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ABSTRACT 

Agent-based modeling and simulation (ABMS) is a new 
approach to modeling systems comprised of autonomous, 
interacting agents. ABMS promises to have far-reaching 
effects on the way that businesses use computers to sup-
port decision-making and researchers use electronic labo-
ratories to support their research. Some have gone so far 
as to contend that ABMS “is a third way of doing sci-
ence,” in addition to traditional deductive and inductive 
reasoning (Axelrod 1997). Computational advances have 
made possible a growing number of agent-based models 
across a variety of application domains. Applications 
range from modeling agent behavior in the stock market, 
supply chains, and consumer markets, to predicting the 
spread of epidemics, the threat of bio-warfare, and the 
factors responsible for the fall of ancient civilizations. 
This tutorial describes the theoretical and practical foun-
dations of ABMS, identifies toolkits and methods for de-
veloping agent models, and illustrates the development of 
a simple agent-based model.  

1 INTRODUCTION 

Agent-based Modeling and Simulation (ABMS) is a new 
modeling paradigm and is one of the most exciting practi-
cal developments in modeling since the invention of rela-
tional databases. ABMS promises to have far-reaching ef-
fects on the way that businesses use computers to support 
decision-making and researchers use electronic laborato-
ries to support their research (North and Macal 2007).  

The goals of this tutorial are to show how ABMS is: 
 

• Useful: Why ABMS is good and even better than 
many conventional modeling approaches in 
many cases, 

• Usable: How we are progressively advancing to 
usable ABMS systems, with better software de-
velopment environments and more application 
experiences, and  

• Used: How ABMS is being used to solve practi-
cal problems.  

 
This tutorial is organized into two parts.  The first 

part is a tutorial on how to think about ABMS. The back-
ground on ABMS and its motivating principles are de-
scribed to illustrate its main concepts and to indicate the 
state-of-the-art. The second part is a tutorial on how to do 
ABMS. Practical applications of ABMS are described. 
ABMS toolkits are introduced, and the development of a 
simple agent-based model is illustrated.  

2 HOW TO THINK ABOUT ABMS 

2.1 What is an Agent 

Although there is no universal agreement on the precise 
definition of the term “agent,” definitions tend to agree on 
more points than they disagree. Some modelers consider 
any type of independent component (software, model, in-
dividual, etc.) to be an agent (Bonabeau 2001). An inde-
pendent component’s behavior can range from simple, re-
active if-then decision rules, to general behavioral 
models, such as the BDI (belief-desire-intent) framework, 
to complex models based on artificial intelligence (AI). 
Some authors insist that a component’s behavior must be 
adaptive in order for it to be considered an agent. The 
agent label is reserved for components that can learn from 
their environments and change their behaviors in response 
to their experiences. Casti (1997) argues that agents 
should contain both base-level rules for behavior as well 
as a higher-level set of “rules to change the rules.” The 
base-level rules provide responses to the environment 
while the “rules to change the rules” provide adaptation. 
Jennings (2000) provides a computer science view of 
agency emphasizing the essential characteristic of auto-
nomous behavior. The fundamental feature of an agent is 
the capability to make independent decisions. This re-
quires agents to be active responders and planners rather 
than purely passive components.  
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From a practical modeling standpoint, we consider 

agents to have certain characteristics (Figure 1):  
 
• An agent is an identifiable, discrete, or modular, 

individual with a set of characteristics and rules 
governing its behaviors and decision-making ca-
pability. Agents are self-contained. The discrete-
ness requirement implies that an agent has a 
boundary and one can easily determine whether 
something is part of an agent, is not part of an 
agent, or is a shared characteristic. 

• An agent is autonomous and self-directed. An 
agent can function independently in its environ-
ment and in its interactions with other agents for 
the limited range of situations that are of interest.  

• An agent is social, interacting with other agents. 
Agents have protocols for interaction with other 
agents, such as for communication. Agents have 
the ability to recognize and distinguish the traits 
of other agents.   

• An agent is situated, living in an external envi-
ronment with which the agent interacts in addi-
tion to other agents.  

• An agent may be goal-directed, having goals to 
achieve (not necessarily objectives to maximize) 
with respect to its behaviors. This allows an 
agent to compare the outcome of its behavior to 
the goals it is trying to achieve.  

• An agent is flexible, having the ability to learn 
and adapt its behaviors based on experience. 
This requires some form of memory. An agent 
may have rules that modify its rules of behavior. 
 

