

AGENT-BASED MODELING AND SIMULATION: ABMS EXAMPLES

Charles M. Macal
Michael J. North

Center for Complex Adaptive Systems Simulation (CAS2)

Decision & Information Sciences Division
Argonne National Laboratory

Argonne, IL 60439, USA

ABSTRACT

Agent-based modeling and simulation (ABMS) is a new
approach to modeling systems comprised of autonomous,
interacting agents. ABMS promises to have far-reaching
effects on the way that businesses use computers to sup-
port decision-making and researchers use electronic labo-
ratories to support their research. Some have gone so far
as to contend that ABMS “is a third way of doing sci-
ence,” in addition to traditional deductive and inductive
reasoning (Axelrod 1997). Computational advances have
made possible a growing number of agent-based models
across a variety of application domains. Applications
range from modeling agent behavior in the stock market,
supply chains, and consumer markets, to predicting the
spread of epidemics, the threat of bio-warfare, and the
factors responsible for the fall of ancient civilizations.
This tutorial describes the theoretical and practical foun-
dations of ABMS, identifies toolkits and methods for de-
veloping agent models, and illustrates the development of
a simple agent-based model.

1 INTRODUCTION

Agent-based Modeling and Simulation (ABMS) is a new
modeling paradigm and is one of the most exciting practi-
cal developments in modeling since the invention of rela-
tional databases. ABMS promises to have far-reaching ef-
fects on the way that businesses use computers to support
decision-making and researchers use electronic laborato-
ries to support their research (North and Macal 2007).

The goals of this tutorial are to show how ABMS is:

• Useful: Why ABMS is good and even better than
many conventional modeling approaches in
many cases,

• Usable: How we are progressively advancing to
usable ABMS systems, with better software de-
velopment environments and more application
experiences, and

• Used: How ABMS is being used to solve practi-
cal problems.

This tutorial is organized into two parts. The first

part is a tutorial on how to think about ABMS. The back-
ground on ABMS and its motivating principles are de-
scribed to illustrate its main concepts and to indicate the
state-of-the-art. The second part is a tutorial on how to do
ABMS. Practical applications of ABMS are described.
ABMS toolkits are introduced, and the development of a
simple agent-based model is illustrated.

2 HOW TO THINK ABOUT ABMS

2.1 What is an Agent

Although there is no universal agreement on the precise
definition of the term “agent,” definitions tend to agree on
more points than they disagree. Some modelers consider
any type of independent component (software, model, in-
dividual, etc.) to be an agent (Bonabeau 2001). An inde-
pendent component’s behavior can range from simple, re-
active if-then decision rules, to general behavioral
models, such as the BDI (belief-desire-intent) framework,
to complex models based on artificial intelligence (AI).
Some authors insist that a component’s behavior must be
adaptive in order for it to be considered an agent. The
agent label is reserved for components that can learn from
their environments and change their behaviors in response
to their experiences. Casti (1997) argues that agents
should contain both base-level rules for behavior as well
as a higher-level set of “rules to change the rules.” The
base-level rules provide responses to the environment
while the “rules to change the rules” provide adaptation.
Jennings (2000) provides a computer science view of
agency emphasizing the essential characteristic of auto-
nomous behavior. The fundamental feature of an agent is
the capability to make independent decisions. This re-
quires agents to be active responders and planners rather
than purely passive components.

101 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Macal and North

From a practical modeling standpoint, we consider

agents to have certain characteristics (Figure 1):

• An agent is an identifiable, discrete, or modular,

individual with a set of characteristics and rules
governing its behaviors and decision-making ca-
pability. Agents are self-contained. The discrete-
ness requirement implies that an agent has a
boundary and one can easily determine whether
something is part of an agent, is not part of an
agent, or is a shared characteristic.

• An agent is autonomous and self-directed. An
agent can function independently in its environ-
ment and in its interactions with other agents for
the limited range of situations that are of interest.

• An agent is social, interacting with other agents.
Agents have protocols for interaction with other
agents, such as for communication. Agents have
the ability to recognize and distinguish the traits
of other agents.

• An agent is situated, living in an external envi-
ronment with which the agent interacts in addi-
tion to other agents.

• An agent may be goal-directed, having goals to
achieve (not necessarily objectives to maximize)
with respect to its behaviors. This allows an
agent to compare the outcome of its behavior to
the goals it is trying to achieve.

• An agent is flexible, having the ability to learn
and adapt its behaviors based on experience.
This requires some form of memory. An agent
may have rules that modify its rules of behavior.

Figure 1: An agent

Often, the agents in an agent-based model will lack

one or more of these characteristics. It may not be neces-
sary to model adaptation in a supply chain model if the
model’s purpose is to evaluate a set of specific inventory

management rules, for example. Should such a model be
considered an agent-based model? It depends on the struc-
ture of such a model. If the structure is such that the mod-
el does not preclude the addition of agent characteristics
and behaviors with minor modifications to it, then it
makes sense to refer to the model as agent-based. We
have coined the term proto-agent to refer to agents that
are missing one or more of the characteristics enumerated
above but to which the characteristics can easily be added
without modification to the structure of the model.

Unlike particle systems (idealized gas particles for
example) which are the subject of the field of particle si-
mulation, agents are diverse, heterogeneous, and dynamic
in their attributes and behavioral rules, as shown in Figure
1. Behavioral rules can vary in their sophistication, how
much information is considered in the agent decisions
(cognitive “load”), the agent’s internal models of the ex-
ternal world including the possible reactions or behaviors
of other agents, and the extent of memory of past events
the agent retains and uses in its decisions. Agents also
vary by their attributes and accumulated resources.

