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ABSTRACT

Estimating the variance of the sample mean from a stochastic
process is essential in assessing the quality of using the
sample mean to estimate the population mean which is
the fundamental question in simulation experiments. Most
existing studies for estimating the variance of the sample
mean from simulation output assume simulation run length
is known in advance. This paper proposes an implementable
batch-size selection procedure for estimating the variance
of the sample mean without requiring that the sample size
or simulation run length a priori.
Key Words: Simulation, Variance of the Sample Mean,
Mean-Squared-Error

1 Introduction

How good is using the sample mean to estimate the popula-
tion mean from a stochastic process? This is a fundamental
question not only in simulation but also in statistical exper-
iments. Estimating the variance of the sample mean from
a stochastic process is essential in assessing the quality of
using the sample mean to estimate the population mean. In
addition, estimating the variance of the sample mean is also
crucial in calculating the confidence and prediction intervals
of the population mean and the probability of selecting from
alternatives correctly.

Consider a sequence, {Y1,Y2, · · · ,Yn}, representing the
output of a simulation from a covariance-stationary stochas-
tic process {Yi}n

i=1, with an unknown mean μ = E(Y ) and
unknown positive variance R0 = var(Y ). For example, Yi

could be the delay time for the i-th packet at some node in a
communication network. Let μ be the performance measure
we are interested in, Y n = Σn

i=1Yi/n be the point estimator

of μ , and var(Y n) be the quality measure of using Y n to

estimate μ . The goal of this paper is to estimate var(Y n)
with limited memory space, reasonable computation time,

and good statistical properties such as mse, but does not
require knowledge of the simulation run length a priori.

Most existing papers in simulation output assume that
either the simulation run length or the sample size n is
known in advance. Moreover, many of them view data
as being stored in infinite computer memory space. For
example, direct (Moran 1975), regenerative (Crane and
Iglehart 1975; Glynn and Iglehart 1986), spectral (Priestley
1981; Heidelberger and Welch 1981), non-overlappingbatch
means (NBM) (Conway 1963, Fishman 1978, Law and Car-
son 1979, and Schmeiser 1982), overlapping batch means
(OBM) (Meketon and Schmeiser 1984), partial-overlapping
batch means (PBM) (Welch 1987), standardized time series
(Schruben 1983; Glynn and Iglehart 1990), and its varia-
tion. The memory space for these estimators is proportional
to the sample size n; these estimators require O(n) space
when the sample size is not known in advance. Fishman
and Yarberry (1997) proposed Labtach.2 non-overlapping
batch means requiring O(log2n) space. Although O(log2n)
algorithms require much small memory space than O(n)-
memory algorithms, Fishman and Yarberry (1997) required
the knowledge of n a priori. Song (1996) and Pedrosa’s
(1994) proposed mse-optimal batch size algorithms for es-
timating the optimal batch size for batch means estimators
including NBM and OBM. Both mse-optimal batch size
algorithms also required the knowledge of the sample size
a priori.

We explain in additional detail the two following sce-
narios with examples to motivate the need for algorithms
without assuming the knowledge of the sample size a priori
within the context of simulation output analysis. (1) Sample
size is unknown a priori. Consider creating a simulation
model of pandemic influenza to evaluate the effectiveness
of different decision policies on disease spread and other
performance measures (Ferguson et al. 2006 and Jenvald
et al. 2007). The simulation run length (in terms of the
number of patients) is random, and so n is not known in
advance. (2) Sample size is extremely large. One example
is that of using simulation to test data stream algorithms
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to estimate entropy (a measure of the rate of transfer of
information in a network) from input data that come at a
very high rate — a rate so high that it places stress on
a limited computing infrastructure. Recent work on data
streaming algorithms can be found in Lall et al. (2006) and
Zhao et al. (2007).

To the best of our knowledge, the dynamic non-
overlapping batch means (DNBM) estimator proposed
by Yeh and Schmeiser (2000) and the dynamic partial-
overlapping batch means (DPBM) estimator proposed by
Song (2007) are the only existing algorithms for estimat-
ing the variance of the sample mean without requiring the
knowledge of the simulation run length a priori. The com-
mon drawback of DNBM and DPBM is that they lack the
control of choosing the value of the batch size which is the
performance-parameter of the DNBM and DPBM.

In this paper, we first take the DPBM as a base-line,
then we estimate the optimal batch size to adjust the DPBM
to either increase the number of batches or the batch size
as the simulation run-length increases, without storing ob-
servations individually.