 
Figure 1: An agent 

 
Often, the agents in an agent-based model will lack 

one or more of these characteristics. It may not be neces-
sary to model adaptation in a supply chain model if the 
model’s purpose is to evaluate a set of specific inventory 

management rules, for example. Should such a model be 
considered an agent-based model? It depends on the struc-
ture of such a model. If the structure is such that the mod-
el does not preclude the addition of agent characteristics 
and behaviors with minor modifications to it, then it 
makes sense to refer to the model as agent-based. We 
have coined the term proto-agent to refer to agents that 
are missing one or more of the characteristics enumerated 
above but to which the characteristics can easily be added 
without modification to the structure of the model.  

Unlike particle systems (idealized gas particles for 
example) which are the subject of the field of particle si-
mulation, agents are diverse, heterogeneous, and dynamic 
in their attributes and behavioral rules, as shown in Figure 
1. Behavioral rules can vary in their sophistication, how 
much information is considered in the agent decisions 
(cognitive “load”), the agent’s internal models of the ex-
ternal world including the possible reactions or behaviors 
of other agents, and the extent of memory of past events 
the agent retains and uses in its decisions. Agents also 
vary by their attributes and accumulated resources.  

Agent-based modeling is known by many names. 
ABM (agent-based modeling), ABS (agent-based systems 
or simulation), and IBM (individual-based modeling) are 
all widely-used acronyms, but “ABMS” will be used 
throughout this discussion. The term “agent” has connota-
tions in realms other than agent-based modeling as well. 
ABMS agents are different from the agents typically 
found in mobile agent systems. “Mobile agents” are light-
weight software proxies that roam over the world-wide 
web and perform various functions for users and to some 
extent can behave autonomously.  

Another point of clarification concerns the term “si-
mulation.” Agent-based simulation refers to a model in 
which the dynamic processes of agent interaction are si-
mulated repeatedly over time, as in systems dynamics, 
and time-stepped, discrete-event, and other types of con-
ventional simulation. An agent-based model, more gener-
ally, is a model in which repeatedly agents interact. For 
example, when agents collectively optimize behavior 
through simple exchanges of information as is done in ant 
colony optimization or a particle swarm optimization 
models, the purpose is to achieve a desired end-state, i.e., 
the optimized system, rather than to simulate a dynamic 
process for its own sake.  

ABMS has roots in the fields of multi-agent systems 
(MAS) and robotics from the field of AI, as well as Arti-
ficial Life (ALife). But ABMS is not only tied to under-
standing and designing “artificial” agents. Its main roots 
are in modeling human social and organizational behavior 
and individual decision-making (Bonabeau 2001). With 
this, comes the need to represent social interaction, col-
laboration, group behavior and the emergence of higher 
order social structures.  
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2.2 The Need for Agent Based Modeling 

Why is agent-based modeling becoming so widespread? 
The answer is because we live in an increasingly complex 
world. First, the systems that we need to analyze and 
model are becoming more complex in terms of their in-
terdependencies. Traditional modeling tools are no longer 
as applicable as they once were. An example application 
area is the deregulation of the formerly centralized elec-
tric power industry in which agents are suddenly free to 
make pricing and investment choices based on their indi-
vidual criteria. Second, some systems have always been 
too complex for us to adequately model. Modeling eco-
nomic markets has traditionally relied on the notions of 
perfect markets, homogeneous agents, and long-run equi-
librium because these assumptions made the problems 
analytically and computationally tractable. We are begin-
ning to be able to relax some of these assumptions and 
take a more realistic view of these economic systems 
through ABMS. Third, data are being collected and or-
ganized into databases at finer levels of granularity. Mi-
cro-data can now support individual-based simulations. 
And fourth, but most importantly, computational power is 
advancing rapidly. We can now compute large-scale mi-
cro-simulation models that would not have been plausible 
just a couple of years ago. 

2.3 Background on ABMS 

ABMS has connections to many other fields including 
complexity science, systems science, systems dynamics, 
computer science, management science, several branches 
of the social sciences, and traditional modeling and simu-
lation. ABMS draws on these fields for its theoretical 
foundations, its conceptual world view and philosophy, 
and for applicable modeling techniques.  

ABMS has its direct historical roots in complex adap-
tive systems (CAS) and the underlying notion that “sys-
tems are built from the ground-up,” in contrast to the top-
down systems view taken by systems dynamics. CAS 
concerns itself with the question of how complex behav-
iors arise in nature among myopic, autonomous agents. In 
addition, ABMS tends to be descriptive, with the intent of 
modeling the actual or plausible behavior of individuals, 
rather than normative such as traditional operations re-
search (OR), which seeks to optimize and identify optimal 
behaviors.  

