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ABSTRACT

We describe how to develop generic efficient simulation

algorithms for estimating price and price sensitivities (the

Greeks) of financial options using the Structured Database

Monte Carlo (SDMC) approach. These algorithms are based

on stratification, control variate and a combination of the two

in an SDMC setting. Experimental results and some discus-

sion of the effectiveness of the approach are provided. The

algorithms also serve as illustrations of the basic approach

of developing variance reduction algorithms in an SDMC

setting that are not necessarily limited to stratification and

control variate techniques.

1 INTRODUCTION

Most statistical estimation problems via Monte Carlo, in-

cluding those of estimating price and price sensitivities of

financial options, can be viewed as estimating the integral

of a function, say f , on a unit hyper-cube, say [0,1]d . Crude

or basic Monte Carlo corresponds to sampling randomly in

[0,1]d and averaging the function values at sampled points.

Note that there is no link between the sampling strategy of

crude Monte Carlo (choice of points at which f is sampled)

and the function f . Most variance reduction techniques

attempt to create such a link by bringing some auxiliary

information to bear on the estimation problem; most often

this information reflects some feature of the function f al-

beit not in a very direct fashion. Consider, for example, the

control variate technique. A control variate carries some

(linear) information about the output of the crude Monte
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Carlo ( f (U), U ∼ U [0,1]d) and hence f and it is most

effective when this linear link is very strong. The source of

the auxiliary information, i.e., the choice of the control, and

the manner in which the information is used by variance

reduction techniques are highly problem dependent: in each

case a new source of information needs to be discovered

and a method devised for its effective utilization. In other

words, there are no generic recipes for designing effective

variance reducing algorithms. The point of departure of the

recently introduced approach of Structured Database Monte

Carlo (SDMC) is an attempt to devise a generic method for

designing such algorithms.

We begin by noting that quite often, as when pricing

options or estimating price sensitivities, we use Monte Carlo

to “solve” many instances of a single problem that differ

only in parameter values. In such a context SDMC utilizes

information obtained at a nominal parameter value, say θ0

that may be a scalar, a vector, or a more general index, to de-

sign effective variance reduction algorithms at neighboring

parameters (see Zhao et al. 2006 for an introduction and

Zhao et al. 2007 for a more complete discussion). There-

fore, in the SDMC approach f (.,θ0) is the generic source

of information. Our first use of this information is to in-

duce a linear order (structure) on the underlying probability

space (database) using values at the nominal parameter, i.e.,

f (.,θ0). In many problems this structure is approximately

maintained when the parameter is perturbed. This feature

enables the design of generic variance reducing algorithms

using the known techniques of variance reduction such as

stratification, control variate, and importance sampling for

estimation at the perturbed parameter value. Therefore, in
4
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contrast to the common practice of discovering a source

of information about f (θ), when using SDMC, the infor-

mation is extracted from f (θ0) where θ0 is a neighboring

parameter of θ .

In this paper we focus on designing variance reducing

algorithms based on two variance reduction techniques of

stratification, control variate, and a combination of the two.

In the case of the stratification technique, the SDMC setting

allows for a generic and effective stratification approach.

Once the strata are defined, the choice of sample allocation

to strata follows the standard techniques without much mod-

ification. As for the control variate technique, the SDMC

approach allows for the selection of effective and generic

control variates. Combining both approaches can add an

additional degree of variance reduction that goes beyond the

contribution of each approach in isolation. As we point out

in the paper, stratification can deal effectively with nonlin-

earity in f (as a function of elements of the database) and

control variate can effectively remove the variance due to

the linear “component” of f (see, Glasserman 2004, Section

4.3 for similar observations).

It is worth noting that a (possibly significant) setup

cost is associated with the construction and structuring of

the database in the SDMC setting. This cost can be viewed

as an investment whose dividends are recuperated through

efficiency gains in each future estimation exercise that uses

the database. In the context of option pricing we show

that the efficiency gains are not limited to price estimations

at neighboring parameters but also extend to estimating

price sensitivities at these parameters. As is well known,

estimating price sensitivities is an indispensable part of risk

management and hedging in trading options. Hence the

efficiency gains in this domain are of particular practical

interest.