2 Background

This section reviews traditional batching methods, DPBM
estimators (Song 2007), and asymptotic results that are
useful for estimating the optimal batch size for the batching
estimators for the variance of the sample mean. The section
does not have a review on DNBM (Yeh and Schmeiser
2000) in particular, because DNBM is a special case of
DPBM.

2.1 Batch Means Estimators

The batching method is a classic methodology in estimating
the variance of the sample mean from a stochastic process.
Conway (1963) was the first to introduce the idea of the
batching method in digital simulation. The method is based
on dividing the observations Y1,Y2, · · · ,Yn into b batches,
with each batch size being m. In other words, the method
groups observations into batches and uses these batches as
the basic data for analysis. Batch means estimators with
batch size m and shift s are defined as

V̂ (m,s) =
∑b

i=1(Y s(i−1)+1−Y n)2

db
, (1)

where 1 ≤ m ≤ n, 1 ≤ s ≤ n−m, db = b(n/m− 1), b =
�(n−m+ s)/s� is the number of batches (where �x� is the
greatest integer smaller than or equal to x),

Y s(i−1)+1,m =
m

∑
j=1

Ys(i−1)+ j/m (2)

is the i-th batch mean, and Ys(i−1)+ j,m is the j-th observation
in the i-th batch. For simplicity, we sometimes use Y s(i−1)+1

instead of Y s(i−1)+1,m by suppressing the subscript m.
The NBM estimator with batch size m is the special

case obtained when s = m, and is denoted by V̂ N(m) (see
Figure 1(a)). The OBM estimator with batch size m is the
special case obtained when s = 1, and is denoted by V̂ O(m)
(see Figure 1(b)). The PBM estimator with batch size m is
the special case obtained when 1 < s < m, and is denoted
by V̂ P(m) (see Figure 1(c)). If s = �αm� for 0 < α < 1,
we have a 100(1−α)% OBM estimator, e.g., 50%OBM
and 75%OBM estimators for s = �m/2� and s = �m/4�,
respectively. The spaced batch means estimator with batch
size m is the special case obtained when s > m (see Figure
1(d)).

The asymptotic properties of batch means estimators
are discussed in several studies. The asymptotic relative
bias results, discussed in Meketon and Schmeiser (1984)
and Song and Schmeiser (1995), show that all of these batch
means estimators have essentially the same bias. Asymp-
totic relative variance results (Welch 1987; Meketon and
Schmeiser 1984) show that V̂ N(m) has 50% more variance
than V̂ O(m), while V̂ P(m) with s = m/2 (i.e., 50%OBM) has
12% more variance than V̂ O(m), and V̂ P(m) with s = m/4
(i.e., 75%OBM) has just 3% more variance than V̂ O(m).

2.2 Dynamic Partial-Overlapping Batch Means

This section reviews the dynamic partial-overlapping batch
means (DPBM) proposed by Song (2007). Song (2007)
proved that the DPBM is a finite-memory algorithm for im-
plementing 75%OBM(m) in O(n) time with O(1)-memory
space. The key to developing DPBM in a fixed storage
space is by dimensionality reduction using “vector collaps-
ing”, which was originated from Fishman (1978)’s idea of
doubling batch size for NBM and also adopted in Yeh and
Schmeiser (2000) to form the DNBM estimator. The idea
of using collapsing to form the DPBM estimator will be
illustrated in Figure 2.

Before explaining Figure 2, we need to define notation
used in developing DPBM. Let n be the total number of
observations, which is not known in advance. Let l be
the pre-specified memory size, which is also the size of
the vector where all observations are stored. Let k be
the total number of times that collapsing has occurred,
k = 0,1,2, . . . ,�log2n/g�− 1, where g = l/8. Let L be the
vector of size l where DPBM stores batch sums and L is
divided into four vectors: A,B,C, and D by concatenation,
i.e., L = (A,B,C,D). Let Ak(i), Bk(i), Ck(i), and Dk(i) be
the numerical values (batch sums) stored in the i-th cell of
vectors A, B, C, and D in the k-th iteration of collapsing,
respectively, where i = 1,2, . . . ,2g. We sometimes suppress
subscripts for convenience; for example, Ak(1) is replaced
by A(1). Let rA, rB, rC, and rD be the cell-locations
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Y1 Y2 Y3 · · · Ym Ym+1 · · · Y2m · · · Yn Y1 Y2 Y3 · · · Ym Ym+1 · · · Y2m · · · Yn

