
MONTE CARLO AND DISCRETE-EVENT SIMULATIONS IN C AND R

Barry Lawson

Department of Mathematics and Computer Science
University of Richmond

Richmond, VA 23173-0001, U.S.A.

Lawrence Leemis

Department of Mathematics
College of William & Mary

Williamsburg, VA 23187-8795, U.S.A.

ABSTRACT

The Monte Carlo and discrete-event simulation code asso-
ciated with the Simulation 101 pre-conference workshop
(offered at the 2006, 2007, and 2008 Winter Simulation
Conferences) is available in both C and R. This paper be-
gins with general instructions for downloading, compiling,
and executing the software. This is followed by detailed
explanations of two programs that are representative of the
software suite: craps uses Monte Carlo simulation to es-
timate the probability of winning the dice game Craps, and
ssq2 uses discrete-event simulation to estimate several
measures of performance associated with a single-server
queue.

1 INTRODUCTION

This paper discusses the use of the simulation software
provided with the Simulation 101 workshop and associ-
ated with the introductory simulation textbook by Leemis
and Park (2006). The complete suite of Monte Carlo and
discrete-event simulation programs have been written in C
and Java. A subset of the programs have been converted
to R for use in the Simulation 101 workshop. We discuss
only the C and R software in this paper.

2 THE C SOFTWARE

This section describes where to obtain and how to compile
and execute the ANSI C version of the simulation software.

2.1 Obtaining the C Simulation Software

The C version of the software is freely avail-
able via 〈http://math.wm.edu/∼leemis/DES 1e
SourceCode.zip〉 as a Windows-friendly zip file
or via 〈http://math.wm.edu/∼leemis/DES 1e
SourceCode.tgz〉 as a GNU-zip tar file. Download
the file corresponding to the archive type of your choice.

To extract the contents of the zip version, use any standard
zip utility (e.g., WinZip for Windows, Stuffit Expander for
Mac OS X, zip for Unix/Linux). To extract the contents
of the GNU-zip tar file, execute the following command:

tar -xzvf DES_1e_SourceCode.tgz

The source code will be placed into a subdirectory named
DES 1e SourceCode/ within the directory from which
you initiate the extraction process.

2.2 Compiling the C Simulation Software

The software is ANSI C compliant — it be compiled by any
compiler or development environment that supports ANSI
C compilation.

We recommend using the GNU gcc compiler. The
Makefile provided with the software assumes that gcc
is the default compiler. If you use gcc and the associated
make utility, then the following are commands of interest.

• make: Compiles and links all software, creating
any of the executables that do not exist and executa-
bles for any of the source files that were modified
since the last compile. The make utility creates
executable files having the same names as the asso-
ciated source files (e.g., the source filegalileo.c
results in the executable file galileo).

• make clean: Removes all executable and object
files.

• make programName: Compiles and links only
those files necessary for programName.

If you are not using make, then you will need to
configure your compiler to appropriately link and compile
the necessary software. When compiling any of the provided
source files that include local versions of header (.h) file(s),
you will need to include the corresponding .c file(s) in
the compilation and linking process. For example, ssq4.c

11 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Lawson and Leemis

includes both rngs.h and rvgs.h and so the compilation
and linking process must include rngs.c and rvgs.c:

gcc -o ssq4 ssq4.c rngs.c rvgs.c -lm

When compiling any source file (e.g., ssq4.c) that includes
the math library header file math.h, you may need to
explicitly signify to the compiler to include the math library
in the linking process, typically with a -lm flag (as in the
example above).

2.3 Executing the C Simulation Software

To execute any of the programs, simply provide the name
of the executable as a command, e.g., ./ssq4. (Note that
some of the source files are to be used as libraries and do
not directly create an executable.)

3 THE R SOFTWARE

R (The R Foundation 2008) is a programming language and
software environment used primarily for statistical comput-
ing. It includes standard statistical tools, such as classical
statistical tests and regression analysis, and more modern
tools such as bootstrapping, survival analysis, and time-
series analysis. R is also capable of producing publication-
quality plots and has many built-in functions, such as sort
for sorting the elements of a vector and gamma for returning
the gamma function.