The field of CAS was originally motivated by inves-
tigations into adaptation and emergence of biological sys-
tems. CAS have the ability to self-organize and dynami-
cally reorganize their components in ways better suited to 
survive and excel in their environments, and this adaptive 
ability occurs, remarkably, over an enormous range of 
scales. John Holland, a pioneer in the field, identifies 
properties and mechanisms common to all CAS (Holland 

1995) such as (1) Aggregation: allows groups to form, (2) 
Nonlinearity: invalidates simple extrapolation, (3) Flows: 
allow the transfer and transformation of resources and in-
formation, and (4) Diversity: allows agents to behave dif-
ferently from one another and often leads to the system 
property of robustness. CAS mechanisms are: (1) Tag-
ging: allows agents to be named and recognized, (2) In-
ternal models: allows agents to reason about their worlds, 
and (3) Building blocks: allows components and whole 
systems to be composed of many levels of simpler com-
ponents. These CAS properties and mechanisms provide a 
useful reference for designing agent-based models.  

2.3.1 Simple Rules Result in Emergent Organization 
and Complex Behaviors 

The discussion on the background of ABMS begins with 
a simple game developed by the mathematician John 
Conway,  the “Game of Life” (Gardner 1970). The GOL, 
as it is called, is based on cellular automata (CA). Perhaps 
the simplest way to illustrate the basic ideas of agent-
based modeling and simulation is through CA. According 
to Casti (1997), the original notion of CA was developed 
by the physicist Stanislaw Ulam in response to a question 
posed by the famous 20th century mathematician John von 
Neumann. The question was, “could a machine be pro-
grammed to make a copy of itself?” In effect, the question 
had to do with whether it was possible to develop a logi-
cal structure that was complex enough to completely con-
tain all of the instructions for replicating itself. The an-
swer turned out to be yes, and it was eventually found in 
the abstract mathematical representation of a machine in 
the form of a cellular automata.  

A typical CA is a two-dimensional grid or lattice 
consisting of cells. Each cell assumes one of a finite num-
ber of states at any point in time. A set of simple rules de-
termines the value of each cell based on the cell’s previ-
ous state.  Every cell is updated each period according to 
the rules. The next value of a cell depends on the cell’s 
current value and the values of its immediate neighbors in 
the eight surrounding cells. Each cell is identical in terms 
of its update rules. A CA is deterministic in that the same 
state for a cell and its neighbors always results in the 
same updated state. The GOL has three rules that deter-
mine the next state (either On or Off) of each cell:  
 

1. The cell will be On in the next generation if ex-
actly three of its eight neighboring cells are cur-
rently On. 

2. The cell will retain its current state if exactly two 
of its neighbors are On. 

3. The cell will be Off otherwise. 
 

Figure 2 shows a snapshot from a GOL simulation show-
ing an initial random distribution of On cells. After sev-
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eral updates of all cells in the grid, distinctive patterns 
emerge, and in some cases these patterns can sustain 
themselves indefinitely throughout the simulation (Figure 
3). The eight-neighbor per neighborhood assumption built 
into the GOL determines the scope of agent interaction 
and the locally available information for each cell to up-
date its state.  

 
Figure 2: Game of Life simulation, initial random layout 
of cells in the On state 

 

 
Figure 3: Game of Life simulation, after all cells have 
been updated 30 times 

 
Two observations are important about the GOL rules:  

(1) The rules are simple, and (2) the rules use only local 
information. The state of each cell is based only on the 
current state of the cell and the cells touching it in its im-
mediate neighborhood. Although these are interesting 
findings, and observing the patterns created by repeated 
simulations of the GOL reveals a world of endless crea-
tions, other observations have implications for practical 
ABMS: 

 

• Sustainable patterns can emerge in systems that 
are completely described by simple rules that are 
based on only local information, and  

• The patterns that may develop can be extremely 
sensitive to the initial conditions.  

 
The Boids simulation is a good example of how in-

teracting agents, characterized by simple behavioral rules, 
lead to emergent and seemingly organized behavior (Rey-
nolds 2006). Agent behavior is reminiscent of schooling 
or flocking behavior in fish or birds. In the Boids model, 
each agent has three rules governing its movement:  
 

1. Cohesion: each agent steers toward the average 
position of its nearby “flockmates,”  

2. Separation: each agent steers to avoid crowding 
local flockmates, and 

3. Alignment: each agent steers towards the aver-
age heading of local flockmates.  

 
Here, nearby or local refers to agents in the immediate 
neighborhood of an agent as defined by the straight-line 
distance. A fourth rule is added to the above three rules to 
ensure that the boids stay close to their initial area. Ini-
tially, a set number of boids are randomly assigned posi-
tions and orientations (Figure 4). Even with only these 
simple rules applied at the individual agent level and only 
to the agents in its “neighborhood”, the agents’ behaviors 
begin to appear coordinated, and a leaderless flock 
emerges (Figure 5).   
 Two observations are important about the Boids 
rules: (1) the rules are simple, and (2) the rules use only 
local information. We can make some observations from 
the Boids model that have implications for practical 
ABMS. First, sustainable patterns can emerge in systems 
that are completely described by simple deterministic 
rules based on only local information. Second, repeated 
experiments (not shown here) demonstrate that the pat-
terns that develop can be extremely sensitive to the initial 
conditions - in this case, the initial random positions and 
orientations of the boids. .  