Y1 · · ·Ys+1 · · ·Ym · · ·Ys+m · · · Yn Y1 Y2 Y3 · · · Ym · · · Ys+1 · · · Ys+m · · ·Yn

s s

s
s

(a) s = m (NBM) (b) s = 1 (OBM)

(c) 1 < s < m (PBM) (d) s > m (spaced BM)

Figure 1: Batch Means Estimators: m is the batch size and s is the shift. (All dash-lines indicate distance)

used to store the latest observations in A, B, C, and D,
respectively; where rA,rB,rC,rD = 1, . . . ,2g. Let mA, mB,
mC, and mD be the associated numbers of observations
stored in A(rA), B(rB), C(rC), and D(rD), respectively, where
mA,mB,mC,mD = 1, . . . ,mk, and mk = 2k is the maximum
batch size for each cell at the k-th collapsing step. If a
cell (batch) at step k is a sum of mk = 2k observations, we
call the batch a “full batch”; otherwise, we call the batch
a “partial batch”.

Let b1,b2,b3, and b4 be the “numbers of full batches”
in vectors A, B, C, and D, respectively, where b1 = rA−
1 + �mA

mk
�, b2 = rB − 1 + �mB

mk
�, b3 = rC − 1 + �mC

mk
�, and

b4 = rD−1+ �mD
mk
�.

Figure 2 shows how data in a DPBM algorithm are
collapsed and stored in finite space. In Figure 2, y1 is stored
in A0(1), y2 is stored in A0(2), · · · , and y2g is stored in
A0(2g). When a new observation y2g+1 appears, the DPBM
algorithm starts its first collapsing to store data in B , then
update data in vector A. Specifically, We store the sum of
y2 and y3 into B1(1), i.e., B1(1) = A0(2)+A0(3). Similarly,
B1(2) = A0(4) + A0(5), · · · ,B1(g) = A0(2g) + A0(2g + 1).
Then, we update vector A in that A1(1) = A0(1)+ A0(2),
A1(2) = A0(3) + A0(4), · · · ,A1(g) = A0(2g− 1) + A0(2g),
A1(g + 1) = A0(2g + 1). When another new observa-
tion y2g+1 appears, we update vectors B and A in that
B1(g+1) = A0(2g+2) A1(g+1) = A0(2g+1)+A0(2g+2)
and B1(g+1) = A0(2g+2). When the data stored in vector
A is full again, i.e., A1(2g) = y(4g−1)+y(4g), the DPBM
algorithm collapses again. The order for updating vectors is
D, C, B, A. The numbers 1, 2, 3, and 4 listed on the arrows
in Figure 2 indicate the updating order in each iteration.

In general, the DPBM algorithm starts to collapse data
when the data in vector A is full. Specifically, a new
observation is added in the current cell if the number of

observations contained in the current cell, mA, is less than
the full batch size mk = 2k, indicating that vector A is not
full. As long as the rA-th cell contains the same number
of observations as the full batch size and the vector is full,
we collapse these 2g cells into g cells. After collapsing
the vector, the full batch size is updated by doubling the
previous value. The logic used to collapse data into vectors
B, C, and D is the same as that for vector A, but the data
used for collapsing into B, C, and D differ. The order
of collapsing in DPBM is D and C first, and then B, and
finally A. In summary, we develop DPBM by collapsing
four vectors A,B,C, and D. We use four vectors for the
DPBM because the 75%OBM has 4 times more batches
than the NBM estimator.

The DPBM estimator for estimating the variance of the
sample mean proposed in Song(2007) at step k is

V̂DPBM(mk) =
1
db

[
b1

∑
i=1

(
Ak(i)
mk
−Y n)2 +

b2

∑
i=1

(
Bk(i)
mk
−Y n)2

+
b3

∑
i=1

(
Ck(i)

mk
−Y n)2 +

b4

∑
i=1

(
Dk(i)

mk
−Y n)2 ] ,

(3)

where mk = 2k is the batch size, s = �mk/4� is the shift,
b = �(n−mk + s)/s� is the total number of batches, db =
b((n/mk)− 1) is the denominator, bi, i = 1,2,3,4 are the
numbers of full batches, and the batch means are
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Ak(i)
mk

= Y mk(i−1)+1,mk
, (4)

Bk(i)
mk

= Y mk(i−1)+2s+1,mk
, (5)

Ck(i)
mk

= Y mk(i−1)+s+1,mk
, (6)

Dk(i)
mk

= Y mk(i−1)+3s+1,mk
. (7)

The DNBM is a special case of DPBM and is defined
as

V̂DNBM(mk) =
1
db

[
b1

∑
i=1

(
Ak(i)
mk
−Yn)2

]
. (8)

It is noted that the memory space required for the DNBM
is one quarter of that for the DPBM because the DNBM
stores data only in vector A.