In addition to the well-known references to variance

reduction techniques, of which Glasserman (2004) is an ex-

cellent representative providing a comprehensive coverage

of Monte Carlo methods applied to computational finance,

the literature on information based complexity and optimal

recovery is also quite relevant to the work in this paper (see,

e.g., Traub et al. 1988, and Novak 1988). The work on in-

formation based complexity and optimal recovery, starting

with formulations and results as in Kiefer (1957), seeks

optimal algorithms (under different notions of optimality)

for, among others, estimating the integral of an unknown

function f . The estimation relies on two sources of informa-

tion: (a) a priori information represented by f ∈ F where

F is a specific class of functions (for example monotone

functions), and (b) sampled values of f . A critical ques-

tion then becomes optimal sampling of f , given f ∈ F .

In the SDMC context the database can be conveniently

represented/approximated by [0,1] and the function f is

monotone/approximately monotone on the database; hence,

our estimation problem can be framed as one considered in
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the context of information based complexity and the ques-

tion of optimal sampling in that context becomes intimately

related to stratifying the database in the SDMC setting.

More detailed discussion along these lines are provided in

the paper.

The rest of the paper is organized as follows. We

begin with a preliminaries section in which we define the

estimation problems that will be addressed and briefly review

SDMC, stratification, and control variate techniques. In

Section 3 we consider an idealized setting that in spite

of its apparent simplicity provides significant insight into

the design and performance of the algorithms we propose.

Section 4 considers price and price sensitivity estimation of

a path-dependent option and includes experimental results.

Brief conclusions and directions for future research are

provided in Section 5.

2 PRELIMINARIES

In this section we describe the estimation problems in a

general context, we give a short introduction to the SDMC

approach, and briefly review variance reduction techniques

of stratification and control variate. This section also serves

to establish some notation for the rest of the paper.

2.1 The Estimation Problem

Consider the problem of estimating

J(θ) = E[ f (ω;θ))] =
∫

Ω
f (ω;θ)P(dω) (1)

where ω is a random object (number, vector, graph, path,

etc.) belonging to a probability space (Ω,F,P) and f ( . ;θ)
is a real-valued function on Ω for all θ ∈ Θ. As we pointed

out earlier, the dependence on a parameter θ is critical for

the SDMC approach in the following sense: we assume

that the estimation problem is to be solved for different and

possibly a large number of θ ∈ Θ.

In some problems it is the probability measure that

depends on the parameter of interest θ . In such cases

one can find an equivalent estimation problem where the

parameter in the measure is “pushed” to a transformed f

function. Think, for example, of a stochastic model where

the parameter of interest is a distributional parameter of its

random “inputs.” Since samples of random inputs may be

generated from standard uniforms U(0,1), the underlying

probability space can be defined as the product space of a

number of uniforms that are independent of the distributional

parameters. Therefore, no generality is lost in the above

formulation.
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2.2 Sensitivity Estimation

Dynamic hedging in finance requires evaluating price sen-

sitives. These are quantities that are not market observable

and Monte Carlo simulation is a key tool for their estima-

tion. In many instances, the estimation of such sensitivities

can be formulated as the estimation of a functional on the

paths of the underlying stochastic process, namely as an

estimation problem of the kind we specified above.

Specifically, let g(X(ω);θ) denote a sample perfor-

mance defined on a path of X . Fixing ω makes g a deter-

ministic function of θ . Therefore, formally we can take its

derivative with respect to θ and obtain ∇θ g(X(ω);θ). In

those cases where

∇θ E[g(X(ω);θ)] = E[∇θ g(X(ω);θ)]

we can set f (ω;θ) = ∇θ g(X(ω);θ) and the sensitivity

estimation problem becomes an estimation problem of type

(1).

We now turn to a short introduction to the SDMC

method.

