
Proceedings of the 2007 Winter Simulation Conference

S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

THE OPTIMIZING-SIMULATOR: MERGING SIMULATION AND OPTIMIZATION

USING APPROXIMATE DYNAMIC PROGRAMMING

Warren B. Powell

Department of Operations Research and Financial Engineering

Princeton University

Princeton, NJ 08544, U.S.A.
ABSTRACT

There is a wide range of simulation problems that involve

making decisions during the simulation, where we would

like to make the best decisions possible, taking into account

not only what we know when we make the decision, but also

the impact of the decision on the future. Such problems

can be formulated as dynamic programs, stochastic pro-

grams and optimal control problems, but these techniques

rarely produce computationally tractable algorithms. We

demonstrate how the framework of approximate dynamic

programming can produce near-optimal (in some cases) or

at least high quality solutions using techniques that are very

familiar to the simulation community. The price of this

challenge is that the simulation has to be run iteratively,

using statistical learning techniques to produce the desired

intelligence. The benefit is a reduced dependence on more

traditional rule-based logic.

1 INTRODUCTION

There is a vast range of problems that can be described

under the banner of “resource allocation.” Many of these

problems involve decisions that have to be made over time

under various forms of uncertainty, and often involve fairly

complex physical processes. These are the problems that

tend to fall in the domain of Monte Carlo simulation.

A challenge that arises in many resource allocation prob-

lems is the dimensionality of the decisions being made. Con-

sider the problem of allocating I types of resources (blood,

money, people, fuel, equipment) to J types of demands. If

we let xi j be the number of resources of type i assigned to

demands of type j, we find ourselves with a problem that

is most naturally formulated as a linear program. This is

fairly easy if we are only solving a problem at one point

in time; the difficulty arises when we want to solve the

problem over time. A common modeling strategy is to

assume that events (e.g., demands) in the future are known,

and solve a single linear program over a planning horizon.
431-4244-1306-0/07/$25.00 ©2007 IEEE
The “simulation” of activities in the future is handled by

the optimization algorithm.

These problems have created a tension over the years

between the simulation community, which promotes its

ability to not only handle uncertainty but also a variety

of complex operational considerations, and optimization,

which focuses on its ability to produce high quality solutions.

A common strategy is to simulate an optimization problem by

stepping forward in time, solving sequences of optimization

problems based on what is known at a point in time. At

time t, we can solve an optimization problem using only

what is known at time t, or using a deterministic forecast of

future events (“rolling horizon procedures”). While either

strategy can produce good results in specific settings, both

introduce serious weaknesses in many applications.

It is possible to combine the power of simulation and

optimization using the framework of approximate dynamic

programming (ADP). The result is a method that is accurately

described as an “optimizing simulator.” ADP is easily

adapted to existing simulators, since it steps forward in time

as with any simulation model. The only difference is that

as the simulation runs, we collect information statistically

that is then used to improve the quality of decisions. This

information captures the impact of decisions now on the

future.

2 SAMPLE APPLICATIONS

Every technique is characterized by applications that best

take advantage of its features. Approximate dynamic pro-

gramming is well suited to problems which involve some

combination of: complex dynamics, uncertainty, high-

dimensional decision vectors and a need to make decisions

that take into account the impact on the future.

Applications where ADP offers tremendous promise

include:

Powell
• Transportation problems

– Management of freight cars: Railroads have

to decide how many freight cars to move from

one location to another to meet future random

demands. The model has to account for vari-

ability in equipment types and random travel

times.

– Locomotive scheduling: A train typically re-

quires several locomotives with specific char-

acteristics to move a train. Plans have to be

made up to a week into the future. In addition to

a number of complex operational constraints,

planning has to consider last-minute additions

and cancellations, locomotive failures and train

delays.

– Driver assignment: Trucking companies have

to assign drivers to move loads of freight,

responding to changes in customer requests

as well as a variety of operating rules (get-

ting drivers home, observing limits on driving

hours, putting drivers on the right types of

loads).

• Storage problems

– Natural gas storage: How much gas should be

purchased and stored in large coal mines during

low demand periods to be sold when demands

(and prices) are high? Gas can be purchased

from multiple sources, stored in multiple lo-

cations, and sold using forward contracts at

different times of the year.

– High-value spare parts: Airlines, electric

power utilities, manufacturing operations and

medical suppliers are a small number of ex-

amples of operations which have to maintain

inventories of high-value spare parts. These

are stored in small numbers (often 0 or 1) in

various locations around the country to respond

to infrequent, sporadic demands.

– Cash balance optimization: Mutual funds have

to maintain a cash balance to respond to re-

demption requests. The amount of cash has

to reflect not only random demands but also

market conditions.

• Financial applications

– Portfolio planning: How much money should

be invested in each of a set of random invest-

ment opportunities? Depending on the type of

investment, we may have to consider transac-

tion times as well as transaction costs.

– Pricing complex options: There are a variety

of instruments that allow the sale or purchase
44
of assets in the future. Determining the value

of these options requires finding the best policy

for exercising the option.

– R & D portfolio management: The government

has to determine which research activities to

support to accomplish a specific goal (e.g.,

energy independence).

• Energy applications

– Acquiring new energy assets: Governments

and companies need to determine how much

capacity they should have to create energy

from different sources. This requires under-

standing the complex dynamics of wind, solar

and hydrothermal power to make decisions to

serve future (and highly uncertain) demands

in the presence of changing technologies.