2.3 Asymptotic Results

This section reviews existing asymptotic results that are
useful for studying the optimal batch size. The proof of
these existing asymptotic results is given in Song (1988)
and Song and Schmeiser (1995).

Result 1.

nvar(Y n) = γ0R0− γ1R0

n
+ o(n−1), (9)

where n is the simulation run length,

R0 = var(Y ) (10)

is the variance of the data Y ,

γ0 = 1+ 2
∞

∑
h=1

ρh (11)

is the sum of all correlations,

γ1 = 2
∞

∑
h=1

hρh (12)

is the sum of all weighted correlations, and ρh =
corr(Yi,Yi+h) is the lag h correlation of Yi and Yi+h, which
satisfies ρh = σ2O(δ h) for h = 1,2, . . . ,δ ∈ (0,1) to reflect a
general correlation structure for a wide range of stochastic
processes, including waiting times in steady state M/M/1
queueing systems which discussed in Aktaran-Kalayc et al.
(2007).

The notation o(g(n)) represents the little o function in
that o(g(n))/g(n)→ 0 as n→ ∞, and the notation O(g(n))
represents the big o function in that |O(g(n))/g(n)| → c as
n→ ∞ where c is a real value.

Result 2. For NBM, 50%OBM, 75%OBM, and OBM, if γ1

converges absolutely to a finite limit, then

lim
n→∞
m→∞

nmbias(V̂) =−γ1R0. (13)

Result 3. For NBM, 50%OBM, 75%OBM, and OBM, if γ0

converges absolutely to a finite limit, then

lim
n→∞
m→∞

n3

m
var(V̂ ) =−cv(γ0R0)2, (14)

where cv is called a variance constant. The constants cv for
NBM, 50%OBM, 75%OBM, and OBM are 1.5, 1.12, 1.03,
and 1.

Result 4. For NBM, 50%OBM, 75%OBM, and OBM, if n
and m are large, and γ1 and γ0 converge absolutely to a
finite limit, then the optimal batch size

m∗ ≈ [
2n(1/cv)2(γ1/γ0)2]1/3

. (15)

In Equation (4), the growth rate of m∗ with n1/3 is propor-
tional to the cube root of the square of the ratio γ 1/γ0. This
ratio can be written as

γ1

γ0
=

∞

∑
h=1

(
ρ∗h

∑∞
k=0 ρ∗k

)
, where (16)

ρ∗h =
{

0.5, h = 0
ρh, h = 1,2, . . .

Song and Schmesier(1995) interpreted Equation (16) as the
“balance point” of the absolute lags |h|, with forces repre-
sented by the correlations ρh. Pedrosa (1994) interpreted
Equation (16) as the “center of gravity” of a stochastic
process, which is similar to the term “center of gravity” in
physics. In this paper, we refer to the fraction γ1/γ0 as the
center of gravity.

3 The Mse-Optimal DPBM Algorithm

The DNBM and DPBM are parameterized by the batch size,
which takes the value m = 2�log2n/g�−1 (Yeh and Schmeiser
2000, Song 2007), where g is the pre-specified memory
size and n is the total number of observations stored in the
memory space. That is, the batch size used in DNBM and
DPBM are completely determined by g and n. Therefore,
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the value of the batch size used in DNBM and DPBM does
not reflect the correlation structure of data.

To overcome the drawback common to both DNBM
and DPBM, i.e., their inability to reflect the correlation
structure of the data, we propose the mse-optimal DPBM,
which first takes the value of DPBM(mk) as the base line
and then adjusts its value to reflect the correlation structure
of the data when the batch size mk is “far smaller” or “far
larger” than m∗, where m∗ is the minimal-mse batch size
of DPBM satisfying

mse[V̂DPBM(m∗)]≤mse[V̂DPBM(m)] (17)

for any real value m.
The mse-optimal DPBM algorithm adjusts and improves

the DPBM(m) via estimating the optimal batch and thereafter
determining to either increase batch size or increase the
numbers of batches. The estimation of the optimal batch
requires two major steps: (1) to form another estimator
which is called the B-DPBM, which will be introduced in
Subsection 3.1, and (2) to estimate the center of gravity
γ1/γ0.