Agent-based modeling is known by many names.
ABM (agent-based modeling), ABS (agent-based systems
or simulation), and IBM (individual-based modeling) are
all widely-used acronyms, but “ABMS” will be used
throughout this discussion. The term “agent” has connota-
tions in realms other than agent-based modeling as well.
ABMS agents are different from the agents typically
found in mobile agent systems. “Mobile agents” are light-
weight software proxies that roam over the world-wide
web and perform various functions for users and to some
extent can behave autonomously.

Another point of clarification concerns the term “si-
mulation.” Agent-based simulation refers to a model in
which the dynamic processes of agent interaction are si-
mulated repeatedly over time, as in systems dynamics,
and time-stepped, discrete-event, and other types of con-
ventional simulation. An agent-based model, more gener-
ally, is a model in which repeatedly agents interact. For
example, when agents collectively optimize behavior
through simple exchanges of information as is done in ant
colony optimization or a particle swarm optimization
models, the purpose is to achieve a desired end-state, i.e.,
the optimized system, rather than to simulate a dynamic
process for its own sake.

ABMS has roots in the fields of multi-agent systems
(MAS) and robotics from the field of AI, as well as Arti-
ficial Life (ALife). But ABMS is not only tied to under-
standing and designing “artificial” agents. Its main roots
are in modeling human social and organizational behavior
and individual decision-making (Bonabeau 2001). With
this, comes the need to represent social interaction, col-
laboration, group behavior and the emergence of higher
order social structures.

102

Macal and North

2.2 The Need for Agent Based Modeling

Why is agent-based modeling becoming so widespread?
The answer is because we live in an increasingly complex
world. First, the systems that we need to analyze and
model are becoming more complex in terms of their in-
terdependencies. Traditional modeling tools are no longer
as applicable as they once were. An example application
area is the deregulation of the formerly centralized elec-
tric power industry in which agents are suddenly free to
make pricing and investment choices based on their indi-
vidual criteria. Second, some systems have always been
too complex for us to adequately model. Modeling eco-
nomic markets has traditionally relied on the notions of
perfect markets, homogeneous agents, and long-run equi-
librium because these assumptions made the problems
analytically and computationally tractable. We are begin-
ning to be able to relax some of these assumptions and
take a more realistic view of these economic systems
through ABMS. Third, data are being collected and or-
ganized into databases at finer levels of granularity. Mi-
cro-data can now support individual-based simulations.
And fourth, but most importantly, computational power is
advancing rapidly. We can now compute large-scale mi-
cro-simulation models that would not have been plausible
just a couple of years ago.

2.3 Background on ABMS

ABMS has connections to many other fields including
complexity science, systems science, systems dynamics,
computer science, management science, several branches
of the social sciences, and traditional modeling and simu-
lation. ABMS draws on these fields for its theoretical
foundations, its conceptual world view and philosophy,
and for applicable modeling techniques.

ABMS has its direct historical roots in complex adap-
tive systems (CAS) and the underlying notion that “sys-
tems are built from the ground-up,” in contrast to the top-
down systems view taken by systems dynamics. CAS
concerns itself with the question of how complex behav-
iors arise in nature among myopic, autonomous agents. In
addition, ABMS tends to be descriptive, with the intent of
modeling the actual or plausible behavior of individuals,
rather than normative such as traditional operations re-
search (OR), which seeks to optimize and identify optimal
behaviors.

The field of CAS was originally motivated by inves-
tigations into adaptation and emergence of biological sys-
tems. CAS have the ability to self-organize and dynami-
cally reorganize their components in ways better suited to
survive and excel in their environments, and this adaptive
ability occurs, remarkably, over an enormous range of
scales. John Holland, a pioneer in the field, identifies
properties and mechanisms common to all CAS (Holland

1995) such as (1) Aggregation: allows groups to form, (2)
Nonlinearity: invalidates simple extrapolation, (3) Flows:
allow the transfer and transformation of resources and in-
formation, and (4) Diversity: allows agents to behave dif-
ferently from one another and often leads to the system
property of robustness. CAS mechanisms are: (1) Tag-
ging: allows agents to be named and recognized, (2) In-
ternal models: allows agents to reason about their worlds,
and (3) Building blocks: allows components and whole
systems to be composed of many levels of simpler com-
ponents. These CAS properties and mechanisms provide a
useful reference for designing agent-based models.

2.3.1 Simple Rules Result in Emergent Organization
and Complex Behaviors

The discussion on the background of ABMS begins with
a simple game developed by the mathematician John
Conway, the “Game of Life” (Gardner 1970). The GOL,
as it is called, is based on cellular automata (CA). Perhaps
the simplest way to illustrate the basic ideas of agent-
based modeling and simulation is through CA. According
to Casti (1997), the original notion of CA was developed
by the physicist Stanislaw Ulam in response to a question
posed by the famous 20th century mathematician John von
Neumann. The question was, “could a machine be pro-
grammed to make a copy of itself?” In effect, the question
had to do with whether it was possible to develop a logi-
cal structure that was complex enough to completely con-
tain all of the instructions for replicating itself. The an-
swer turned out to be yes, and it was eventually found in
the abstract mathematical representation of a machine in
the form of a cellular automata.

A typical CA is a two-dimensional grid or lattice
consisting of cells. Each cell assumes one of a finite num-
ber of states at any point in time. A set of simple rules de-
termines the value of each cell based on the cell’s previ-
ous state. Every cell is updated each period according to
the rules. The next value of a cell depends on the cell’s
current value and the values of its immediate neighbors in
the eight surrounding cells. Each cell is identical in terms
of its update rules. A CA is deterministic in that the same
state for a cell and its neighbors always results in the
same updated state. The GOL has three rules that deter-
mine the next state (either On or Off) of each cell:

1. The cell will be On in the next generation if ex-
actly three of its eight neighboring cells are cur-
rently On.

2. The cell will retain its current state if exactly two
of its neighbors are On.

3. The cell will be Off otherwise.

Figure 2 shows a snapshot from a GOL simulation show-
ing an initial random distribution of On cells. After sev-

103

Macal and North

eral updates of all cells in the grid, distinctive patterns
emerge, and in some cases these patterns can sustain
themselves indefinitely throughout the simulation (Figure
3). The eight-neighbor per neighborhood assumption built
into the GOL determines the scope of agent interaction
and the locally available information for each cell to up-
date its state.