The primary advantage of using R instead of C for
simulation work lies in R’s free-of-charge and easy-to-
use statistical procedures, built-in functions, and graphics
capabilities. The primary disadvantage of using R instead of
C is that R is an interpreted language — in general, simulation
programs will execute more slowly when written in R rather
than C (sometimes dramatically so). Nonetheless, because
of its ease of use and its many built-in statistical capabilities,
we have written a subset of the simulation software in R
for the current year’s Simulation 101 workshop.

3.1 Obtaining R

R can be downloaded via 〈http://www.r-project.
org/〉. Click on the CRAN (Comprehensive R Archive
Network) link and choose a mirror that is located near you.
Then choose your platform (Linux, MacOS X, Windows),
and the appropriate version of the software can be down-
loaded and installed according to the typical installation
process for your platform.

3.2 Obtaining the R.oo Package

In addition to the base R software, there is an add-on pack-
age to R that is necessary to run the simulation software.

The R.oo package (Bengtsson 2003) provides functional-
ity for object-oriented programming and pass-by-reference
capabilities in R.

The package can be obtained as follows. After starting
R software, type

source("http://www.braju.com/R/hbLite.R")

which fetches and sources in R the functions necessary for
installing R.oo. Next type

hbLite("R.oo")

which invokes a newly sourced function to install the R.oo
package. (The previous two steps are a one-time cost.)

Finally, now (and every time R is started and you need
R.oo functionality) execute the command

library(R.oo)

to load the add-on R.oo package in your current session
of R.

3.3 Obtaining the R Simulation Software

The simulation software for the workshop is available as a
package for R. Visit the link 〈http://www.mathcs.
richmond.edu/∼blawson/Sim101/packages/〉
and choose the directory that corresponds to your platform,
saving to disk the package file (ending in .tar.gz for
Mac OS-X or Linux, .zip for Windows) in that directory.
If you are using Windows, in R enter

install.packages(file.choose(),
repos=NULL)

If you are using Mac OS-X or Linux, in R enter

install.packages(file.choose(),
repos=NULL,
type="source")

In the resulting pop-up window, navigate to and choose the
Simulation 101 package that you downloaded above. (You
may receive progress and/or warning messages in R, but,
in the absence of a fatal error, these may be ignored.) The
download and install steps are a one-time cost.

Finally, now (and every time R is started and you need
the simulation software functionality) execute the command

library(Sim101)

to load the add-on Sim101 package in your current session
of R. If the R prompt returns with no messages (or at most
a warning message about the package being built using

12

Lawson and Leemis

a newer version of R), the Sim101 package has been
successfully loaded.

3.4 Libraries/Functions in the R Simulation Software

The R version of the simulation software was written with
the goal of remaining consistent with the C version of the
software while simultaneously leveraging R’s advantages.
For this reason, we have written in R object-oriented versions
of the same random number generation libraries that are
present in the C version. (Note these “libraries” in R are
themselves used as objects in R, not as a typical R library
you might load at startup. More specifically, instances of
the random number generation classes are used within the
simulation functions discussed below.) In this way, the R
and C versions of the simulation software are capable of
using the same random number sequences for their stochastic
components, thereby producing exactly the same output. For
each library, the functions implemented in the C version
are also implemented in the R version. Use R’s online help
(e.g., help(Rng)) for more details.

Rng: an object-oriented implementation of a single-
stream Lehmer random number generator.

Rngs: an object-oriented implementation of a
multiple-stream Lehmer random number generator.

Rvgs: an object-oriented implementation for gener-
ating random variates from six discrete and seven continuous
distributions.

Rvms: an object-oriented implementation for eval-
uating the probability density functions, cumulative distri-
bution functions, and inverse distribution functions for the
distributions provided in Rvgs.

For the workshop, we have also provided in R a subset
of the programs available in C, including three Monte Carlo
simulations, three discrete-event simulations, and three util-
ities. In the R version, each of these is its own function.

craps: produces a Monte Carlo estimate of the prob-
ability of winning the simple dice game Craps played with
two fair dice.

galileo: produces a Monte Carlo estimate of the
probability of each sum 3,4, . . . ,18 obtained when rolling
three fair dice.

hat: produces a Monte Carlo estimate of the prob-
ability that a hat check person will return all n hats to the
wrong owners when returning n hats at random.

ssq1: uses a process-interaction world view to im-
plement the arrival and service processes of a trace-driven
single-server queue.

ssq2: an extension of ssq1 that uses the Rngs library,
implementing exponentially distributed interarrival times
and uniformly distributed service times.

ssq3: an extension of ssq2 that uses the Rngs library,
illustrating a next-event approach to the single-server queue.

cdh: plots a histogram of data drawn from a con-
tinuous population.

ddh: plots a histogram of data drawn from a discrete
population.

estimate: computes a confidence interval estimate
for a data set.