– Control of power generating facilities: Re-

gional transmission organizations (which man-

age the electric power grid) have to determine

which generating plants (coal, gas, nuclear) to

turn on and off each day to respond to daily

and seasonal cycles for power.

– Energy inventories: Companies have to deter-

mine how much oil/coal/natural gas/biomass

to produce, where to store it and how to get it

there, all in an environment of random market

prices and demands.

• Military applications

– Movement of cargo aircraft: The military air-

lift command has to manage a fleet of cargo

aircraft to move freight and people. The mod-

els have to handle complex constraints on the

movement and storage of aircraft at airbases,

refueling and maintenance, as well as weather

and equipment problems.

– Mid-air refueling: The air force has to plan the

movement of tankers to handle the demands of

aircraft (“receivers”) performing various mili-

tary operations. A model has to track the fuel

level of tankers and receivers, as well as a

number of operational constraints on how the

receivers interact with the tankers.

– Management of UAV’s: Unmanned aerial vehi-

cles are often used to collect information about

regions, ranging from the status of targets to

movements of people.

• Demand management

– Hospital admissions: How many patients can

be admitted for elective surgery given available

beds, operating rooms and medical staff?

Powell
– Booking hotel space: Hotels have to book

meetings taking into consideration available

hotel rooms, banquet rooms and meeting

rooms.

– Load acceptance: Trucking companies and

railroads have to determine when to make

commitments to customers given available re-

sources in the future.

• Manufacturing applications

– Routing in queueing networks: In a flexible

manufacturing facility, it is necessary to deter-

mine which machine a part should be routed

to after it has finished a step, given the queues

at different machines within the facility.

– Control of reconfigurable servers: A machine

might be set up to paint parts a particular color,

drill a particular type of hole, or fill a particular

type of bottle. From time to time, machines can

be converted to perform a different function.

The problem is determining when to switch

each machine from one function to another.

• Medical applications

– Blood management: How much blood of a

particular type and age should be used now

versus held for the future?

– Scheduling medical personnel: Performing

drug trials requires scheduling medical person-

nel, equipment and facilities to serve patients.

– Allocating antivirals for flu outbreaks: It is

necessary to determine how many antivirals to

allocate to people with specific characteristics

during each week of the flu season, given

the current status of the disease within the

population.

All of these problems involve different forms of un-

certainty, and some introduce complex operational details

that are most easily handled using simulation. They also

all introduce an opportunity to make decisions that balance

rewards now against rewards in the future. Our goal is to

do a better job of making decisions that balance the “here

and now” against the future. There are multiple reasons

for wanting to do this. In addition to the obvious goal

of wanting better solutions, there are applications where

this behavior is needed to more realistically match actual

system behavior. After all, when people make decisions,

they typically consider events in the future.

3 A GENERAL MODEL

We begin by providing a generic model of a resource al-

location problem. Our model is hardly the most general,
45
but it provides sufficient richness to handle the problems

described above, and helps to illustrate the elements of

approximate dynamic programming and the relationship to

both simulation and optimization.

We assume that we are managing “resources” to serve

“demands.” These are modeled using

a = Vector of attributes describing a resource,

where a ∈A ,

b = Vector of attributes describing a demand,

where b ∈B,

Rta = The number of resources with attribute a∈A

in the system at time t,

Rt = (Rta)a∈A ,

Dtb = The number of demands of type b ∈B in

the system at time t,

Dt = (Dtb)b∈B.

Often, we are modeling the problem in the presence of

random parameters that govern the evolution of the system.

These parameters might be prices, weather, the cost of a

technology (the cost of solar panels) or the performance of

a technology (the efficiency of a solar panel). We represent

these parameters generically using

ρt = A generic vector of parameters that affects the

behavior of costs and the transition function.

A basic state variable might be given by

St = (Rt ,Dt ,ρt).

Above, we assume that t represents a point in time at which

a decision is made. While decisions are made in discrete

time, we model information as arriving in continuous time.

Information arrives in the form of exogenous changes to

our state variable. For our problem, we might have three

types of exogenous information processes:

R̂ta = Exogenous changes to Rta from information

that arrives during time interval t (between

t−1 and t),

D̂tb = Exogenous changes to Dta from information

that arrives during time interval t (between

t−1 and t).

ρ̂t = Exogenous changes to a vector of parameters

(costs, parameters governing the transition).

The random variable R̂ta might be used to capture equipment

failures or delays. Similarly, the random variable D̂tb might

represent a new customer demand or a change in the attributes

of an existing demand. ρ̂t would capture changes in costs or

performance (e.g., due to research). Exogenous information

Powell
can be modeled generically using

Wt = (R̂t , D̂t , ρ̂t).

Note that at time t, Wt is known, while Wt+1 is unknown.

This choice of indexing helps to resolve what is and is not

known at a point in time.

We model decisions using

D
D = Decision to satisfy a demand with attribute

b (each decision d ∈ DD corresponds to a

demand attribute bd ∈B).

D
M = Decision to modify a resource (each decision

d ∈ DM has the effect of modifying the at-

tributes of the resource). DM includes the

decision to “do nothing.”

D = D
D∪D

M.

xtad = The number of resources that initially have

attribute a that we act on with decision d.

xt = (xtad)a∈A ,d∈D .