Figure 2: Game of Life simulation, initial random layout
of cells in the On state

Figure 3: Game of Life simulation, after all cells have
been updated 30 times

Two observations are important about the GOL rules:

(1) The rules are simple, and (2) the rules use only local
information. The state of each cell is based only on the
current state of the cell and the cells touching it in its im-
mediate neighborhood. Although these are interesting
findings, and observing the patterns created by repeated
simulations of the GOL reveals a world of endless crea-
tions, other observations have implications for practical
ABMS:

• Sustainable patterns can emerge in systems that
are completely described by simple rules that are
based on only local information, and

• The patterns that may develop can be extremely
sensitive to the initial conditions.

The Boids simulation is a good example of how in-

teracting agents, characterized by simple behavioral rules,
lead to emergent and seemingly organized behavior (Rey-
nolds 2006). Agent behavior is reminiscent of schooling
or flocking behavior in fish or birds. In the Boids model,
each agent has three rules governing its movement:

1. Cohesion: each agent steers toward the average
position of its nearby “flockmates,”

2. Separation: each agent steers to avoid crowding
local flockmates, and

3. Alignment: each agent steers towards the aver-
age heading of local flockmates.

Here, nearby or local refers to agents in the immediate
neighborhood of an agent as defined by the straight-line
distance. A fourth rule is added to the above three rules to
ensure that the boids stay close to their initial area. Ini-
tially, a set number of boids are randomly assigned posi-
tions and orientations (Figure 4). Even with only these
simple rules applied at the individual agent level and only
to the agents in its “neighborhood”, the agents’ behaviors
begin to appear coordinated, and a leaderless flock
emerges (Figure 5).
 Two observations are important about the Boids
rules: (1) the rules are simple, and (2) the rules use only
local information. We can make some observations from
the Boids model that have implications for practical
ABMS. First, sustainable patterns can emerge in systems
that are completely described by simple deterministic
rules based on only local information. Second, repeated
experiments (not shown here) demonstrate that the pat-
terns that develop can be extremely sensitive to the initial
conditions - in this case, the initial random positions and
orientations of the boids. .

Based on simple rules of behavior and agent interac-
tion, natural systems seemingly exhibit collective intelli-
gence, or swarm intelligence, even without the existence
of or the direction provided by a central authority. How is
it that an ant colony can organize itself to carry out the
complex tasks of food gathering and nest building and at
the same time exhibit an enormous degree of resilience if
the colony is seriously disrupted? Natural systems are
able to not only survive, but also to adapt and become bet-
ter suited to their environment, effectively optimizing
their behavior over time. Swarm intelligence has inspired
practical optimization techniques, such as ant colony op-
timization that have been used to solve practical schedul-

104

Macal and North

ing and routing problems (Bonabeau, Dorigo and Therau-
laz, 1999).

Figure 4: Boids simulation, initial random configura-
tion

Figure 5: Boids simulation, after 500 updates showing
two apparent clusters of agents

2.3.2 Agent-Based Modeling in the Sciences

In applications of ABMS to social processes, agents rep-
resent people or groups of people, and agent relationships
represent processes of social interaction (Gilbert and
Troitzsch 1999). The fundamental assumption is that peo-
ple and their social interactions can be credibly modeled
at some reasonable level of abstraction for at least specific
and well-defined purposes, if not in general. This limited
scope for representing agent behaviors in ABMS contrasts
with the more general goals of AI. From an ABMS per-
spective, some important questions become immediately
apparent: (1) how much do we know about credibly mod-
eling people’s behavior? and (2) do we know enough
about human social interaction to credibly model it?
These two questions have spawned and to some extent re-
invigorated basic research programs in the social sciences
that have the promise of informing ABMS on theory and
methods for agent representation and behavior.

Sakoda (1971) formulated one of the first social
agent-based models, the Checkerboard Model, which had
some of the key features of a cellular automaton. Schel-
ling applied cellular automata to study housing segrega-
tion patterns and posed the question, “is it possible to get
highly segregated settlement patterns even if most indi-
viduals are, in fact, color-blind?” (Schelling 1978). The
Schelling model demonstrated that ghettos can develop
spontaneously in the sense that system-level patterns can
emerge that are not necessarily implied or even consistent
with the objectives of the individual agents.

Extending the notion of modeling people to growing
entire artificial societies through agent simulation was
taken up by Epstein and Axtell in their groundbreaking
Sugarscape model (Epstein and Axtell 1996). In numer-
ous computational experiments, Sugarscape agents
emerged with a variety of characteristics and behaviors,
highly suggestive of a realistic, although rudimentary and
abstract, society. Emergent processes were observed that
Epstein and Axtell interpreted as death, disease, trade,
wealth, sex and reproduction, culture, conflict and war,
and externalities such as pollution.