Based on simple rules of behavior and agent interac-
tion, natural systems seemingly exhibit collective intelli-
gence, or swarm intelligence, even without the existence 
of or the direction provided by a central authority. How is 
it that an ant colony can organize itself to carry out the 
complex tasks of food gathering and nest building and at 
the same time exhibit an enormous degree of resilience if 
the colony is seriously disrupted? Natural systems are 
able to not only survive, but also to adapt and become bet-
ter suited to their environment, effectively optimizing 
their behavior over time. Swarm intelligence has inspired 
practical optimization techniques, such as ant colony op-
timization that have been used to solve practical schedul-
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ing and routing problems (Bonabeau, Dorigo and Therau-
laz, 1999). 

 

 
Figure 4: Boids simulation, initial random configura-
tion 
 

 
Figure 5: Boids simulation, after 500 updates showing 
two apparent clusters of agents 

2.3.2 Agent-Based Modeling in the Sciences 

In applications of ABMS to social processes, agents rep-
resent people or groups of people, and agent relationships 
represent processes of social interaction (Gilbert and 
Troitzsch 1999). The fundamental assumption is that peo-
ple and their social interactions can be credibly modeled 
at some reasonable level of abstraction for at least specific 
and well-defined purposes, if not in general. This limited 
scope for representing agent behaviors in ABMS contrasts 
with the more general goals of AI. From an ABMS per-
spective, some important questions become immediately 
apparent: (1) how much do we know about credibly mod-
eling people’s behavior? and (2) do we know enough 
about human social interaction to credibly model it? 
These two questions have spawned and to some extent re-
invigorated basic research programs in the social sciences 
that have the promise of informing ABMS on theory and 
methods for agent representation and behavior. 

Sakoda (1971) formulated one of the first social 
agent-based models, the Checkerboard Model, which had 
some of the key features of a cellular automaton. Schel-
ling applied cellular automata to study housing segrega-
tion patterns and posed the question, “is it possible to get 
highly segregated settlement patterns even if most indi-
viduals are, in fact, color-blind?” (Schelling 1978). The 
Schelling model demonstrated that ghettos can develop 
spontaneously in the sense that system-level patterns can 
emerge that are not necessarily implied or even consistent 
with the objectives of the individual agents.  

Extending the notion of modeling people to growing 
entire artificial societies through agent simulation was 
taken up by Epstein and Axtell in their groundbreaking 
Sugarscape model (Epstein and Axtell 1996). In numer-
ous computational experiments, Sugarscape agents 
emerged with a variety of characteristics and behaviors, 
highly suggestive of a realistic, although rudimentary and 
abstract, society. Emergent processes were observed that 
Epstein and Axtell interpreted as death, disease, trade, 
wealth, sex and reproduction, culture, conflict and war, 
and externalities such as pollution.  

Economics is adopting agent-based modeling to an 
extent. Some of the classical assumptions of standard mi-
cro-economic theory are: (1) economic agents are ra-
tional, which implies that agents have well-defined objec-
tives and are able to optimize their behavior (the basis for 
the “rational agent” model used in economics and many 
other social science disciplines), (2) agents are homoge-
neous, having identical characteristics and rules of behav-
ior, (3) there are decreasing returns to scale from eco-
nomic processes, decreasing marginal utility, decreasing 
marginal productivity, etc., and (4) the long-run equilib-
rium state of the system is the primary information of in-
terest. Each of these assumptions can be relaxed in ABMS 
applications to economic systems. First, do organizations 
and individuals really optimize? Herbert Simon, a Nobel 
Laureate who pioneered the field of AI, developed the no-
tion of “satisficing” to describe what he observed people 
and organizations actually do in the real world (Simon 
2001). Behavioral economics is a relatively new field that 
incorporates experimental findings on psychology and 
cognitive aspects of agent decision making to determine 
people’s actual economic and decision making behavior. 
Second, that diversity among individuals universally oc-
curs in the real-world is a key observation of complexity 
science. Many natural organizations from ecologies to in-
dustries are characterized by populations whose diversity 
gives rise to its stability and robustness. Third, “positive 
feedback loops” and “increasing returns” have been iden-
tified as underlying dynamic processes of rapid exponen-
tial growth in economic systems (Arthur, Durlauf and 
Lane, 1997). Positive feedback can create self-sustaining 
processes that quickly take a system away from its start-
ing point to a faraway state. Fourth, long-run equilibrium 
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states are not the only results of interest. The transient 
states that are encountered along the way to a long-run 
state are often of interest. Furthermore, not all systems 
come to an equilibrium (Axtell 2000). The field of Agent-
based Computational Economics (ACE) has grown up 
around the application of ABMS to economic systems 
(Tesfatsion 2002, 2005). 