Decisions have to satisfy basic constraints on the availability

of resources and the number of demands to be served. This

is done using

∑
d∈D

xtad = Rta, (1)

∑
a∈A

xtad ≤ Dtbd
d ∈D

D, (2)

xtad ≥ 0. (3)

In a particular application, other constraints might arise. For

this reason, we let Xt be the feasible region for the vector xt .

For now, this consists of equations (1) - (3), but additional

constraints may be included in specific applications.

At the heart of our problem is the need to make a

decision. For the moment, we assume this is accomplished

by a decision function, given by

Xπ
t (St) = A function that returns a decision vector xt ∈

Xt , where π ∈Π is an element of the set of

functions (policies) Π.

Once we have made a decision, we model the evolution

of the system using a classical transition function which we

represent generically using

St+1 = SM(St ,xt ,Wt+1).

Our notation reflects the tradition in some communities to

refer to this equation as the system model, plant model or

simply model. For many problems in resource allocation,

it is useful to introduce a specific model that governs the
46
evolution of the attributes of a specific resource (which

might be a person, facility or piece of equipment). We

represent this function using

at = aM(at ,dt ,Wt+1).

There are many problems where this is deterministic. For

example, the random information Wt+1 might include only

information about the demands, while the evolution of the

resource, once a decision is made, is deterministic. For

algebraic purposes, we define

δa′(a,d) =

{

1 if a′ = aM(at ,dt ,Wt+1),

0 otherwise.

Using this notation, we can write the transition function for

the resource vector Rt using

Rt+1,a′ = ∑
a∈A

∑
d∈D

δa′(a,d)xtad + R̂t+1,a′ . (4)

The demand transition function is given by

Dt+1,bd
= Dtbd

− ∑
a∈A

xtad + D̂t+1,bd
d ∈D

D. (5)

Remember that for each d ∈DD, there is a demand of type

bd ∈B. This function assumes that unserved demands are

held for the future. For many problems, unserved demands

are lost, in which case Dt+1,b = D̂t+1,b. The evolution of

our technology vector evolves according to

ρt+1 = ρt + ρ̂t+1. (6)

Equations (4) - (6) constitute our transition function

SM(St ,xt ,Wt+1).
Finally, we have to specify our objective function. For

our resource allocation problems, we define a contribution

(cost if we are minimizing) given by

ctad = Contribution earned (negative if it is a cost)

from using decision d acting on resources

with attribute a.

Assuming a linear contribution function, the total contribu-

tion would be given by

Ct(St ,xt) = ∑
a∈A

∑
d∈D

ctadxtad .

Our problem is to find a decision function that solves

max
π∈Π

E

{

T

∑
t=0

Ct

(

St ,X
π
t (St)

)

}

. (7)

Powell
4 THE DECISION FUNCTION

For complex problems, the transition function SM(·) can

be quite difficult to formulate, but we are going to assume

that this is given. Our challenge is designing a decision

function, which in some communities is referred to as a

decision rule or, more commonly, a policy.

There are two broad categories of decision functions:

rule-based and cost-based. Optimization models exclusively

use cost-based decisions (by definition), where the “cost”

can be a contribution, reward or utility to be maximized,

or a cost or penalty to be minimized. The field of discrete

event simulation primarily uses rule-based decisions.

Rule-based policies come in several forms:

• Look-up table - If we are in discrete state s, the

table gives us a discrete action to take.

• Parameterized rules - If the inventory is less than

q, order up to Q. Assign a job leaving one machine

to the highest priority machine that has available

buffer space (the parameter is the buffer space).

• Regression policies - If we have R gallons of water

in the reservoir, release xt = θ1Rt +θ2R2
t +θ3 lnRt ,

where θ is a vector of parameters to be determined.

There are numerous strategies for determining these

policies, but they tend to be very problem-specific. In

special cases, these policies can produce optimal or near-

optimal solutions to (7), but often the interest is simply

modeling an existing strategy or operation. An example is

a simulator used by the airlift mobility command to model

the movements of cargo aircraft. At any point in time, there

is a list of available aircraft (sorted by time of availability)

and a list of “requirements” (loads of freight or people)

to be moved (also sorted by time order). Their current

simulator uses a rule that starts with the first requirement to

be moved, then looks at the first available aircraft (regardless

of location) to see if the assignment is feasible (e.g., there is

capacity to move the aircraft through intermediate airbases).

There is no attempt to assess a cost for any action.

Cost-based policies also come in different forms:

• Myopic policies - Here we make decisions consider

only on the contribution we earn right now, as in

Xπ(St) = arg max
xt∈Xt

C(St ,xt).

• Rolling horizon policies - Here we choose deci-

sions xt ,xt+1, . . . ,xt+P over a planning horizon P,

using a deterministic forecast of events in the fu-

ture. Normally we implement only xt , after which

we sample new information (Wt+1) and repeat the

process for t +1.
47
• Dynamic programming policies - This approach

(which is the focus of this paper) makes a decision

now using

Xπ
t (Rt) = arg max

xt∈Xt

(

C(St ,xt)+ γEV (St+1)
)

(8)

where St+1 = SM(St ,xt ,Wt+1) and γ is a discount

factor. The challenge here is finding the function

V (St+1).

Myopic policies ignore the impact of decisions now on

the future, which will produce poor solutions for many of

the problems we are interested in. Rolling horizon proce-

dures work well for many problems, but they depend on

a deterministic forecast of the future, which can perform

very poorly. Also, rolling horizon procedures can be com-

putationally demanding, since at each point in time you

have to solve a problem over a horizon t, . . . , t +P. Aside

from producing a potentially poor solution (since it ignores

uncertainty), the resulting problem may be quite large and

therefore difficult to solve.