2.3 SDMC

The following are the basic steps of the SDMC algorithm.

First, the primitives of the simulation (members of Ω) need

to be selected. In the type of problems discussed in this

paper, a convenient set of primitives are paths of the standard

Brownian motion or vectors of Brownian motion. Next, a

large database of the primitives needs to be generated. The

most straightforward approach is to generate the primitives

from the given probability measure defined on the set of

primitives. However, sampling according to a more general

user defined measure is possible, and sometimes desirable.

Let us denote the database by ΩN where N = |ΩN | is the

size of the database. The probability space (ΩN ,2ΩN ,PN)
where PN is the uniform measure is now the basic probability

space of our estimation problem. Note that we have changed

the estimation problem to an approximate version of its

original form. Namely, we are now interested in estimating

J1(θ) = E[ f (X ;θ)] =
1

N

N

∑
i=1

f (ωi;θ)

where X is a random element of ΩN selected uniformly.

For large N, J1(θ) approximates J(θ) closely. In this paper,

we completely bypass the question of what an acceptable

ΩN is and how best to generate it. This question will be

a separate research question to be addressed in the future.

We take ΩN and the above construction as a given.

Once the database of primitives is generated, f (.,θ0)
is used to “structure” the database. The appropriate struc-

ture may depend on the method of variance reduction to
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be used. In what follows, we impose a linear order on

the database using f (.,θ0) or a function closely related to

f (.,θ0). This linear order induces some homogeneity of

function values, i.e., values that have close database indices

(|i− j| < k for “small” k), have “close” function values

(| f (ωi;θ0)− f (ω j;θ0)| < a for “small” a). As we will see,

if the sample performance is continuous with respect to θ ,

the homogeneity induced survives when θ is perturbed.

Figure 1 describes the basic steps of the SDMC

approach.

1. Data base generation: Generate a “large” set of

samples (paths) from Ω according to the probability

measure P. Let {ω1, · · · ,ωN} denote the set of paths

generated. From now on we refer to this finite set

of paths as the database and denote it by DB.

2. Structuring the database DB: Induce a linear

order on the database DB according to the values

f (ω,θ0). In other words,

ωi ≤ ω j ⇔ f (ωi,θ0) ≤ f (ω j,θ0).

3. Simulation/sampling at θ 6= θ0: Sample from the

database DB, taking into account the structure of

the database. (We expect that the structure remains

approximately unperturbed if θ is close to θ0.)

Figure 1: Structured Database Monte Carlo simulation.

We now briefly review the two variance reduction tech-

niques of stratification and control variate that will be used in

this paper. For a more complete discussion of the techniques

see Glasserman (2004), Chapter 4.

2.4 Stratification & Control Variate Methods

As noted earlier, to gain efficiency, most variance reduction

techniques rely on utilizing additional information about the

random variable whose expectation is to be estimated. Their

effectiveness depends on the relevance of the information

and on how it is used.

2.4.1 Stratification

The stratification method involves partitioning the proba-

bility space into a finite number, say k, of strata. Then, the

original estimation problem turns into that of k estimation

subproblems. The relevant and additional information is

the “size” of the strata (their probabilities). This infor-

mation allows one to assemble the subproblem estimators
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to construct an estimator for the original problem without

introducing additional variance.

More precisely, assume we aim to estimate µ = E[Y ]
where Y = f (X), X is a random element of Ω, and f is

a real-valued function. Assume {A1, · · ·Ak} is a partition

of Ω. Let pi = P(Ai), µi = E[Yi] = E[Y |X ∈ Ai] and σ2
i =

Var[Yi] = Var[Y |X ∈ Ai]. Given pi and µ̂i, an estimator of

µi for i = 1, · · ·k, the stratified estimator of µ is

µ̂st = p1µ̂1 + · · ·+ pk µ̂k.

It is easy to see that the variance of this estimator is

Var(µ̂st) =
k

∑
i=1

piVar(µ̂i) = E[Var(Y |X ∈ Ai)] ≤ Var(Y ).