Economics is adopting agent-based modeling to an
extent. Some of the classical assumptions of standard mi-
cro-economic theory are: (1) economic agents are ra-
tional, which implies that agents have well-defined objec-
tives and are able to optimize their behavior (the basis for
the “rational agent” model used in economics and many
other social science disciplines), (2) agents are homoge-
neous, having identical characteristics and rules of behav-
ior, (3) there are decreasing returns to scale from eco-
nomic processes, decreasing marginal utility, decreasing
marginal productivity, etc., and (4) the long-run equilib-
rium state of the system is the primary information of in-
terest. Each of these assumptions can be relaxed in ABMS
applications to economic systems. First, do organizations
and individuals really optimize? Herbert Simon, a Nobel
Laureate who pioneered the field of AI, developed the no-
tion of “satisficing” to describe what he observed people
and organizations actually do in the real world (Simon
2001). Behavioral economics is a relatively new field that
incorporates experimental findings on psychology and
cognitive aspects of agent decision making to determine
people’s actual economic and decision making behavior.
Second, that diversity among individuals universally oc-
curs in the real-world is a key observation of complexity
science. Many natural organizations from ecologies to in-
dustries are characterized by populations whose diversity
gives rise to its stability and robustness. Third, “positive
feedback loops” and “increasing returns” have been iden-
tified as underlying dynamic processes of rapid exponen-
tial growth in economic systems (Arthur, Durlauf and
Lane, 1997). Positive feedback can create self-sustaining
processes that quickly take a system away from its start-
ing point to a faraway state. Fourth, long-run equilibrium

105

Macal and North

states are not the only results of interest. The transient
states that are encountered along the way to a long-run
state are often of interest. Furthermore, not all systems
come to an equilibrium (Axtell 2000). The field of Agent-
based Computational Economics (ACE) has grown up
around the application of ABMS to economic systems
(Tesfatsion 2002, 2005).

Archaeologists and anthropologists are developing
large-scale agent-based simulations of ancient civiliza-
tions to help explain their growth and decline, based on
archaeological data. ABMS has been applied to explain
the prosperity of ancient cities in Mesopotamia and un-
derstand the social and environmental factors responsible
for the disappearance of the Anasazi in the southwestern
U.S. (Koehler, Gumerman and Reynolds, 2005).

Sociologists are doing agent-based modeling as well.
Macy and Willer (2002) consider agent-based modeling
as an approach to modeling the social life of interacting,
adaptive social agents. Cognitive science has had its own
notion of agency, and social cognitive science is extend-
ing these ideas to social settings (Bedau 2003). Synthetic
social agents that include models of the influence of emo-
tion and cognition on social behavior are being developed
by cognitive scientists and others (Gratch and Marsella
2001). Computational social science is becoming a sub-
field in the social sciences (Sallach and Macal 2001).

2.3.3 Topologies as a Basis for Social Interaction

As much as modeling agent behaviors, agent modeling
also concerns itself with modeling agent interactions. The
primary issues of modeling agent interaction are (1) who
is connected to who and, (2) the mechanisms governing
the nature of the interactions. Cellular automata represent
agent interaction patterns and available local information
by using a grid or lattice, and the cells immediately sur-
rounding an agent are its neighborhood. Other agent in-
teraction topologies, such as networks, allow an agent’s
neighborhood to be defined more generally and may more
accurately describe social agents’ interaction patterns.

Social Network Analysis (SNA) is a field with a long
history that studies the characterization and analysis of
social structure and interaction through network represen-
tations. Traditionally, SNA has focused on static net-
works, i.e., networks that do not change their structure
over time or as a result of agent behavior. Recently, much
progress has been made in understanding the processes of
growth and change of real-world networks (Barabási
2002). Dynamic network analysis (DNA) is a new field
that incorporates the mechanisms of network growth and
change based on agent interaction processes (NRC 2003).
Understanding the agent rules that govern how networks
are structured and grow, how quickly information is
communicated through networks, and the kinds of rela-

tionships that networks embody are important aspects of
“network ABMS.”

2.3.4 Modeling Agent Processes

Identifying the social interaction mechanisms for how co-
operative behavior emerges among individuals and groups
is an interesting question with practical implications. Evo-
lutionary Game Theory is related to traditional game the-
ory and takes into account the repeated interactions of the
players and their effect on strategies. Axelrod has shown
that a simple Tit-For-Tat strategy of reciprocal behavior
toward individuals is enough to establish sustainable co-
operative behavior (Axelrod 1997). The broader need is
for a generative type of social science in which the proc-
esses from which social structure emerges can be under-
stood as the necessary result of social interactions (Ep-
stein 2007).

3 HOW TO DO ABMS

3.1 Agent-based Modeling Areas

Table 1 lists practical agent-based modeling and simula-
tion applications in many areas. ABS applications range
from modeling agent behavior in the stock market (LeBa-
ron 2002) and supply chains (Fang et al. 2002, Macal
2004a), to predicting the spread of epidemics (Huang et
al. 2004) and the threat of bio-warfare (Carley 2006),
from modeling the growth and decline of ancient civiliza-
tions (Kohler, Gumerman and Reynolds, 2005) to model-
ing the complexities of the human immune system (Folcik
and Orosz 2006) and the deregulation of electric power
markets (Cirillo 2006), just to name a few.

 ABMS applications range across a continuum, from
small, elegant, minimalist models to large-scale decision
support systems. Minimalist models are based on a set of
idealized assumptions, designed to capture only the most
salient features of a system. These are exploratory elec-
tronic laboratories in which a wide range of assumptions
can be varied over a large number of simulations. Deci-
sion support models tend to be large-scale applications,
designed to answer a broad range of real-world policy
questions. These models are distinguished by including
real data and having passed some degree of validation
testing to establish credibility in their results.

3.2 A Detailed Agent-based Simulation Example

We next describe a hypothetical simulation example pro-
vided by Law (2007a). We will implement the example as
a simple agent-based model using a fixed-time step ap-
proach, noting it has also been programmed as a discrete
event simulation (DES) as well (Law, 2007b). The exam-

106

Macal and North

ple illustrates some of the similarities and differences be-
tween agent-based simulation and DES.

Table 1: Agent-based modeling application areas

Consider an environment consisting of a 12 x 12 grid

of cells. Each cell is 100 feet on each side. Initially, each
cell is colored green with a probability of 0.8 and red with
a probability of 0.2. A cell’s state is independent of all
other cells. In our ABMS terminology, the grid is the en-
vironment. The amount of time that a cell is green before
turning red is uniform on the set {70, 71, …, 90} minutes,
with mean 80 minutes. The amount of time that a cell is
red before turning green is uniform on the set {10, 11,…,
30} minutes, with mean 20 minutes.