In the remainder of this paper, we focus on using

the framework of dynamic programming to produce good

decisions. The foundation of dynamic programming is

Bellman’s equation, typically written in the form

Vt(St) = max
xt∈Xt

(

C(St ,xt)+ γ ∑
s′

p(s′|St ,xt)Vt+1(s
′)

)

(9)

= max
xt∈Xt

(

C(St ,xt)+ γE
{

Vt+1(s
′)|St

})

, (10)

where p(s′|St ,xt) is the probability that we transition to

state St+1 = s′ given that we are in state St and take ac-

tion xt . Equation (9) is the form most commonly seen in

textbooks (e.g., Puterman 1994) while (10) is the mathemat-

ically equivalent expectation form. As a solution strategy,

Bellman’s equation is typically dismissed due to the “curse

of dimensionality” which produces exponentially large state

spaces when St is a vector.

In our applications, there are actually three curses of

dimensionality: the state space (the state variable may be a

vector), the outcome space (the number of outcomes of Wt ,

which complicates computing the expectation in (10)), and

the action space (the number of potential actions xt in Xt).

Approximate dynamic programming provides a framework

for using dynamic programming in a simple and elegant

way within a simulation model.

5 APPROXIMATE DYNAMIC PROGRAMMING

Approximate dynamic programming has been evolving since

the 1950’s from within the artificial intelligence community

(Samuel 1959), and the early work of Bellman himself

Powell
(Bellman and Dreyfus 1959). The field evolved primarily

within the artificial intelligence community and the control

theory/neural network community under names such as

reinforcement learning and neuro-dynamic programming.

The field really emerged in the 1990’s with the appearance

of two major books (Bertsekas and Tsitsiklis 1996 and Sutton

and Barto 1998) and edited volumes (Miller, Sutton, and

Werbos 1990 and White and Sofge 1992). The merger of

dynamic programming and stochastic approximation theory

was established in 1994 by Tsitsiklis (1994) and Jaakkola,

Jordan, and Singh (1994). The merger of approximate

dynamic programming and math programming took place

through a series of papers (Godfrey and Powell 2001a;

Papadaki and Powell 2003; Powell and Van Roy 2004;

Powell 2005) and a recent book (Powell 2007).

We take several steps to overcome the three curses of

dimensionality. The first and most critical is the use of

the post-decision state variable which measures the state

of the system immediately after a decision has been made

(but before any time has passed which would bring new

information). There are different ways to define a post-

decision state variable. The one that we use assumes that

we can break out the pure effect of a decision from the pure

effect of new information. We do this using

Sx
t = The state at time t immediately after a decision

has been made,

= SM,x(St ,xt),

St+1 = The pre-decision state at time t,

= SM,W (Sx
t ,Wt+1).

The post-decision state takes on different forms which are

highly problem dependent, but we can illustrate using a

simple inventory (storage) problem. Let Rt be the quantity

being stored (water, natural gas, spare equipment). We

assume this is the quantity just before we make a decision

xt to order more (we can model sales if we allow xt to

be negative). We call Rt the pre-decision state, and the

post-decision state is given by

Rx
t = Rt + xt .

Now let D̂t+1 the demand we have to satisfy in the next

time period. The next pre-decision state is

Rt+1 = max(0,Rx
t − D̂t+1).

Another way of representing a post-decision state is to

assume that we have access to a point estimate of the

information that will arrive in the next time period. Let

W̄t,t+1 = A point estimate of the information that will

arrive between t and t +1.
48
We can now define our pre- and post-decision states using

Sx
t = SM(St ,xt ,W̄t,t+1)

St+1 = SM(St ,xt ,Wt+1).

Thus, Sx
t can be viewed as a type of forecast (more precisely,

a point estimate) of St+1 that we make at time t using the

decision xt and a forecast of the future information.

Using the post-decision state, we can break Bellman’s

equations into two steps:

Vt(St) = max
xt∈Xt

(

C(St ,xt)+ γV x
t (Sx

t)
)

(11)

V x
t (Sx

t) = EVt+1(St+1) (12)

where Sx
t = SM,x(St ,xt) and St+1 = SM(St ,xt ,Wt+1) and the

expectation is over the outcomes of the random variable

Wt+1. If we substitute (12) into (11), we obtain the classical

form of Bellman’s equation. It is important to note that (11)

is a pure deterministic optimization problem, while (12) is

purely an expectation.

The problem is that for the vast majority of applications,

we will not know V x
t (Sx

t). As a result, we have to replace it

with an approximation which we represent by V̄t(S
x
t). We

never need to compute (even approximately) Vt(St). Using

V̄t(S
x
t), our decision function looks like

Xπ
t (St) = arg max

xt∈Xt

(

C(St ,xt)+ γV̄t(S
x
t)
)

. (13)

The critical step is designing V̄t(S
x
t), which depends

very much on the nature of the problem and the available

algorithms. For example, there are many resource alloca-

tion problems where xt represents a schedule for discrete

equipment (machines, locomotives, cargo aircraft), or an al-

location of continuous resources (blood, money, vaccines).

In the first case, we may have to use an integer programming

package or possibly a metaheuristic such as tabu search or a

genetic algorithm. In the second, we probably face a linear

or nonlinear programming problem.

