with a 100% increase in 
storage tank capacity.  The box plots for these runs clearly 
indicate a statistically significant advantage to this sce-
nario.  The outlier levels are due to the tanks filling from 
the initialization value.  The level never approaches the 
alert level, so there is no danger of a process interruption.  
Note, also, that there is an improvement in variation over 
the existing situation.  Doubling the storage tank capacity 
is clearly the most advantageous upgrade to the WFI sys-
tem.  

9 CONCLUSION 

Discrete event simulation has been shown to be a useful 
tool for analyzing batch manufacturing processes.  Cycle 
time analysis, interaction between phases, and even utility 
usage can be successfully modeled using a transaction-
based approach. 

This paper has discussed the development of a simula-
tion of WFI usage along with the results.  The details of the 
simulation development were presented along with the as-
sumptions made to account for future performance en-
hancements to the actual process.  Performance was inves-
tigated several proposed WFI system scenarios. 

The analysis of the simulation results clearly showed 
that the most desirable WFI system performance would be 
gained if the storage capacity is increased.  Doubling the 
storage capacity by the addition of a new tank, or the con-
version of another storage tank to WFI service, demon-
strated the best ride-through capability for large surges in 
WFI demand. 

The WFI simulation demonstrated the capability of 
providing a reasonable approximation of the performance 
of the WFI system as well as the manufacturing systems.  
1933
This model has a number of potential applications for the 
future, including modeling usage of other utilities, adding 
other manufacturing areas to understand interactions across 
the process and the potential of proposed changes to the 
process, addition of randomization to allow statistical 
modeling, and confirmation and verification of manufac-
turing forecasts for production.  

REFERENCES 

Ball, P. 2001.  Introduction to discrete event simulation.  
Originally presented at the 2nd DYCOMANS workshop 
on Management and Control: Tools in Action, Al-
garve, Portugal, 15-17 May 1996, 367-376. 
<http://www.dmem.strath.ac.uk/~pball/simulation/sim
ulate.html>.  [accessed March 13, 2006] 

Banks, J., J. S. Carson II, B. L. Nelson, and D. M. Nicol. 
2005. Discrete-Event System Simulation.  4th ed.  Up-
per Saddle River, New Jersey: Pearson Prentice Hall. 

Domanski, B. 1999. Simulation versus analytic modeling 
in large computing environments.  White paper, Re-
sponsive Systems Company. <http://www.responsive 
systems.com/papers/misc/Simulation.pdf>.  [accessed 
March 13, 2006] 

Hoerl, R. and R. D. Snee. 2002. Statistical Thinking: Im-
proving Business Performance.  Pacific Grove, Cali-
fornia: Duxbury. 

Hwang, F. 1997. Batch pharmaceutical process design via 
simulation. Pharmaceutical Engineering, Janu-
ary/February.  <http://www.ispe.org//Template.cfm? 
Section=Referece&Template=/MembersOnly.cfm& 
ContentID=13019&CFID=2610699&CFTOKEN= 
46656408>. [accessed March 13, 2006] 

Micrografx. 2001. The role of process modeling and man-
agement within six sigma. White paper. Dallas, Texas.  
<http://courses.washington.edu/outfox/IgrafxProcess
MgtandSix%20Sigma.pdf>.  [accessed March 13, 
2006] 

Park, S., and L. Leemis. Discrete-event simulation: A first 
course. Presentation, College of William and Mary.   
<http://www.cs.wm.edu/~esmirni/Teaching/cs526/DE
SAFC-1.1.ppt>.  [accessed March 13, 2006] 

Schriber, T. J., and Brunner, D. T., Inside discrete-event 
simulation software: How it works and why it matters.  
In Proceedings of the 2005 Winter Simulation Confer-
ence, ed. M. E. Kuhl, N. M. Steiger, F.B. Armstrong, 
and J. A. Joines, 167-177.  Piscataway, New Jersey: 
Institute of Electrical and Electronics Engineers. 

Six Sigma Academy. 2002. The Black Belt Memory Jog-
ger. 1st ed. Salem, New Hampshire: GOAL/QPC. 

Watson, G. 2004. Simulation Analysis.  Monsanto Six 
Sigma Black Belt Training 2004, St. Louis.  Business 
Systems Solutions International, Inc. 

http://www.responsivesystems.com/papers/misc/Simulation.pdf
http://www.responsivesystems.com/papers/misc/Simulation.pdf
http://www.ispe.org//Template.cfm?Section=Referece&Template=/MembersOnly.cfm&ContentID=13019&CFID=2610699&CFTOKEN=46656408
http://www.ispe.org//Template.cfm?Section=Referece&Template=/MembersOnly.cfm&ContentID=13019&CFID=2610699&CFTOKEN=46656408
http://www.ispe.org//Template.cfm?Section=Referece&Template=/MembersOnly.cfm&ContentID=13019&CFID=2610699&CFTOKEN=46656408
http://www.ispe.org//Template.cfm?Section=Referece&Template=/MembersOnly.cfm&ContentID=13019&CFID=2610699&CFTOKEN=46656408
http://courses.washington.edu/outfox/IgrafxProcessMgtandSix Sigma.pdf
http://courses.washington.edu/outfox/IgrafxProcessMgtandSix Sigma.pdf
http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt
http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt


Alexander 

 
AUTHOR BIOGRAPHY 

CRAIG W. ALEXANDER is a Plant Improvement Engi-
neer with Monsanto in Augusta, Georgia.  He holds a 
Bachelor of Electrical Engineering degree from Auburn 
University and a Master of Science in Engineering degree 
from the University of New Orleans.  He is certified as a 
Six Sigma Black Belt by Monsanto and is a registered Pro-
fessional Engineer in Georgia and Louisiana.  His e-mail 
address is <craig.w.alexander@monsanto.com>. 
1934

mailto:craig.w.alexander@monsanto.com

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