In other words, stratification is always beneficial. The mag-

nitude of the benefit depends on the choice of stratification.

However, strata definition, i.e., the appropriate partitioning

of Ω, is problem dependent and is left to the creativity of the

user. No generic prescription for “optimal” partitioning of

Ω is provided in the literature. The user has some flexibility

in the allocation of samples to strata.

Given a fixed partition, it is well known that the optimal

allocation of samples is according to quantities qi

qi =
piσi

∑k
j=1 p jσ j

,

i.e., the number of samples out of n allocated to stratum

Ai, denoted by ni is given by ni = ⌊n∗qi⌋. The minimum

variance is given by

σ∗2 = (
k

∑
i=1

piσi)
2.

Once a partition is selected, optimal sampling within

strata requires knowing σi’s or estimating them. In almost

all cases, these values are not known in advance and need

to be estimated via pilot runs.

2.4.2 Control Variates

In the method of control variates the additional information

is furnished via one or more random variables, called con-

trol variates. The controls are correlated with Y and the

method of control variate uses the standard techniques of

linear regression to extract the information and construct

“correction” term to be added to the “raw” estimator of

E[Y ].
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More specifically, let V1, . . . ,Vk be a set of controls with

known means E[V1], · · · ,E[Vk]. Let

Z = Y −
k

∑
i=1

βi · (Vi −E[Vi])

Then, for all vectors (β1, · · · ,βk), Z is an unbiased estimator

of µ = E[Y ].
The problem of finding the vector β ∗ = (β ∗

1 , . . . ,β ∗
k )

that minimizes the variance of Z can be formulated as the

problem of projecting Y onto the linear subspace spanned

by the Vi −E[Vi]’s. The optimal solution is given by

β ∗ = Σ−1
V ΣVY

where V is a vector of the Vi’s and Σ with subscript denotes

the appropriate covariance vector or matrix. The variance

of the optimal estimator is:

σ2
Z = σ2

Y −Σ′
VY Σ−1

V ΣVY = (1−R2)σ2
Y .

Note that the optimal choice of β ’s requires knowledge

of the covariance matrix of V and Y , which is rarely available

and most often needs to be estimated.

Again there are no generic prescriptions for selecting

controls and this selection has been highly problem specific.

3 DESIGNING VARIANCE REDUCTION

ALGORITHMS

In this section we consider an idealized estimation setting,

namely we assume that the problem is to estimate µ defined

as

µ = E[ f (U)] =
∫ 1

0
f (u)du.

where f is an increasing function on [0,1] and U is uni-

formly distributed on [0,1] (in what follows we use increas-

ing to mean more generally non-decreasing). Note that if

i = 1, · · · ,N denote the indices of the elements of a large

and monotone database, then the correspondence i → i/N

maps the database into [0,1] and the monotonicity is pre-

served. The above integral then is an idealized form of the

summation of the elements of the database. This idealized

setting provides significant insight for design and perfor-

mance evaluation of estimation algorithms in the SDMC

setting.

Assume that the only known information about f is

that it is increasing and no other regularity properties are

assumed about f . The key question we would like to ad-

dress is the following: how can we use the information that

f is increasing to design effective stratification and control

variate algorithms or algorithms that combine the two tech-
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niques? In what follows we use, with some modifications,

the formulation and terminology of information based com-

plexity. Due to lack of space we give a general review of

key concepts and results and present the algorithms that

will be used in the following section.

Let F = { f : [0,1] → R; f increasing} be the set of

increasing functions on [0,1]. For each element f of F

the fact that f is increasing is an apriori information about

it. Additional information can be obtained by sampling

f , i.e., by evaluating f at points in [0,1]. We assume

that f (x) can be evaluated precisely (without estimation

noise). Let x1, · · · ,xk be k distinct points in [0,1]. Let

I( f ;x1, · · · ,xk) = ((x1, f (x1)), · · · ,(xk, f (xk))) represent the

new information about f based on sampling. To simplify

notation, we use the above notation for non-adaptive or

adaptive and deterministic or stochastic sampling. In other

words, xi may be random variables and the choice of xi may

depend on previous samples. Moreover, to further simplify

the notation, we often write I( f ;k) or simply I to denote

this information.