A good way to approach the problem is to first ask

how you would solve the problem if there were no value

function (can you enumerate actions? can you use a linear or

integer programming code? is it a nonlinear programming

problem?). Your answer will determine the type of structure

you want to retain in your value function. For example, if

you need to use a linear, nonlinear or integer programming

package, you are going to need some sort of continuous

value function approximation. If you are going to use a

search algorithm such as tabu search or a genetic algorithm,

then you can use a look-up table (where you have a value

V̄t(S) for each discrete state S).

Once we find a value function approximation, we have

to determine how to estimate it. The simplest is a lookup-

Powell
table where there is a value for each state S. Further assume

that we are in post-decision state S
x,n
t−1 at time t−1, when

we are in iteration n of our algorithm. Let Wt(ω
n) be a

sample realization of the random variable Wt , representing

a sample of the information that arrives between t−1 and

t. Our next pre-decision state would be

Sn
t = SM,W (Sx,n

t−1,Wt(ω
n)).

We then solve

v̂n
t = max

xt∈X n
t

(

Ct(S
n
t ,xt)+ γV̄ n−1

t

(

SM,x(Sn
t ,xt)

))

(14)

where V̄ n−1
t (SM,x(Sn

t ,xt)) is the value function approximation

from the previous iteration. We then update the value

function using

V̄ n
t−1(S

x,n
t−1) = (1−αn−1)V̄

n−1
t−1 (Sx,n

t−1)+αn−1v̂n
t ,

where αn−1 is a stepsize that is typically between 0 and

1. There are many recipes for stepsizes (see George and

Powell (2006)), the simplest popular ones are a constant

(such as 0.1) or a declining sequence such as a/(a + n)
where a is some constant such as 5 or 10. Note that we use

v̂n
t , which is an estimate of the value of being in pre-decision

state Sn
t , to update the value function around the previous

post-decision state S
x,n
t−1.

An overall summary of the algorithm is given in Figure

1 for a finite horizon problem. The same algorithm can

be adapted for infinite horizon problems by dropping the

time-index on the value function approximation.

6 VALUE FUNCTION APPROXIMATIONS

In general, we will not be able to use look-up table rep-

resentations for the value function simply because there

are too many states. Instead, we use various approximation

strategies. We address two dimensions of the approximation

problem that arise in the context of resource allocation: the

quantity problem (estimating the value of R > 1 resources)

and the quality problem (what is the difference between a

resource with attribute vector a′ or a′′). We start with the

quantity problem.

6.1 The Quantity Problem

Often we have to determine whether to have three doctors,

400 freight cars, 10 million dollars, or 50 units of blood.

The approximations below help in the design of value func-

tions where we have to determine the quantity of resources.

All of these can be used within an optimization package for

applications where xt is a (possibly high-dimensional) vector.
4

Step 0. Initialization:

Step 0a. Initialize V̄ 0
t , t ∈T .

Step 0b. Set n = 1.

Step 0c. Initialize S1
0.

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0,1,2, . . . ,T :

Step 2a. Solve:

v̂n
t = max

xt∈X n
t

(

Ct(S
n
t ,xt)

+ γV̄ n−1
t (SM,x(Sn

t ,xt))
)

and let xn
t be the best value of xt .

Step 2b. If t > 0, update the value func-

tion:

V̄ n
t−1←UV (V̄ n−1

t−1 ,Sx,n
t−1, v̂

n
t)

Step 2c. Update the states:

S
x,n
t = SM,x(Sn

t ,x
n
t)

Sn
t+1 = SM,W

(

S
x,n
t ,Wt+1(ω

n)
)

Step 3. Increment n. If n≤ N go to Step 1.

Step 4. Return the value functions (V̄ N
t)T

t=1.

Figure 1: Generic approximate dynamic programming al-

gorithm using the post-decision state.

Linear approximations

The simplest approximation is one that is linear in the

resource state, given by

V̄t(S
x
t) = ∑

a∈A

v̄taRx
ta.

We emphasize that the state variable (more precisely, the

post-decision state) Sx
t , may consist of not only the resource

state Rx
t but also other forms of information (weather, prices,

technology). We assume here that the value function ap-

proximation is purely a function of Rx
t .

To estimate the slopes v̄ta, we use the derivative of

the decision function rather than the value of being in a

particular state. That is, rather than use the value of being

in a state (as we did in equation (14)), we are going to use

the derivative of the objective function

Ṽt(R
n
t) = max

xt∈X n
t

(

C(Sn
t ,xt)+ γV̄t(S

x
t)
)

. (15)
9

Powell
where Sx
t = SM,x(Sn

t ,xt). Let

v̂n
ta = Ṽt(R

n
t + eta)−Ṽt(R

n
t)

be the derivative of Ṽt(R
n
t) with respect to the element Rta.

If the optimization problem in (15) is a linear program,

we can obtain an estimate of the derivative using the dual

variable of the resource constraint in (1). We then smooth

our estimate of the value using

v̄n
t−1,a = (1−αn−1)v̄

n−1
t−1,a +αn−1v̂n

ta.

One value of working with derivatives is that instead of

getting one estimate of the value of being in a state, we

get a vector of derivatives. This is exceptionally powerful.

Separable, piecewise linear approximations

In many applications, the marginal value of a resource

depends on the quantity of resources, since there are often

declining marginal returns. A simple and flexible way of

capturing this behavior is through the use of separable,

piecewise linear approximations. We would write the value

function approximation using

V̄t(S
x
t) = ∑

a∈A

V̄ta(R
x
ta).