Suppose that 100 agents live on the grid. When the
agents move, they move at a speed of 60 feet per minute.
Initially, each agent is randomly placed on the grid and
has a heading that is uniformly distributed on the discrete
set of {0, 90, 180, 270} degrees, with zero degrees being
north and degrees increasing in the clockwise direction.
More than one agent can coexist on a particular cell. An
agent can observe the colors of its current cell and its im-
mediately adjacent neighbor cells.

Agents use the following movement rules:

1. An agent will begin moving at its specified head-

ing if, and only if, it starts on a green cell.
2. If an agent starts on a red cell, it will wait until

the cell turns green to begin moving.
3. If an agent is moving through a cell and reaches

the edge, then it will only enter the next cell if it

is green. If the next cell is red, the agent stops
and waits until the next cell is green.

4. If an agent is traveling through a cell when it
turns red, then it will stop immediately. It will
not start moving again until the cell turns green.

5. When an agent reaches one of the edges of the
grid, it exits the system, and its total time spent
in the simulation is recorded.

The simulation is run until all agents have exited and the
statistics for the time spent in the system for all agents is
then computed.

An agent’s attributes consist of its (x, y) coordinates (in
continuous space) and its heading. An agent also “knows”
the cell in which it is located. A formal agent attribute
specification is as follows:

• aid: Unique agent identifier (integer)
• aloc, {x, y}: Agent location in two dimensional con-

tinuous space.
• vel, {vx, vy}: Current velocity (= {0,0} if agent has

exited or is located on a red cel
• vel0, {vx0, vy0}: Persistent velocity. An agent al-

ways assumes this velocity when moving. Note per-
sistent velocity implies an orientation.

• alive: Status indicator (-1 indicates the agent is alive.
A value greater than 0 indicates the time t at which
the agent exited the system).

The other important data structure is the grid cell. A

formal cell attribute specification is as follows:

• cid: Unique cell identifier.
• cloc, {u, v}: Cell location where u and v are integers.
• switchTime: The next time at which the cell status

will be updated.
• agentL: A list of agents that are located in the cell.

The simulation setup is as follows. Initially, 80%of the
grid is seeded with green cells and 20% with red cells.
The amount of time that a cell is green before turning red
is uniformly distributed, U[70, 90]. The amount of time
that a cell is red before turning green is uniformly distrib-
uted, U[10, 30]. A fixed set of agents is initially distrib-
uted with random orientations (four discrete choices) to
random locations on the grid.

In summary, the agent aspects of the simulation are as
follows:

• Agents are described as discrete and modular entities

in the (object-oriented) model implementation (as
shown above)

• Agents are autonomous in that they determine wheth-
er or not they can move. Individual agents have asso-
ciated methods that they execute to perform various

Business and Organizations

• Manufacturing Operations
• Supply chains
• Consumer markets
• Insurance industry

Economics

• Artificial financial markets
• Trade networks

Infrastructure

• Transportation/traffic
• Electric power markets
• Hydrogen infrastructure

Crowds

• Pedestrian movement
• Evacuation modeling

Society and Culture

• Ancient civilizations
• Civil disobedience
• Social determinants of

terrorism
• Organizational networks

Military

• Command and control
• Force-on-force

Biology

• Population dynamics
• Ecological networks
• Animal group behavior
• Cell behavior and sub

cellular processes

107

Macal and North

functions. For example, getAgentNeighbors is a func-
tion that an agent uses to find the agents in its current
cell, and getCellStatus is a function that an agent uses
to find out the status of its current cell (red or green).

• An agent’s external environment is the grid, from
which it extracts information on its cell state.

Some aspects of this example problem do not emphasize
the capabilities of ABS because they include the defining
characteristics of agents in trivial ways. For example, an
agent’s goal is simply to keep moving until it has reached
the edge of the grid. An agent is social in the sense that it
is aware of and recognizes individual agents that are its
neighbors in the cell in which it is located, but agent in-
teraction rules are not implemented. Finally, agents are
not adaptive. This agent framework does allow the agents
to have much more complex behaviors. Modeling each of
these aspects of agents could easily be added to the exam-
ple within the framework described above by adding addi-
tional functions that act on the agents.

Figure 6 shows the agent-based simulation logic. The
simulation is implemented as a set of two nested loops,
one for time, the other for agents. All of the agent behav-
iors are executed each time period. Agents update their
position each time step according to {x, y}new = {x, y} +
{velx, vely}. In this example, the order in which the agents
update their state does not matter, so the agents are up-
dated in a fixed sequence. If the order of updating the
agents did matter, it would be customary practice to either
randomize the order of the agent updating or else imple-
ment a sequencing procedure that has some rational basis
as to why one agent updates itself before the others. This
scheduling process could be event-based or even adaptive
depending on conditions during the simulation.

The time increment, ∆t, is arbitrary and constant
throughout the simulation. A value of ∆t as small as pos-
sible is desirable (constrained by computational re-
sources) to capture the accurate movement of agents as
they cross cell and grid boundaries. This example, as im-
plemented, is more like a combined continuous-discrete
event simulation than a DES. In effect, with the selection
of a small value for ∆t, time progresses continuously
tracking agent movement over the grid, with discrete
events being inserting as cells are updated at specific
times.

Snapshots from the simulation are shown in Figures 7
and 8, and recorded exit times are shown in Figure 9.