Archaeologists and anthropologists are developing 
large-scale agent-based simulations of ancient civiliza-
tions to help explain their growth and decline, based on 
archaeological data. ABMS has been applied to explain 
the prosperity of ancient cities in Mesopotamia and un-
derstand the social and environmental factors responsible 
for the disappearance of the Anasazi in the southwestern 
U.S. (Koehler, Gumerman and Reynolds, 2005). 

Sociologists are doing agent-based modeling as well. 
Macy and Willer (2002) consider agent-based modeling 
as an approach to modeling the social life of interacting, 
adaptive social agents. Cognitive science has had its own 
notion of agency, and social cognitive science is extend-
ing these ideas to social settings (Bedau 2003). Synthetic 
social agents that include models of the influence of emo-
tion and cognition on social behavior are being developed 
by cognitive scientists and others (Gratch and Marsella 
2001). Computational social science is becoming a sub-
field in the social sciences (Sallach and Macal 2001).  

2.3.3 Topologies as a Basis for Social Interaction 

As much as modeling agent behaviors, agent modeling 
also concerns itself with modeling agent interactions. The 
primary issues of modeling agent interaction are (1) who 
is connected to who and, (2) the mechanisms governing 
the nature of the interactions. Cellular automata represent 
agent interaction patterns and available local information 
by using a grid or lattice, and the cells immediately sur-
rounding an agent are its neighborhood. Other agent in-
teraction topologies, such as networks, allow an agent’s 
neighborhood to be defined more generally and may more 
accurately describe social agents’ interaction patterns.  

Social Network Analysis (SNA) is a field with a long 
history that studies the characterization and analysis of 
social structure and interaction through network represen-
tations. Traditionally, SNA has focused on static net-
works, i.e., networks that do not change their structure 
over time or as a result of agent behavior. Recently, much 
progress has been made in understanding the processes of 
growth and change of real-world networks (Barabási 
2002). Dynamic network analysis (DNA) is a new field 
that incorporates the mechanisms of network growth and 
change based on agent interaction processes (NRC 2003). 
Understanding the agent rules that govern how networks 
are structured and grow, how quickly information is 
communicated through networks, and the kinds of rela-

tionships that networks embody are important aspects of 
“network ABMS.”  

2.3.4 Modeling Agent Processes 

Identifying the social interaction mechanisms for how co-
operative behavior emerges among individuals and groups 
is an interesting question with practical implications. Evo-
lutionary Game Theory is related to traditional game the-
ory and takes into account the repeated interactions of the 
players and their effect on strategies. Axelrod has shown 
that a simple Tit-For-Tat strategy of reciprocal behavior 
toward individuals is enough to establish sustainable co-
operative behavior (Axelrod 1997). The broader need is 
for a generative type of social science in which the proc-
esses from which social structure emerges can be under-
stood as the necessary result of social interactions (Ep-
stein 2007).  

3 HOW TO DO ABMS 

3.1 Agent-based Modeling Areas 

Table 1 lists practical agent-based modeling and simula-
tion applications in many areas. ABS applications range 
from modeling agent behavior in the stock market (LeBa-
ron 2002) and supply chains (Fang et al. 2002, Macal 
2004a), to predicting the spread of epidemics (Huang et 
al. 2004) and the threat of bio-warfare (Carley 2006), 
from modeling the growth and decline of ancient civiliza-
tions (Kohler, Gumerman and Reynolds, 2005) to model-
ing the complexities of the human immune system (Folcik 
and Orosz 2006) and the deregulation of electric power 
markets (Cirillo 2006), just to name a few. 

 ABMS applications range across a continuum, from 
small, elegant, minimalist models to large-scale decision 
support systems. Minimalist models are based on a set of 
idealized assumptions, designed to capture only the most 
salient features of a system. These are exploratory elec-
tronic laboratories in which a wide range of assumptions 
can be varied over a large number of simulations. Deci-
sion support models tend to be large-scale applications, 
designed to answer a broad range of real-world policy 
questions. These models are distinguished by including 
real data and having passed some degree of validation 
testing to establish credibility in their results.  

3.2 A Detailed Agent-based Simulation Example 

We next describe a hypothetical simulation example pro-
vided by Law (2007a). We will implement the example as 
a simple agent-based model using a fixed-time step ap-
proach, noting it has also been programmed as a discrete 
event simulation (DES) as well (Law, 2007b). The exam-
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ple illustrates some of the similarities and differences be-
tween agent-based simulation and DES.  