Often, we use a simpler attribute vector in the value function.

Thus, a locomotive might be characterized by location,

locomotive type, home shop and fuel level, while in the

value function we may only consider location and locomotive

type.

Updating piecewise linear value function approxima-

tions is very similar to updating linear value functions.

Instead of updating a single slope for resources with at-

tribute a, you update the slope around the point R
x,n
t−1,a

corresponding to the previous post-decision state variable.

The problem is that smoothing v̂n with the current slope

at V̄ n−1
t−1,a(R

x,n
t−1,a) may produce a function that is no longer

concave. The steps are illustrated in Figure 2. We start

with a piecewise linear, concave function V̄ n−1
t−1,a(R

x,n
t−1,a).

The slope v̂n is shown as a dashed line, from which we

update the value function by smoothing v̂n with the current

slope at R = Rn. This produces a piecewise linear value

function that is no longer concave. We then have to in-

troduce a step to retain concavity. There are several ways

of doing this, including the CAVE algorithm (Godfrey and

Powell 2001b), the leveling algorithm (Topaloglu and Pow-

ell 2003) and the SPAR algorithm (Powell, Ruszczyński,

and Topaloglu 2004). All are quite simple to implement.

Indexed separable, piecewise linear approximations

This is a hybrid of piecewise linear, separable and

lookup-table. Let φ f (St) be some statistic computed from
50
n
R

1()n
V R

−

ˆn
v

()n
V R

Figure 2: Original value function V̄ n−1(R) (solid line),

estimate of slope at Rn which violates concavity, and updated

value function V̄ n(R) after concavity has been maintained.

the state variable (this could be a measure of weather, an

indicator of the state of solar panel technology, the market

price of oil). We assume there is a small set of these statistics

(called features), given by F . Let φ(St) =
(

φ f (St)
)

f∈F

be the set of features, where we assume they have been

discretized into a set Φt which we hope is not too large.

Our value function approximation would then be

V̄t(S
x
t) = ∑

a∈A

V̄ta (Rx
ta|φ(St)) .

Now, instead of one function for each a ∈ A , we have

|Φt | functions. The steps for updating the piecewise linear

functions are the same as the scalar case, but now we

may have dozens, hundreds or even thousands of functions

for each attribute. This introduces additional statistical

challenges. A successful illustration of this strategy is

given in Nascimento and Powell (2007).

There are two important special cases of this strategy.

In the first, φ(St) depends purely on exogenous factors such

as weather, technology or market prices. In the second,

φ(St) = φ(Rt) depends directly on the (pre-decision)

resource vector.

Polynomial approximations

Another strategy is to use polynomial approximations.

For example, we might specify a linear regression of the

form

V̄ (R) = ∑
a∈A

(

θ 0
ta +θ 1

taRta +θ 2
ta(Rta)

2
)

.

We can write this more generally as

V̄ (S) = ∑
f∈F

θ f φ f (S).

Powell
()V R

R

Figure 3: Illustration of Benders cuts to approximate a

concave function.

Here, the functions φ f (S) are referred to as basis functions

in the approximation literature, or features in the reinforce-

ment learning literature. They are functions which extract

information which is felt to be relevant in explaining the

impact of the state variable on the value function.

The estimation of basis functions has received consid-

erable attention in the approximate dynamic programming

community. Important references are Bertsekas and

Tsitsiklis (1996), Tsitsiklis and Van Roy (1996), Tsitsiklis

and Van Roy (1997), Van Roy (2001) and Powell (2007).

Benders cuts

This is an approximation drawn from the stochastic

programming community. Here, the value function is rep-

resented using a series of cuts of the form

V̄t(R
x
t)≤ αn

m +β n
mR

x,m
t , m = 1, . . . ,n.

An illustration of the use of a series of cutting planes to

approximation a concave function is given in Figure 3.

There are several strategies for estimating the parame-

ters αn
m and β n

m, the most popular being stochastic decom-

position Higle and Sen (1991). Powell (2007) provides a

brief summary of the use of Benders cuts in the context

of approximate dynamic programming. Unlike the other

methods, Benders cuts produces provably optimal solutions

under certain conditions, but experimental work (Powell,

Ruszczyński, and Topaloglu 2004; Topaloglu and Powell

2006) suggests that the rate of convergence can be quite

slow.

6.2 The Quality Problem

Estimating the value of R resources, for R > 1, primarily

arises in resource allocation problems where the attribute

space is small. When managing complex resources (people,

complex equipment), we encounter what can be called the

quality problem: what is the value of resources of type a′

versus a′′? If a = (a1,a2, . . . ,aI), where I is more than three

or four attributes, the attribute space gets large very quickly.
51
Even if we just use a linear approximation, estimating v̄ta

can become statistically difficult. We may need to estimate

hundreds of thousands of parameters (sometimes far more).

Even when v̂ta represent derivatives, we are not going to

be able to compute an estimate of the derivative for every

attribute at every iteration.

An effective way of handling this problem is to estimate

values at different levels of aggregation (see Powell 2007

and George, Powell, and Kulkarni 2005). Assume that

we are given a set of functions Gg, g ∈ G which map the

attribute space A into more compact representations, which

we write

Gg : A →A
(g).