Figure 6: Logic for agent-based simulation example

Generation: 1
Agents remaining: 100
Moving: 87 Stopped: 13

Figure 7: Example agent-based simulation, initial agent
states (lightly shaded cells are green, dark cells are red)

108

Macal and North

Generation: 108
Agents remaining: 9
Moving: 8 Stopped: 1

Figure 8: Example agent-based simulation, at time 108
(lightly shaded cells are green, dark cells are red)

0 50 100 150

1

2

3

4

5

6

7

Figure 9: Exit times in agent-based simulation example

3.3 ABMS Software and Toolkits

Agent-based modeling can be done using general, all-
purpose software or programming languages, or it can be
done using specially designed software and toolkits that
address the special requirements of modeling agents.
Agent modeling can be done in the small, on the desktop,
or in the large, using large-scale computing clusters, or it
can be done at any scale in-between these extremes. Pro-
jects often begin small, using one of the desktop ABMS
tools, and then grow in stages into the larger-scale ABMS
toolkits. Often one begins developing their first agent
model using the approach that one is most familiar with,
or the approach that one finds easiest to learn given their
background and experience.

We distinguish several approaches to building ABMS
applications in terms of the scale of the software that one
can apply according to the following continuum:

Desktop Computing for ABMS Application Develop-
ment:
• Spreadsheets: Excel using the macro programming

language VBA
• Dedicated Agent-based Prototyping Environments:

Repast Simphony, NetLogo, StarLogo
• General Computational Mathematics Systems:

MATLAB, Mathematica

Large-Scale (Scalable) Agent Development Environ-

ments:
• Repast
• Swarm
• MASON
• AnyLogic

General Programming Languages:
• Python
• Java
• C++

Desktop ABMS can be used to learn agent modeling,
prototype basic agent behaviors, and perform limited ana-
lyses. Desktop agent-based models can be simple, de-
signed and developed in a period of a few days by a single
computer-literate modeler using tools learned in a few
days or weeks. Desktop agent modeling can be used to
explore the potential of ABMS with relatively minor time
and training investments, especially if one is already fa-
miliar with the tool.

Spreadsheets, such as Microsoft Excel, are in many
ways the simplest approach to modeling. It is easier to
develop models with spreadsheets than with many of the
other tools, but the resulting models generally allow lim-
ited agent diversity, restrict agent behaviors, and have
poor scalability compared to the other approaches. Some
useful agent models have been developed using spread-
sheet models (Bower and Bunn 2000). In previous WSC
papers, we described an spreadsheet implementation of a
spatial agent-based shopper model (Macal and North
2007).

Special-purpose agent tools, such as NetLogo, and
StarLogo, provide special facilities focused on agent
modeling. The most directly visible common trait shared
by the various prototyping environments is that they are
designed to get first-time users started as quickly as pos-
sible. NetLogo is a free ABMS environment (Wilensky
1999) developed at Northwestern University’s Center for
Connected Learning and Computer-Based Modeling
(http://ccl.northwestern.edu/netlogo/). The NetLogo lan-
guage uses a modified version of the Logo programming

109

Macal and North

language (Harvey 1997). NetLogo is designed to provide
a basic computational laboratory for teaching complex
adaptive systems concepts. NetLogo was originally de-
veloped to support teaching, but it can be used to develop
a wide range of applications. NetLogo provides a graphi-
cal environment to create programs that control graphic
“turtles” that reside in a world of “patches” that is moni-
tored by an “observer.” NetLogo includes an innovative
participatory ABMS feature called HubNet (Wilensky and
Stroup 1999), which allows groups of people to interac-
tively engage in simulation runs alongside of computa-
tional agents.

General-purpose desktop computational mathematics
system (CMS) with an integrated development environ-
ment, such as MATLAB and Mathematica, can be used to
develop agent models, although the agent-specific func-
tionality has to be written by the developer from scratch
(Macal 2004b). The basic requirements are a full scripting
language capability combined with array or list-
processing capabilities for efficiency. Computational ma-
thematics systems are structured in two main parts: (1) the
user interface that allows dynamic user interaction, and
(2) the underlying computational engine, or kernel, that
performs the computations according to the user’s instruc-
tions. The underlying computational engine is written in
the C programming language for these systems, but C
coding is unseen by the user. The interpreted nature of
these systems avoids the compilation and linking steps
required in traditional programming languages. Computa-
tional mathematics systems have advantages derived from
both the mathematical and interactive orientations of
these tools. CMS environments have rich mathematical
functions, and nearly any mathematical relation or func-
tion that can be numerically calculated is available within
these tools or their add-on libraries. In some cases, the
tools even support symbolic processing and manipulation,
which is useful for systems of equations that can be
solved analytically (Macal 2004b). If a CMS environment
is already familiar, this can be a good place to start agent-
based modeling.

Many large-scale ABMS software environments are
now freely available. These include Repast (North, Col-
lier and Vos, 2006), Swarm (SDG 2006; Minar et al.
1996), NetLogo (NetLogo 2007) and MASON (GMU
2006) among many others. Proprietary toolkits are also
available such as AnyLogic (2006). A recent review and
comparison of Java-based agent modeling toolkits is pro-
vided by Tobias and Hoffman (2004).

Swarm was the first ABMS software development
environment launched in 1994 at the Santa Fe Institute.
Swarm was originally written in Objective C and was lat-
er fitted with a Java interface. Following the original
Swarm innovation, the Repast (REcursive Porous Agent
Simulation Toolkit) toolkit was developed as a pure Java
implementation (North, Collier and Vos, 2006). Repast

has been used extensively in social simulation applica-
tions (North and Macal 2005). Repast is a widely used
free and open source agent-based modeling and simula-
tion toolkit (ROAD 2007). Repast Simphony (Repast S) is
the latest version of Repast, designed to provide visual
point-and-click tools for agent model design, agent behav-
ior specification, model execution, and results examina-
tion. The Repast S agent model designer is being devel-
oped to allow users to visually specify the logical
structure of their models, the spatial (e.g., geographic
maps and networks) structure of their models, the kinds of
agents in their models, and the behaviors of the agents
themselves. Once their models are specified, users can use
the point-and-click Repast S runtime environment to exe-
cute model runs as well as visualize and store results. In
addition, the Repast S runtime environment includes au-
tomated results analysis connections to a variety of
spreadsheet, visualization, data mining, and statistical
analysis tools, virtually all of which are free and open
source.