In addition, we have provided implementations of the
inverse distribution functions for seven distributions: idf-
Binomial, idfExponential, idfGeometric, idfLognormal,
idfNormal, idfPascal, and idfUniform. Each of these func-
tions evaluates the corresponding inverse distribution and
displays an intuitive graphical representation. For more
details on any of these functions, use R’s online help (e.g.,
help(idfPascal)).

3.5 Viewing and Modifying R Simulation Source Code

The R code associated with the various simulation functions
can be viewed by typing the name of the function. For
example, typing

galileo

displays the source code for the function galileo(). The
first line of the function indicates that there are two param-
eters, seed (which defines the random number generator
seed) and N (which defines the number of Monte Carlo
replications), which have default values 12345 and 1000
respectively.

In order to modify one of the simulation programs,
you should first dump to a file the source code of the
corresponding function, e.g.,

dump("galileo",
file=file.choose(new=TRUE))

In the resulting pop-up window, if you name the file
galileo mods.R, you may then make modifications to
the source code by editing the file galileo mods.R us-
ing your favorite text editor. You can then overwrite the
existing version of the function in your current R session
by reading in your modified source code, e.g.,

source(file.choose())

Any subsequent calls to the function in the current R session
will exhibit the effects of your modifications. (Note this will
not supplant the implementation provided in the original
Sim101 library. If, on a subsequent restart of R, you load
the Sim101 library, the original version of the function
will be used. If you want to use your modified version, you
will need to read in your modified source code again.)

13

Lawson and Leemis

3.6 Executing the R Simulation Software

In order to execute a simulation program, type the corre-
sponding function name with associated arguments. Because
galileo has default parameters, it can be executed using

galileo()

which displays a vector of 16 elements that are Monte Carlo
estimates of the probabilities of rolling a 3, 4, . . ., 18 when
rolling three dice. If subsequent operations on the estimates
are required, they can be placed into a vector, e.g.,

x = galileo()

Subsequent function calls from the R language (e.g.,
sum(x) to confirm that this is a legitimate probability
density function, or sum(3:18 * x) to calculate the mean
of the total number of pips showing on the dice in the ex-
periments) or from the simulation software (e.g., cdh(x)
to produce a continuous data histogram of the probabilities)
can be applied to x.

3.7 Interfacing R with C Simulation Software

Because the simulation software will execute more slowly
in R (an interpreted language) than in C, especially for long
simulations, users may be interested in having R interface
with the C simulation programs. This is accomplished by
writing for each simulation program an R function that ac-
cepts arguments from the user, invokes the corresponding C
program passing in those arguments, and returns the simu-
lation results to the user in an R-accessible format (e.g., R
vector or list). In this way, the user will experience much
shorter execution times for long simulations while main-
taining accessibility to the built-in statistical and graphical
routines of R. The interested reader may contact the au-
thors of this paper for existing implementations. For the
details of the interfacing procedure, the interested reader
should refer to the documentation on writing R extensions (R
Development Core Team 2008).

4 MONTE CARLO SIMULATION

We illustrate some of the details associated with the Monte
Carlo approach using the craps() function in R.

The gambling game known as “craps” involves tossing
a pair of fair dice one or more times and observing sum of
the two up faces (i.e., the total number of pips showing).
If a 7 or 11 is tossed on the first roll, the player wins
immediately. If a 2, 3, or 12 is tossed on the first roll, the
player loses immediately. If any other number is tossed on
the first roll, this number is called the “point.” The dice
are rolled repeatedly until the point is tossed (in which case
the player wins) or a 7 is tossed (in which case the player

loses). The goal here is to find the probability that the
player wins.