Let v̄
(g,n)
a is an estimate of the attribute a ∈ A at the gth

level of aggregation (that is, for the attribute G(a) ∈A (g)).

We can estimate v̄
(g,n)
a simply from aggregate observations

using

v̄
(g,n)
a = (1−αn−1)v̄

(g,n−1)
a +αn−1v̂n

a for each g ∈ G .

We then create a single estimate of the value of a resource

with attribute a using

v̄n
a = ∑

g∈G

w
(g,n)
a v̄

(g,n)
a .

A simple way of estimating the weights is to make them

inversely proportional to the sum of the variance and bias

squared

w
(g,n)
a ∝ (σ̄2

a)(g,n) +
(

µ̄
(g,n)
a

)2

,

where (σ̄2
a)(g,n) is an estimate of v̄

(g,n)
a and µ̄

(g,n)
a is an

estimate of the bias, given by

µ̄
(g,n)
a = v̄

(g,n)
a − v̄

(0,n)
a .

We compute (σ̄2
a)(g,n) by first finding

ν̄
(g,n)
a = (1−ηn−1)ν̄

(g,n−1)
a +ηn−1(v̄

(g,n−1)
a − v̂n

a)
2,

β̄
(g,n)
a = (1−ηn−1)β̄

(g,n−1)
a +ηn−1(v̂

n− v̄
(g,n−1)
a),

(s2
a)

(g,n) =
ν̄

(g,n)
a − (β̄

(g,n)
a)2

1+λ n−1
.

where

λ
(g,n)
a =

{

(α
(g)
a,n−1)

2 n = 1

(1−α
(g)
a,n−1)

2λ
(g,n−1)
a +(α

(g)
a,n−1)

2 n > 1.

Powell
Here, we have written the stepsize as α
(g)
a,n−1 to emphasize

that it depends on the attribute and the level of aggregation.

ηn−1 is a simple stepsize such as 0.05. Finally, we compute

the variance of v̄
(g,n)
a using

(σ̄2
a)(g,n) = Var[v̄

(g,n)
a]

= λ
(g,n)
a (s2

a)
(g,n) (16)

These equations are easy to implement and scale to large

attribute spaces. Note that we do not have a problem if we

have no observations at a level of aggregation, since in this

case we simply set the weight to zero.

7 FROM SIMULATION TO OPTIMIZATION

So you already have a simulation model of your favorite

application. Perhaps it is a queueing network, a hospital

application, or a transportation problem. Are you a candidate

for approximate dynamic programming?

The first question you have to answer: do you have

an objective function that provides a single, quantitative

measure that determines the quality of the decisions you

are making? If not, you are not a candidate for optimization.

If so: Do you use a rule-based policy for making decisions,

or do you maximize a contribution or minimize a cost? If

you use rule-based decision making, you need to make the

conversion to a contribution (cost)-based one.

As a simple illustration, the military uses a rule-based

simulation to model the flows of cargo aircraft. Given a

load of freight, the model tries to assign the first available

aircraft, without regard to location. An alternative is to look

at the first five available aircraft (or all the aircraft that are

available within a specific horizon), determine a cost for

assigning each aircraft to the load, and then choose the one

with the lowest cost. This is a small step, but a significant

one.

Once you have a way of making decisions by maxi-

mizing a contribution, we then have to ask: do you need to

capture the impact of decisions now on the future? Just as

important, what sort of information do you need to make

better decisions? In one transportation project involving

the assignment of drivers to loads, we needed approximate

dynamic programming to tell us what type of driver should

be assigned to a load. In a project managing freight cars,

we needed value functions to tell us how many cars should

be moved to a location. Some problems are dominated by

the immediate impact of a decision, while others produce

meaningless results if you do not think about the future.

After you have decided the type of intelligent behavior

you are looking for, the next task is to choose a value

function approximation that captures this. This involves

three steps: identifying the elements of the state variable

that are important, creating a value function approximation
52
that works with the technology that you are using to find

a decision (a linear programming solver?, a tabu search

heuristic?), and finally, designing a method to estimate the

value function.

Designing a value function approximation is part art

(what is important?) and part science (it has to work with

your solver, you need to update it, and it has to have

good statistical properties). It is not unusual to obtain poor

results when you first start testing an ADP algorithm. As

you progress through your testing, make sure you address

the following questions:

• Is v̂n
ta being properly calculated? If the system is

taking you to a state that seems to produce poor

results, does v̂n
ta reflect this?

• Be careful with stepsizes. A common mistake is

to use a stepsize αn = 1/n since this has been

proven to produce convergent results. In fact, it

can work extremely poorly. Start with αn = 0.10

or 0.05. As you build confidence (the results seem

to improve, but not as well as you hoped), switch

to αn = a/(a+n) for a = 5 or 10. Later, switch to

an adaptive stepsize formula such as the “optimal

stepsize algorithm” (George and Powell 2006) (pre-

sented as the “bias-adjusted Kalman filter” stepsize

in Powell 2007).

• Be aware of the “exploration vs. exploitation”

problem. There are problems where you have a

poor value of a state because you have not visited

the state. You do not visit the state because your

estimate of the value of the state is low. See

chapter 10 in Powell (2007) for a more complete

discussion.

ACKNOWLEDGMENTS

This research was supported in part by grant AFOSR-

FA9550-05-1-0121 from the Air Force Office of Scientific

Research.