 
Table 1: Agent-based modeling application areas 

 
Consider an environment consisting of a 12 x 12 grid 

of cells. Each cell is 100 feet on each side. Initially, each 
cell is colored green with a probability of 0.8 and red with 
a probability of 0.2. A cell’s state is independent of all 
other cells. In our ABMS terminology, the grid is the en-
vironment. The amount of time that a cell is green before 
turning red is uniform on the set {70, 71, …, 90} minutes, 
with mean 80 minutes. The amount of time that a cell is 
red before turning green is uniform on the set {10, 11,…, 
30} minutes, with mean 20 minutes.  

Suppose that 100 agents live on the grid. When the 
agents move, they move at a speed of 60 feet per minute. 
Initially, each agent is randomly placed on the grid and 
has a heading that is uniformly distributed on the discrete 
set of {0, 90, 180, 270} degrees, with zero degrees being 
north and degrees increasing in the clockwise direction. 
More than one agent can coexist on a particular cell. An 
agent can observe the colors of its current cell and its im-
mediately adjacent neighbor cells.  

Agents use the following movement rules: 
 
1. An agent will begin moving at its specified head-

ing if, and only if, it starts on a green cell. 
2. If an agent starts on a red cell, it will wait until 

the cell turns green to begin moving. 
3. If an agent is moving through a cell and reaches 

the edge, then it will only enter the next cell if it 

is green. If the next cell is red, the agent stops 
and waits until the next cell is green.  

4. If an agent is traveling through a cell when it 
turns red, then it will stop immediately. It will 
not start moving again until the cell turns green. 

5. When an agent reaches one of the edges of the 
grid, it exits the system, and its total time spent 
in the simulation is recorded.  
 

The simulation is run until all agents have exited and the 
statistics for the time spent in the system for all agents is 
then computed.  

An agent’s attributes consist of its (x, y) coordinates (in 
continuous space) and its heading. An agent also “knows” 
the cell in which it is located. A formal agent attribute 
specification is as follows: 
 
• aid: Unique agent identifier (integer) 
• aloc, {x, y}: Agent location in two dimensional con-

tinuous space.  
• vel, {vx, vy}: Current velocity (= {0,0} if agent has 

exited or is located on a red cel 
• vel0, {vx0, vy0}: Persistent velocity. An agent al-

ways assumes this velocity when moving. Note per-
sistent velocity implies an orientation.  

• alive: Status indicator (-1 indicates the agent is alive. 
A value greater than 0 indicates the time t at which 
the agent exited the system). 

 
The other important data structure is the grid cell. A 

formal cell attribute specification is as follows: 
 
• cid: Unique cell identifier.  
• cloc, {u, v}: Cell location where u and v are integers. 
• switchTime: The next time at which the cell status 

will be updated.  
• agentL: A list of agents that are located in the cell. 

 
The simulation setup is as follows. Initially, 80%of the 
grid is seeded with green cells and 20% with red cells. 
The amount of time that a cell is green before turning red 
is uniformly distributed, U[70, 90]. The amount of time 
that a cell is red before turning green is uniformly distrib-
uted, U[10, 30]. A fixed set of agents is initially distrib-
uted with random orientations (four discrete choices) to 
random locations on the grid.  

In summary, the agent aspects of the simulation are as 
follows: 

 
• Agents are described as discrete and modular entities 

in the (object-oriented) model implementation (as 
shown above) 

• Agents are autonomous in that they determine wheth-
er or not they can move. Individual agents have asso-
ciated methods that they execute to perform various 

Business and Organizations 

• Manufacturing Operations 
• Supply chains 
• Consumer markets 
• Insurance industry 

 
Economics 

• Artificial financial markets 
• Trade networks 
 

Infrastructure 

• Transportation/traffic 
• Electric power markets 
• Hydrogen infrastructure 
 

Crowds 

• Pedestrian movement 
• Evacuation modeling 

Society and Culture 

• Ancient civilizations 
• Civil disobedience 
• Social determinants of 

terrorism 
• Organizational networks  
 

Military 

• Command and control 
• Force-on-force 
 

Biology 

• Population dynamics 
• Ecological networks 
• Animal group behavior 
• Cell behavior and sub 

cellular processes 
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functions. For example, getAgentNeighbors is a func-
tion that an agent uses to find the agents in its current 
cell, and getCellStatus is a function that an agent uses 
to find out the status of its current cell (red or green).  

• An agent’s external environment is the grid, from 
which it extracts information on its cell state.  
 