An Equilikely(1,6) random variate is used to model
the roll of a single fair die. The algorithm that follows
uses N for the number of replications of the game of craps.
The variable wins counts the number of wins and the
do-while loop is used to simulate the player attempting
to make the point when more than one roll is necessary to
complete the game.

wins = 0;
for (i = 1; i ≤ N; i++) {

roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll == 7 or roll == 11)

wins++;
else if (roll != 2 and roll != 3 and roll != 12) {

point = roll;
do {

roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll == point) wins++;

} while (roll != point and roll != 7)
}

}
return (wins / N);

The algorithm has been implemented in the C program
craps and in the R function craps(). We discuss the
R version here. The function Roll returns the outcome
when a pair of dice is tossed by summing the results of two
calls to Equilikely(1,6) (available in R using Rvgs from
the Sim101 library). The switch statement is used to
identify the result of the game based on the outcome of the
first roll.

The function craps() as implemented in R has two
arguments: the number of Monte Carlo simulation replica-
tions defaults to N = 1000 and the random number generator
seed defaults to seed = 12345. So calling craps with
no arguments amounts to simply typing

craps()

which returns the probability estimate as a scalar

[1] 0.522

These particular 1000 replications might lead someone to
believe that Craps is a game that can be played for long-term
profit.

If craps() is executed again in this fashion, an identi-
cal result will occur (because the same sequence of random
numbers will be used, manifested by the choice of ini-
tial seed). In order to get a different set of Monte Carlo
replications, the seed must be changed. For example, the
statements

14

Lawson and Leemis

craps(seed = 987654321)
craps(seed = 54321)

yield winning probabilities 0.510 and 0.530. This rather
surprising streak of three values above 0.500 makes one
wonder if this is a game with odds tilted toward the player.
Fortunately, in this case the problem also has an analytic
solution. (This will not be the case for the discrete-event
simulation in the next section.) The solution using the
axiomatic approach is 244/495 ∼= 0.493.

The three simulated values that exceeded the analytic
value are the probabilistic equivalent of tossing three con-
secutive heads with a fair coin. This is evidence that the
coin may be biased or double-headed, but certainly is not
conclusive. It is a worthwhile investigation to increase the
number of simulation replications in order to confirm the
correctness of the analytic solution. The statements

craps(N = 10000, seed = 987654321)
craps(N = 10000, seed = 123456789)
craps(N = 10000, seed = 555555555)

yield winning probabilities 0.497, 0.485, and 0.502, which
are scattered about the theoretical value 0.493, as expected.
Our three earlier unexpectedly high results with N = 1000
were simply a function of random sampling variability (often
the case when the number of replications is too low).

5 DISCRETE EVENT SIMULATION

Monte Carlo simulation is appropriate for static systems
that do not involve the passage of time. Discrete-event
simulation is appropriate for dynamic systems where the
passage of time plays a significant role. We describe one
instance of a discrete-event simulation model in this section.

Queueing models are one of the common applications
of discrete-event simulation. The function ssq2() in the
Sim101 library for R is the implementation of a model
for a single server queue with exponentially distributed
interarrival times and uniformly distributed service times.
The assumptions in this model are:

• There is a single server.
• The queue discipline is first-come, first-served.
• There is no time delay between jobs (customers).
• The server does not take any breaks.

A number of measures of performance will be captured
for this particular system, such as the average delay in the
queue and the utilization of the server. Thessq2() function
has five arguments. The arguments and their default values
are

• seed = 123456789, the random number seed,

• MaxJobs = 10000, the number of jobs processed
during the simulation run,

• interarrivalMean = 2.0, the mean interar-
rival time,

• minService = 1.0, the minimum service time,
• maxService = 2.0, the maximum service time.

If the default parameters are used, then the jobs arrive to the
queue every 2.0 time units on average, and are serviced in
(1.0+2.0)/2 = 1.5 time units on average. The time units
in the simulation are arbitrary; it is equally sensible to think
of them as minutes or hours.

The program is executed with the default parameters
using the command

ssq2()

which returns a list (a commonly used data structure in R)
as shown below.