REFERENCES

Bellman, R., and S. Dreyfus. 1959. Functional approxima-

tions and dynamic programming. Mathematical Tables

and Other Aids to Computation 13:247–251.

Bertsekas, D., and J. Tsitsiklis. 1996. Neuro-dynamic pro-

gramming. Belmont, MA: Athena Scientific.

George, A., and W. B. Powell. 2006. Adaptive stepsizes for

recursive estimation with applications in approximate

dynamic programming. Machine Learning 65 (1): 167–

198.

George, A., W. B. Powell, and S. Kulkarni. 2005. Value

function approximation using hierarchical aggregation

for multi-attribute resource management. Technical re-

Powell
port, Princeton University, Department of Operations

Research and Financial Engineering.

Godfrey, G. A., and W. B. Powell. 2001a. An adap-

tive, distribution-free approximation for the newsvendor

problem with censored demands, with applications to

inventory and distribution problems. Management Sci-

ence 47 (8): 1101–1112.

Godfrey, G. A., and W. B. Powell. 2001b. An adap-

tive, distribution-free approximation for the newsvendor

problem with censored demands, with applications to

inventory and distribution problems. Management Sci-

ence 47 (8): 1101–1112.

Higle, J., and S. Sen. 1991. Stochastic decomposition: An

algorithm for two-stage linear programs with recourse.

Mathematics of Operations Research 16 (3): 650–669.

Jaakkola, T., M. I. Jordan, and S. P. Singh. 1994. Con-

vergence of stochastic iterative dynamic programming

algorithms. In Advances in Neural Information Process-

ing Systems, ed. J. D. Cowan, G. Tesauro, and J. Al-

spector, Volume 6, 703–710. San Francisco: Morgan

Kaufmann Publishers.

Miller, W. T. I., R. S. Sutton, and P. J. Werbos. (Eds.)

1990. Neural networks for control. Cambridge, MA:

MIT Press.

Nascimento, J., and W. B. Powell. 2007. Dynamic program-

ming models and algorithms for the mutual fund cash

balance problem. Technical report, Princeton Univer-

sity.

Papadaki, K., and W. B. Powell. 2003. An adaptive dynamic

programming algorithm for a stochastic multiproduct

batch dispatch problem. Naval Research Logistics 50

(7): 742–769.

Powell, W. B. 2005. The optimizing-simulator: Merging

simulation and optimization using approximate dynamic

programming. In Proceedings of the Winter Simulation

Conference. New York: OMNIPress.

Powell, W. B. 2007. Approximate dynamic programming:

Solving the curses of dimensionality. New York: John

Wiley and Sons.

Powell, W. B., A. Ruszczyński, and H. Topaloglu. 2004.

Learning algorithms for separable approximations of

stochastic optimization problems. Mathematics of Op-

erations Research 29 (4): 814–836.

Powell, W. B., and B. Van Roy. 2004. Approximate dynamic

programming for high dimensional resource allocation

problems. In Handbook of Learning and Approximate

Dynamic Programming, ed. J. Si, A. G. Barto, W. B.

Powell, and D. W. II. New York: IEEE Press.

Puterman, M. L. 1994. Markov decision processes. New

York: John Wiley & Sons.

Samuel, A. L. 1959. Some studies in machine learning using

the game of checkers. IBM Journal of Research and

Development 3:211–229.
5

Sutton, R., and A. Barto. 1998. Reinforcement learning.

Cambridge, Massachusetts: The MIT Press.

Topaloglu, H., and W. B. Powell. 2003. An algorithm for

approximating piecewise linear concave functions from

sample gradients. Operations Research Letters 31 (1):

66–76.

Topaloglu, H., and W. B. Powell. 2006. Dynamic program-

ming approximations for stochastic, time-staged inte-

ger multicommodity flow problems. Informs Journal

on Computing 18 (1): 31–42.

Tsitsiklis, J., and B. Van Roy. 1997. An analysis of temporal-

difference learning with function approximation. IEEE

Transactions on Automatic Control 42:674–690.

Tsitsiklis, J. N. 1994. Asynchronous stochastic approxima-

tion and Q-learning. Machine Learning 16:185–202.

Tsitsiklis, J. N., and B. Van Roy. 1996. Feature-based

methods for large scale dynamic programming. Machine

Learning 22:59–94.

Van Roy, B. 2001. Neuro-dynamic programming: Overview

and recent trends. In Handbook of Markov Decision

Processes: Methods and Applications, ed. E. Feinberg

and A. Shwartz. Boston: Kluwer.

White, D. A., and D. A. Sofge. 1992. Handbook of intelligent

control. New York, NY: Von Nostrand Reinhold.

AUTHOR BIOGRAPHY

WARREN B. POWELL is a professor in the Department of

Operations Research and Financial Engineering at Princeton

University. He is director of CASTLE Laboratory and has

implemented optimizing-simulator models in both military

and civilian settings, including a number of the largest freight

transportation companies in the U.S. The coauthor of over

100 refereed publications, he has specialized in solving

complex stochastic resource allocation problems, and has

recently focused on merging the fields of simulation, math

programming and approximate dynamic programming.
3

	INTRODUCTION
	SAMPLE APPLICATIONS
	A GENERAL MODEL
	THE DECISION FUNCTION
	APPROXIMATE DYNAMIC PROGRAMMING
	VALUE FUNCTION APPROXIMATIONS
	The Quantity Problem
	The Quality Problem

	FROM SIMULATION TO OPTIMIZATION