To simplify the discussion, consider the deterministic

sampling case. Let

N(I) = N(I;k) = { f ′ ∈ F ; I( f ′;k) = I( f ;k)}.

N(I) represents the uncertainty associated with the informa-

tion I and it is the set of functions that are indistinguishable

from f given the information I. Let S : F → R be the

integration operator, i.e., S( f ) =
∫ 1

0 f (u)du. Let c ∈ R de-

note an estimate of µ based on I. Then for any f ′ ∈ N(I),
e( f ′;c) = |s( f ′)− c| is the absolute estimation error. We

seek an optimal estimate of µ , denoted by φ(I), in the

following worst case sense

φ(I) = argminc{sup{e( f ′;c); f ′ ∈ N(I)}}.

e(I) = sup{e( f ′;φ(I)); f ′ ∈ N(I)} is the worst case estima-

tion error and can be used as estimation error bound.

The following are known from the literature on in-

formation based complexity: (i) in the deterministic case,

assuming k samples are to be selected it is optimal to set

xi = (i−1)/k−1, for i = 1, · · · ,k (k ≥ 2) (see Kiefer 1957,

Section 5), (ii) assume, without loss of generality, that

x1 < x2 < · · ·xk, δi = xi+1 − xi and δ fi = f (xi+1)− f (xi)
(i = 1, · · · ,k − 1). Assume k points are already selected

and we would like to sequentially select the k+1th sample.

Then it is optimal (in a sense specified in Sukharev 1987) to

select the k+1th point as the midpoint of the subinterval for

which δi ·δ fi is maximum; and finally, (iii) in the stochastic

setting (error is defined as E[|s( f )− c|] where expectation

is with respect to probability measure induced by stochastic

sampling) adaptive stochastic sampling is superior to non-

adaptive stochastic sampling and adaptive and non-adaptive

deterministic sampling (in the sense of superior asymptotic
988
rate of convergence) (see Novak 1992). Moreover, in this

case the sampling scheme is very similar to the stratification

scheme we suggest below.

3.1 Stratification

We consider the following stratification scheme. Assume

x1 = 0 < x1 < · · · < xk = 1 are given and δi and δ fi are

given as above. Then

• Find the subinterval (stratum) such that δi ·δ fi is

maximum. (In case of ties select any subinterval

that maximizes δi ·δ fi .)

• Divide the subinterval into two equal subintervals

(strata).

A few comments are in order. In the SDMC context one

possibility (and one that we utilize in the experiments re-

ported in the next section) is to use f (.,θ0), i.e., the function

values at the nominal parameter, as the monotone function

to define the strata using the above scheme. In the above

scheme (applied to a monotone function) the worst rate of

convergence (to zero) of the error bound corresponds to

f (x) = x (or any other linear function). In other words, the

linear functions are in some sense the worst functions for

the above scheme.

3.2 Control Variate

Let U be a random (uniform) sample on [0,1] and Y = f (U)
in the above setting where f is assumed to be increasing.

An immediate and natural control is Z = h(U) = U . Given

that f and h are both monotone it is easy to verify that

Cov( f (U),h(U))≥ 0, i.e., Y and Z are positively correlated.

The maximum efficiency of using U as a control is gained

when f is a linear function of U in which case the control

removes the estimation variance completely. Therefore, we

propose the following control variate.

• Use Z = U as a control to estimate Y = f (U).

In the SDMC setting the indices of the ordered database

play the role of U and can be used as the control. Moreover,

in the SDMC setting another natural control is Z = f (U,θ0)
for estimating Y = f (U,θ). We will point out in the next

section that this latter control is quite effective when θ is

sufficiently close to θ0.