3.4 Why and When ABMS

We conclude by offering some ideas on the situations for
which agent-based modeling can offer distinct advantages
to conventional simulation approaches. When is it benefi-
cial to think in terms of agents? When one or more of the
following criteria are satisfied:

• When there is a natural representation as agents
• When there are decisions and behaviors that can

be defined discretely (with boundaries)
• When it is important that agents adapt and

change their behaviors
• When it is important that agents learn and en-

gage in dynamic strategic behaviors
• When it is important that agents have a dynamic

relationship with other agents, and agent rela-
tionships form and dissolve

• When it is important to model the processes by
which agents form emergent organizations, and
adaptation and learning are important at the or-
ganization level

• When it is important that agents have a spatial
component to their behaviors and interactions

• When the past is no predictor of the future
• When scaling-up to arbitrary levels is important

in terms of the number of agents, agent interac-
tions and agent states

• When process structural change needs to be a re-
sult of the model, rather than a model input

110

Macal and North

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy under contract number DE-AC02-06CH11357. Por-
tions of this tutorial have appeared in previous tutorial
papers presented at the Winter Simulation Conference in
2007, 2006 and 2005.

REFERENCES

AnyLogic. 2006. <http://www.xjtek.com/>.
Arthur, W., S. Durlauf and D. Lane. 1997. The economy

as an evolving complex system II, SFI Studies in the
Sciences of Complexity, Addison Wesley: Reading,
MA.

Axelrod, R. 1997. The complexity of cooperation: agent-
based models of competition and collaboration, Prin-
ceton, NJ: Princeton University Press.

Axelrod, R. 1997. Advancing the art of simulation in the
social sciences, in Conte., R., Hegselmann, R. and
Terna, P., eds. Simulating social phenomena, Berlin:
Springer-Verlag: 21-40.

Axtell, R. 2000. Why agents? On the varied motivations
for agent computing in the social sciences, Working
Paper 17, Center on Social and Economic Dynamics,
Brookings Institution, Washington, D.C.

Barabási, A.-L. 2002. Linked: the new science of net-
works. Cambridge, MA: Perseus Pub.

Bedau, M. A. 2003. Artificial Life: Organization, Adapta-
tion and Complexity from the Bottom Up, TRENDS
in Cognitive Sciences 7(11):505-512.

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm
intelligence: from natural to artificial systems, Ox-
ford: Oxford University Press.

Bonabeau, E. 2001. Agent-based modeling: methods and
techniques for simulating human systems. In Pro-
ceedings of National Academy of Sciences 99(3):
7280-7287.

Booch, G., J. Rumbaugh, and I. Jacobson. 1998. The uni-
fied modeling language user guide, Addison-
Wesley:New York.

Bower, J., and D. Bunn. 2000. Model-based comparisons
of pool and bilateral markets for electricity. The En-
ergy Journal 21(3):1–29.

Carley, K. M., D. B. Fridsma, E. Casman, A. Yahja, N.
Altman, L.-C. Chen, B. Kaminsky and D. Nave.
2006. BioWar: scalable agent-based model of bioat-
tacks. IEEE Transactions on Systems, Man, and Cy-
bernetics - Part A: Systems and Humans 36(2):252-
265.

Casti, J. 1997. Would-be worlds: how simulation is
changing the world of science, New York: Wiley.

Casti, J. 2001. Bizsim: the world of business - in a box,
Complexity International, 08:6. Available via

<http://www.complexity.org.au/ci/vol08/
casti01/> [accessed September 23, 2008].

Cirillo, R., P. Thimmapuram, T. Veselka, V. Koritarov,
G. Conzelmann, C. Macal, G. Boyd, M. North, T.
Overbye, and X. Cheng. 2006. Evaluating the poten-
tial impact of transmission constraints on the opera-
tion of a competitive electricity market in Illinois,
Argonne National Laboratory, ANL-06/16 (report to
the Illinois Commerce Commission).

Epstein, J. M. 2007. Generative social science: Studies in
agent-based computational modeling, Princeton Uni-
versity Press:Princeton, NJ.

Epstein, J. M., and R. Axtell. 1996. Growing artificial so-
cieties: social science from the bottom up, Cam-
bridge, MA: MIT Press.

Fang, C., S. Kimbrough, S. Pace, A. Valluri and Z.
Zheng. 2002. On adaptive emergence of trust behav-
ior in the game of stag hunt, Group Decision and Ne-
gotiation 11(6): 449–467.

Folcik, V., and C. Orosz. 2006. An agent-based model
demonstrates that the immune system behaves like a
complex system and a scale-free network. SwarmFest
2006, University of Notre Dame, South Bend, IN,
June.

Gilbert, N., and K. G. Troitzsch. 1999. Simulation for the
social scientist, Buckingham UK: Open University
Press.

Gardner, M. 1970. The fantastic combinations of John
Conway's new solitaire game "Life", Scientific
American 223:120-123.

GMU (George Mason University). 2006. MASON home
page. Available via <http://cs.gmu.edu/
~eclab/projects/mason/>.

Gratch, J., and S. Marsella. 2001. Tears and fears: model-
ing emotions and emotional behaviors in synthetic
agents, In Proceedings of 5th International Confer-
ence on Autonomous Agents, 278-285.

Harvey, B. 1997. Computer Science Logo Style, MIT
Press: Boston, Massachusetts USA

Holland, J. H. 1995. Hidden order: how adaptation builds
complexity, Addison-Wesley:Reading, Mass.