Some aspects of this example problem do not emphasize 
the capabilities of ABS because they include the defining 
characteristics of agents in trivial ways. For example, an 
agent’s goal is simply to keep moving until it has reached 
the edge of the grid. An agent is social in the sense that it 
is aware of and recognizes individual agents that are its 
neighbors in the cell in which it is located, but agent in-
teraction rules are not implemented. Finally, agents are 
not adaptive. This agent framework does allow the agents 
to have much more complex behaviors. Modeling each of 
these aspects of agents could easily be added to the exam-
ple within the framework described above by adding addi-
tional functions that act on the agents.  

Figure 6 shows the agent-based simulation logic. The 
simulation is implemented as a set of two nested loops, 
one for time, the other for agents. All of the agent behav-
iors are executed each time period. Agents update their 
position each time step according to {x, y}new = {x, y} + 
{velx, vely}. In this example, the order in which the agents 
update their state does not matter, so the agents are up-
dated in a fixed sequence. If the order of updating the 
agents did matter, it would be customary practice to either 
randomize the order of the agent updating or else imple-
ment a sequencing procedure that has some rational basis 
as to why one agent updates itself before the others. This 
scheduling process could be event-based or even adaptive 
depending on conditions during the simulation.  

The time increment, ∆t, is arbitrary and constant 
throughout the simulation. A value of ∆t as small as pos-
sible is desirable (constrained by computational re-
sources) to capture the accurate movement of agents as 
they cross cell and grid boundaries. This example, as im-
plemented, is more like a combined continuous-discrete 
event simulation than a DES. In effect, with the selection 
of a small value for ∆t, time progresses continuously 
tracking agent movement over the grid, with discrete 
events being inserting as cells are updated at specific 
times.  

Snapshots from the simulation are shown in Figures 7 
and 8, and recorded exit times are shown in Figure 9.  

 
Figure 6: Logic for agent-based simulation example 

 
 

Generation: 1
Agents remaining: 100
Moving: 87 Stopped: 13

 
Figure 7: Example agent-based simulation, initial agent 
states (lightly shaded cells are green, dark cells are red) 
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Generation: 108
Agents remaining: 9
Moving: 8 Stopped: 1

 
Figure 8: Example agent-based simulation, at time 108 
(lightly shaded cells are green, dark cells are red) 
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Figure 9: Exit times in agent-based simulation example 

3.3 ABMS Software and Toolkits 

Agent-based modeling can be done using general, all-
purpose software or programming languages, or it can be 
done using specially designed software and toolkits that 
address the special requirements of modeling agents. 
Agent modeling can be done in the small, on the desktop, 
or in the large, using large-scale computing clusters, or it 
can be done at any scale in-between these extremes. Pro-
jects often begin small, using one of the desktop ABMS 
tools, and then grow in stages into the larger-scale ABMS 
toolkits. Often one begins developing their first agent 
model using the approach that one is most familiar with, 
or the approach that one finds easiest to learn given their 
background and experience.  

We distinguish several approaches to building ABMS 
applications in terms of the scale of the software that one 
can apply according to the following continuum: 
 
Desktop Computing for ABMS Application Develop-
ment: 
• Spreadsheets: Excel using the macro programming 

language VBA 
• Dedicated Agent-based Prototyping Environments: 

Repast Simphony, NetLogo, StarLogo 
• General Computational Mathematics Systems: 

MATLAB, Mathematica 
 
Large-Scale (Scalable) Agent Development Environ-

ments: 
• Repast 
• Swarm 
• MASON 
• AnyLogic 
 
General Programming Languages:  
• Python 
• Java 
• C++ 
 

Desktop ABMS can be used to learn agent modeling, 
prototype basic agent behaviors, and perform limited ana-
lyses. Desktop agent-based models can be simple, de-
signed and developed in a period of a few days by a single 
computer-literate modeler using tools learned in a few 
days or weeks. Desktop agent modeling can be used to 
explore the potential of ABMS with relatively minor time 
and training investments, especially if one is already fa-
miliar with the tool.  

Spreadsheets, such as Microsoft Excel, are in many 
ways the simplest approach to modeling. It is easier to 
develop models with spreadsheets than with many of the 
other tools, but the resulting models generally allow lim-
ited agent diversity, restrict agent behaviors, and have 
poor scalability compared to the other approaches. Some 
useful agent models have been developed using spread-
sheet models (Bower and Bunn 2000). In previous WSC 
papers, we described an spreadsheet implementation of a 
spatial agent-based shopper model (Macal and North 
2007).  