3.3 Stratification + Control Variate

The fact that the control Z = U is a very effective control

when f is linear while a linear f is most challenging for

stratification suggests that combining the two algorithms can

be effective. As we achieve finer and finer stratifications
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Table 1: Variance reduction ratios for f (x) = xa

Method a = 0.1 a = 1 a = 2 a = 5

Control Variate 5 ∞ 160 3

Stratification 33 640 1176 300

Combined 247 ∞ 101950 1558

we expect that f on each stratum can be more closely

approximated by a linear function. Hence we consider the

following algorithm.

• Use the above stratification algorithm.

• Let [xi,xi+1) be the ith stratum. Use Zi = Ui =
U([xi,xi+1) as a control for Yi = f (Ui).

Table 1 provides some variance reduction results (rela-

tive to random sampling) for f (x) = xa for different values

of a and gives an idea about the contributions of each

algorithm and their combination.

4 ESTIMATING OPTION PRICE AND

PRICE SENSITIVITIES

We illustrate how the algorithms can be used to estimate price

and price sensitivities of financial options by describing their

application to the estimation of price and price sensitivities

of a lookback option where the interest rate is a mean-

reverting CIR process (see, e.g., Glasserman 2004, Chapter

3). There is no closed-form solution for the price of this

option and simulation is a solution method of choice.

Specifically, we consider the following stochastic dif-

ferential equations,

dSt

St

= rtdt +σdWt

drt = α(r̄− rt)dt +σr

√
rtdW ′

t

where Wt and W ′
t are two independent Brownian motions, α

is the speed of mean reversion, and r̄ is the long run mean

drift rate. Given a discretized path, {St1 ,St2 , · · · ,Stm = ST},

the present value of the payoff of the lookback call option

is given by

CT = er0T max{0,ST − min
τ∈{t0,··· ,tm=T}

Sτ}

The option price (of the discretized process) is given

by E[CT ], its sensitivity to the initial asset price, i.e., its

Delta, is given by dE[CT ]/dS(0) and its sensitivity to asset

volatility, i.e., its Vega, by dE[CT ]/dσ . Let τ∗ be the time

step at which the asset price St attains its (discretized)

minimum value. Then, the path derivatives of Delta and

Vega are given by
989
dCT

dS0
= e−r0T I{ST > Sτ∗}∗

(

ST −Sτ∗

S0

)

=
CT

S(0)
,

and

dCT

dσ
= e−r0T I{ST > Sτ∗}∗

[

dST

dσ
− dSτ∗

dσ

]

where, for all t:

dSt

dσ
=

(

log

(

St

S0

)

−
∫ t

0
ru +

σ2

2
du

)

.

Estimating the option price and option price sensitivities

to S(0) and σ then corresponds to estimating E[CT ], E[ dCT
dS0

]

and E[ dCT
dσ ].

The following parameters were considered: S(0) = 100,

r(0) = 0.1, σS = 0.3, r̄ = 0.1, σr = 0.1, α = 0.5, T = .25,

and m = 60. A database of 100,000 elements were generated

where each element of the database corresponds to a two-

dimensional vector of discretized standard Brownian process

simulated for m = 60 time steps. The database was then

linearly ordered based on sample option prices at the above

nominal parameter values. In the figures to follow the

ordered database is represented by the horizontal axis scaled

to [0,1].
We begin by providing graphical representations of

the impact of perturbing some parameter values. Figure

2 illustrates the effect of perturbing σ , from its nominal

value 0.3 to the perturbed value 0.4, on the order of sample

option values. The dotted line traces the sampled values

CT at the nominal parameters while the solid line traces

CT at the perturbed parameter values. The conclusion is

that the order of the database is approximately maintained

at the perturbed parameters and this order carries useful

information for estimation at perturbed parameter values.

We next look at the relationship between the order

on the database based on sample option price CT and the

values of path derivatives, i.e., sample values of Delta and

Vega. In other words, the question is whether the order

imposed on the database carried any useful information

for estimating Delta and Vega. Given the path estimate of

Delta, it is clear that the path derivatives at the nominal

parameter value will be perfectly ordered and at the perturbed

parameter values will have a behavior similar to sample

option prices. Therefore, in this case, the order of the

database carries valuable information for estimating Delta.