Huang, C.-Y., C.-T. Sun, J.-L. Hsieh and H. Lin. 2004.
Simulating SARS: Small-world epidemiological
modeling and public health policy assessments.
JASSS - Journal of Artificial Societies And Social
Simulation 7(4): 100-131.

Jennings, N. R. 2000. On agent-based software engineer-
ing, Artificial Intelligence 117:277-296.

Kohler, T., G. Gumerman, and R. Reynolds. 2005. Simu-
lating ancient societies, Scientific American.

Law, A. M. 2007a. Agent-based simulation: A new ap-
proach to systems modeling, presentation, Averill M.
Law & Associates, Tucson, AZ

Law, A. M. 2007b. Simulation modeling and analysis, 4th
ed. New York: McGraw-Hill.

111

Macal and North

LeBaron, B. 2002. Short-memory traders and their impact
on group learning in financial markets. In Proceed-
ings of National Academy of Sciences 99(90003):
7201-7206.

Macal, C. 2004a. Emergent structures from trust relation-
ships in supply chains. In Proceedings of Agent 2004:
Conference on Social Dynamics, eds., C. Macal, D.
Sallach and M. North, Chicago, IL, Oct. 7-9, 743-
760, Argonne National Laboratory.

Macal, C. M. 2004b. Agent-Based Modeling and Social
Simulation with Mathematica and MATLAB, In
Proceedings of Agent 2004 Conference on Social
Dynamics: Interaction, Reflexivity and Emergence,
Macal, C., D. Sallach, and M. North, eds., 185-204,
Chicago, IL, Oct. 7-9. Available via
<http://www.agent2004.anl.gov>.

Macal, C. M., and M. J. North. 2007. Agent-based Model-
ing and Simulation: Desktop ABMS. Proceedings of
the 2007 Winter Simulation Conference. Eds. S. G.
Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D.
Tew, and R. R. Barton, 95-106. Washington, DC.

Macy, M., and R. Willer. 2002. From factors to actors:
computational sociology and agent-based modeling,
Annual Review of Sociology 28:143-166.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi.
1996. The Swarm simulation system, a toolkit for
building multi-agent simulations. Available via
<http://www.santafe.edu/projects/swarm/
overview/overview.html>.

NetLogo. 2007. NetLogo home page. Available via
<http://http://ccl.northwestern.edu/net
logo>.

North, M. J., and C. M. Macal. 2007. Managing business
complexity: discovering strategic solutions with
agent-based modeling and simulation, Oxford Uni-
versity Press: Oxford, U.K.

North, M., N. Collier, and J. Vos. 2006. Experiences in
creating three implementations of the repast agent
modeling toolkit, ACM Transactions on Modeling
and Computer Simulation, 16(1):1-25.

North, M. J., and C. M. Macal. 2005. Escaping the acci-
dents of history: an overview of artificial life model-
ing with Repast. In Artificial Life Models in Software,
eds. A. Adamatzky and M. Komosinski, Springer-
Verlag: Dordrecht, Netherlands.

NRC (National Research Council). 2003. Dynamic social
network modeling and analysis: workshop summary
and papers, R. Brieger, K. Carley, and P. Pattison,
Committee on Human Factors, Washington, DC: Na-
tional Academies Press.

ROAD (Repast Organization for Architecture and De-
sign). 2007. Repast Home Page, Available via
<http://repast.sourceforge.net/>.

Reynolds, C. 2006. Boids. Available via
<http://www.red3d.com/cwr/boids/>.

Sakoda, J. M. 1971. The checkerboard model of social in-
teraction. Journal of Mathematical Sociology 1:119-
132.

Sallach, D., and C. Macal. 2001. The simulation of social
agents: an introduction, Social Science Computer Re-
view 19(3):245–248.

Schelling, T. C. 1978. Micromotives and macrobehavior,
New York: Norton.

SDG (Swarm Development Group). 2006. Swarm Devel-
opment Group home page. Available via
<http://www.swarm.org>.

Simon, H. 2001. The sciences of the artificial, Cambridge,
MA: MIT Press.

Simon, J. 2002. Excel programming, Wiley Publishing:
Hoboken, NJ.

Tesfatsion, L. 2002. Agent-based computational econom-
ics: growing economies from the bottom up, Artifi-
cial Life 8(1):55-82.

Tesfatsion, L. 2005. Agent-based Computational Eco-
nomics (ACE) home page. Available via
<http://<www.econ.iastate.edu/tesfatsi/
ace.htm>.

Tobias, R., and C. Hofmann. 2004. Evaluation of free
Java-libraries for social-scientific agent based simula-
tion. Journal of Artificial Societies and Social Simu-
lation 7(1).

Wilensky, U. 1999. Netlogo, Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern
University:Evanston, IL USA. Available via
<http://ccl.northwestern.edu/netlogo/>.

Wilensky, U., and W. Stroup. 1999. Hubnet, Center for
Connected Learning and Computer-Based Modeling,
Northwestern University: Evanston, IL USA. Avail-
able via <http://ccl.northwestern.edu/ps/>.

AUTHOR BIOGRAPHIES

CHARLES M. MACAL, Ph.D., P.E., is the Director,
Center for Complex Adaptive Agent Systems Simulation
(CAS2), Argonne National Laboratory. He is a member of
the INFORMS-Simulation Society, Society for Computer
Simulation International, the Systems Dynamics Society
and a founding member of NAACSOS. Charles has a
Ph.D. in Industrial Engineering & Management Sciences
from Northwestern University. Contact:
<macal@anl.gov>.

MICHAEL J. NORTH, M.B.A., Ph.D., is the Deputy
Director of CAS2 at Argonne. Michael has over 15 years
of experience developing advanced modeling and simula-
tion applications for the federal government, international
agencies, private industry, and academia. Michael has a
Ph.D. in Computer Science from the Illinois Institute of
Technology. Contact: <north@anl.gov>.

112

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