$jobsProcessed
[1] 10000

$averageInterarrival
[1] 2.0161

$averageService
[1] 1.4981

$averageDelay
[1] 2.3616

$averageWait
[1] 3.8597

$averageNumberInNode
[1] 1.9143

$averageNumberInQueue
[1] 1.1713

$utilization
[1] 0.743

The fact that the average interarrival time (2.0161) is
slightly above the theoretical value (2.0) means that this
particular run of the simulation was slightly less congested
than average. The average wait (queuing delay time plus
service time) in the queue node is 3.8597, and this is
approximately 1.5 time units (the theoretical average service
time) more than the average delay in the queue, as expected.
The fact that the average service time (1.4981) is just slightly
smaller than the theoretical value (1.5) means that the service
was slightly faster than expected for this particular run of
the simulation. As an important simulation consistency

15

Lawson and Leemis

check, notice that the average wait in the system (3.8597)
is the sum of the average delay in the queue (2.3616) and
the average service time (1.4981). The final three lines
display time-averaged statistics: the average number in the
queueing node (1.9143), the average number in the queue
(1.1713) and the utilization of the server (74.3%) over the
course of the simulation.

If subsequent operations on any of the values in the
list are required, the individual values can be easily pulled
from the list and stored as scalars, e.g.,

l = ssq2()
w_bar = l$averageWait
s_bar = l$averageService
x_bar = l$utilization

Subsequent function calls from the R language or from the
simulation software can be applied to the list l or to the
scalars w bar, s bar, and x bar (similar to that discussed
in Section 3.6).

6 SUMMARY

The Monte Carlo and discrete-event simulation programs
associated with the Simulation 101 workshop are available
in ANSI C, Java, R, and in C interfacing with R. Only
the ANSI C and R versions are described in this paper.
The programs described are not general purpose, but are
intended to be instructional tools for learning the concepts
of simulation. The R version of the software was written to
maintain consistency with the C version while leveraging
the statistical and graphical capabilities of R. Both versions
are capable of producing exactly the same results. The main
disadvantage is that, because R is an interpreted language,
the R versions of the simulation programs will execute more
slowly than the corresponding C programs. Because of the
capabilities and user-friendly nature of R, the R version will
be used in the Simulation 101 workshop.

REFERENCES

Bengtsson, H. 2003, March. The R.oo package – object-
oriented programming with references using standard R
code. In Proceedings of the 3rd International Workshop
on Distributed Statistical Computing (DSC 2003), ed.
K. Hornik, F. Leisch, and A. Zeileis. Vienna, Austria.

Leemis, L. M., and S. K. Park. 2006. Discrete-event simu-
lation: A first course. Upper Saddle River, NJ: Pearson
Prentice Hall.

R Development Core Team 2008, August. Writing R exten-
sions. Available via 〈http://cran.r-project.
org/manuals.html〉 [accessed August 1, 2008].

The R Foundation 2008. The R project for statistical com-
puting. Available via 〈http://www.r-project.
org/〉 [accessed August 1, 2008].

AUTHOR BIOGRAPHIES

BARRY LAWSON is an Associate Professor of Computer
Science in the Department of Mathematics and Computer
Science at University of Richmond. He received Ph.D. and
M.S. degrees in Computer Science from the College of
William & Mary, and a B.S. degree in Mathematics and
Computer Information Systems from University of Virginia’s
College at Wise. His research interests include computer
security, parallel and distributed computing, scheduling,
performance evaluation, and simulation. He previously
worked in the Simulation Systems Branch laboratory at
NASA Langley in Hampton, VA. He is a member of ACM,
IEEE, IEEE Computer Society, and IEEE Systems, Man,
and Cybernetics Society (IEEE/SMC). His email address is
〈blawson@richmond.edu〉.

LAWRENCE LEEMIS is a professor in the Mathematics
Department at the College of William & Mary. He received
his B.S. and M.S. degrees in Mathematics and his Ph.D. in
Industrial Engineering from Purdue University. He has also
taught at Baylor University, The University of Oklahoma,
and Purdue University. His consulting, short course, and
research contract work includes contracts with Air Logis-
tic Command, Argonne National Laboratory, AT&T, Delco
Electronics, Department of Defense (Army, Navy), Federal
Aviation Administration, ICASE, Komag, Leibherr, Mag-
netic Peripherals, NASA/Langley Research Center, Tinker
Air Force Base, and Woodmizer. His research and teaching
interests are in reliability and simulation. He is a mem-
ber of ASA, IIE, and INFORMS. His email address is
〈leemis@math.wm.edu〉.

16