Figure 3 illustrates the values of the path derivatives (samples

of Vega) at the nominal parameter values as a function of

the ordered database. As can be seen, a behavior similar

to a perturbation of a parameter value is exhibited, namely

the order of the database is approximately maintained and
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Figure 2: The order is preserved for the lookback option

when the stock volatility σ is perturbed from 0.3 to 0.4.

therefore it can be used to gain efficiency in estimating

Vega.
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option.

We are now prepared to present some quantification

of the variance reduction based on stratification, control

variate, and a combination of the two. The results are for

illustration purposes; they give a general idea of the order

of magnitudes of variance reductions that can be expected

and provide some insight about the comparative efficacy of

different algorithms. No attempt was made to “optimize”

the algorithms and there are no claims that they are the best

that can be devised in this context.

The number of strata were arbitrarily preselected to be

10 and the total number of samples were also arbitrarily

preselected to be 100. Variance and variance reduction ratio

estimates reported are based on outer replications of the price

or price sensitivity estimators. The following estimators are
990
Table 2: Estimating option value at original parameter:

σ = 0.3.

Estimator Estimate Variance VRR

Crude 11.32 1.10 1

UCV 11.50 1.58E −1 6.98

DBCV 11.91 0 ∞

STRAT 12.06 1.99E −2 55.33

STRAT CV 11.87 3.20E −4 3.45E3

Table 3: Estimating option value using perturbed parameter

σ = 0.4.

Estimator Estimate Variance VRR

Crude 15.66 2.06 1

UCV 15.36 3.71E −1 5.55

DB CV 15.34 3.67E −3 560.46

STRAT 15.09 3.55E −2 57.95

STRAT CV 15.23 1.74E −3 1.18E3

Table 4: Estimating option Vega using path derivatives.

Estimator Estimate Variance VRR

Crude 32.91 15.28 1

UCV 33.14 3.25 4.70

DB CV 34.82 2.04E −1 74.98

STRAT 34.70 3.29E −1 46.48

STRAT CV 35.11 1.00E −1 152.24

used: (i) crude Monte Carlo (Crude), (ii) control variate with

the index of the database as the control (UCV), (iii) control

variate with sample prices at the nominal value as control

(DBCV), (iv) stratified estimator (STRAT), (v) stratified +

control variate estimator (STRAT CV). Variance reduction

ratios (VRR) are relative to crude Monte Carlo.

To begin, and as a baseline for comparison, we report

the performance of the algorithms at nominal parameters (in

particular σ = 0.3) in Table 2. Table 3 gives the performance

of the algorithms for estimating the option price when σ is

perturbed to 0.4 and Table 4 gives the performance of the

algorithms when estimating Vega of the option.

Not surprisingly, the most efficient algorithms are

DBCV and STRAT CV. One can also speculate that for

smaller perturbations of the parameter DBCV may perform

better than STRAT CV but this needs to be verified by

further experimentation and may in fact be highly problem

dependent.
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In this paper we presented algorithms based on stratification,

control variate and a combination of the two in a Structured

Database Monte Carlo (SDMC) setting and showed how

they can be used for efficient estimation of option price

and option price sensitivities. We argued that one of the

features of these algorithms is that they are generic and can

be applied in a generic manner in all parametric settings.

The effectiveness of the algorithms (their efficiency gains),

however, depends critically on whether the order imposed on

the database is maintained when parameters are perturbed.

We expect this to be the case for many problems of practical

interest, while there are also important cases when the order

is severely disrupted with the perturbations of the parameter

values. In such cases specific and non-generic remedies need

to be devised.

SDMC is a fairly new direction of investigation for

gaining computational efficiency in Monte Carlo and there

are many unanswered questions that need to be investigated.

Some of these, in particular questions related to “optimal”

algorithms as formulated in Section 3 of the paper, constitute

one of the directions of our future research.
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