Special-purpose agent tools, such as NetLogo, and 
StarLogo, provide special facilities focused on agent 
modeling. The most directly visible common trait shared 
by the various prototyping environments is that they are 
designed to get first-time users started as quickly as pos-
sible. NetLogo is a free ABMS environment (Wilensky 
1999) developed at Northwestern University’s Center for 
Connected Learning and Computer-Based Modeling 
(http://ccl.northwestern.edu/netlogo/). The NetLogo lan-
guage uses a modified version of the Logo programming 
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language (Harvey 1997). NetLogo is designed to provide 
a basic computational laboratory for teaching complex 
adaptive systems concepts. NetLogo was originally de-
veloped to support teaching, but it can be used to develop 
a wide range of applications. NetLogo provides a graphi-
cal environment to create programs that control graphic 
“turtles” that reside in a world of “patches” that is moni-
tored by an “observer.” NetLogo includes an innovative 
participatory ABMS feature called HubNet (Wilensky and 
Stroup 1999), which allows groups of people to interac-
tively engage in simulation runs alongside of computa-
tional agents.  

General-purpose desktop computational mathematics 
system (CMS) with an integrated development environ-
ment, such as MATLAB and Mathematica, can be used to 
develop agent models, although the agent-specific func-
tionality has to be written by the developer from scratch 
(Macal 2004b). The basic requirements are a full scripting 
language capability combined with array or list-
processing capabilities for efficiency. Computational ma-
thematics systems are structured in two main parts: (1) the 
user interface that allows dynamic user interaction, and 
(2) the underlying computational engine, or kernel, that 
performs the computations according to the user’s instruc-
tions. The underlying computational engine is written in 
the C programming language for these systems, but C 
coding is unseen by the user. The interpreted nature of 
these systems avoids the compilation and linking steps 
required in traditional programming languages. Computa-
tional mathematics systems have advantages derived from 
both the mathematical and interactive orientations of 
these tools. CMS environments have rich mathematical 
functions, and nearly any mathematical relation or func-
tion that can be numerically calculated is available within 
these tools or their add-on libraries. In some cases, the 
tools even support symbolic processing and manipulation, 
which is useful for systems of equations that can be 
solved analytically (Macal 2004b). If a CMS environment 
is already familiar, this can be a good place to start agent-
based modeling.  

Many large-scale ABMS software environments are 
now freely available. These include Repast (North, Col-
lier and Vos, 2006), Swarm (SDG 2006; Minar et al. 
1996), NetLogo (NetLogo 2007) and MASON (GMU 
2006) among many others. Proprietary toolkits are also 
available such as AnyLogic (2006). A recent review and 
comparison of Java-based agent modeling toolkits is pro-
vided by Tobias and Hoffman (2004). 

Swarm was the first ABMS software development 
environment launched in 1994 at the Santa Fe Institute. 
Swarm was originally written in Objective C and was lat-
er fitted with a Java interface. Following the original 
Swarm innovation, the Repast (REcursive Porous Agent 
Simulation Toolkit) toolkit was developed as a pure Java 
implementation (North, Collier and Vos, 2006). Repast 

has been used extensively in social simulation applica-
tions (North and Macal 2005). Repast is a widely used 
free and open source agent-based modeling and simula-
tion toolkit (ROAD 2007). Repast Simphony (Repast S) is 
the latest version of Repast, designed to provide visual 
point-and-click tools for agent model design, agent behav-
ior specification, model execution, and results examina-
tion. The Repast S agent model designer is being devel-
oped to allow users to visually specify the logical 
structure of their models, the spatial (e.g., geographic 
maps and networks) structure of their models, the kinds of 
agents in their models, and the behaviors of the agents 
themselves. Once their models are specified, users can use 
the point-and-click Repast S runtime environment to exe-
cute model runs as well as visualize and store results. In 
addition, the Repast S runtime environment includes au-
tomated results analysis connections to a variety of 
spreadsheet, visualization, data mining, and statistical 
analysis tools, virtually all of which are free and open 
source. 

3.4 Why and When ABMS 

We conclude by offering some ideas on the situations for 
which agent-based modeling can offer distinct advantages 
to conventional simulation approaches. When is it benefi-
cial to think in terms of agents? When one or more of the 
following criteria are satisfied:  

 
• When there is a natural representation as agents 
• When there are decisions and behaviors that can 

be defined discretely (with boundaries) 
• When it is important that agents adapt and 

change their behaviors 
• When it is important that agents learn and en-

gage in dynamic strategic behaviors 
• When it is important that agents have a dynamic 

relationship with other agents, and agent rela-
tionships form and dissolve 

• When it is important to model the processes by 
which agents form emergent organizations, and 
adaptation and learning are important at the or-
ganization level 

• When it is important that agents have a spatial 
component to their behaviors and interactions 

• When the past is no predictor of the future 
• When scaling-up to arbitrary levels is important 

in terms of the number of agents, agent interac-
tions and agent states 

• When process structural change needs to be a re-
sult of the model, rather than a model input  
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