3.1 The B-DPBM Estimator

In this section, we explain how we obtain the B-
DPBM(mk/2) given DPBM(mk). We will show in The-
orem 5 that the B-DPBM(mk/2) is algebraically equivalent
to V̂ (mk/2,s = mk/2), the 50%OBM with batch size mk/2.
We need 8g storage to store batch means to implement the
DPBM, but we need no more than 4 cells to obtain the
B-DPBM.

As reviewed in Section 2.2, the data used to construct
DPBM are batch means stored into four vectors A, B, C,
and D. Specifically, assuming that the current step of the
DPBM estimators is k, each cell of A, B, C and D contains
one batch mean with the batch size mk = 2k,k = 0,1,2, . . ..
Our problem is how we can revisit batch means with the
batch size mk/2 given that the batch means at the previous
step k−1 with the batch size mk/2 are already overwritten
at sept k.

In addition to the notation defined earlier, below we
define more notation used to form B-DPBM.

• A
′
,B
′
: the virtual vectors used to store data used

for the B-DPBM.
• A

′
k−1(i), i = 1,2, . . . ,� n

mk−1
�: the batch sum stored

in the i-th cell of the virtual vector A
′
.

• B
′
k−1(i), i = 1,2, · · · ,� n−(mk−1/2)

mk−1
�: the batch sum

stored in the i-th cell of the virtual vector B
′
.

The relationship between A
′
k−1(i),B

′
k−1(i) and

Ak(i),Bk(i),Ck(i),Dk(i) is given in Equations (18)

to (21).

A
′
k−1(2i−1) =

rA

∑
j=i

Ak( j)−
rB

∑
j=i

Bk( j), (18)

i = 1, · · · ,� n
mk
�,

A
′
k−1(2i) = Ak(i)−A

′
k−1(2i−1), (19)

i = 1, · · · ,� n
mk

+ 0.5�,

B
′
k−1(2i−1) =

rC

∑
j=i

Ck( j)−
rD

∑
j=i

Dk( j), (20)

i = 1, · · · ,�n− (mk/4)
mk

�,

B
′
k−1(2i) = Ck(i)−B

′
k−1(2i−1), (21)

i = 1, · · · ,�n− (mk/4)
mk

+ 0.5�,

• bA′ ,bB′ : the full number of batches in the virtual

vectors A
′

and B
′

in one-step backward DPBM.
Specifically, bA′ = � n

mk−1
� and bB′ = � n−s

mk−1
� =

� n−(mk−1/2)
mk−1

�.

We name A
′

and B
′

as virtual vectors because they are
not actually stored in memory. All cells in A

′
and B

′
are

just mathematical expressions, and as such can be obtained
as functions of the current cells in vectors A,B,C, and D.

The total number of cells in A
′

and A differ. The A
′

contains �n/mk−1� cells, while A contains 2g cells, and
�n/mk−1� ≥ 2g. For example, let 2g = 4,n = 12,k = 2. A

′

has 12/2 = 6 cells, while A has only four cells. The values
of A

′
k−1(i) and Ak−1(i) are identical for i = 1,2, . . . ,2g. A

similar argument can be made for B
′
k−1(i) and Bk−1(i). The

B
′

contains �(n− (mk−1/2))/mk−1� cells, while B contains
2g cells, and �(n− (mk−1/2))/mk−1� ≥ 2g. The values of
B
′
k−1(i) and Bk−1(i) are identical for i = 1,2, . . . ,2g−1.

The B-DPBM estimator as a function of A
′

and B
′

is
defined as:

V̂B−DPBM(mk/2)=
1
db

[
b

A
′

∑
i=1

(
A
′
k−1(i)
mk−1

−Y n)2 +
b

B
′

∑
i=1

(
B
′
k−1(i)
mk−1

−Y n)2],

(22)
where mk−1 = mk/2, db = b[( n

mk−1
)−1]; b = �(n−mk−1 +

s)/s�; A
′
k−1(i) and B

′
k−1(i) are defined in equations (18) to

(21).

Result 5. V̂B−DPBM(mk/2) is algebraically equivalent to
50%OBM(mk/2), where mk is the batch size at step k in
implementing DPBM.
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Theorem 5 can be proved easily by plugging Equations
(18) to (21) into the right hand side of Equation (22). We
must note that V̂B−DPBM(mk/2) differs from V̂DPBM(mk/2)
because V̂B−DPBM(mk/2) is 50%OBM and V̂DPBM(mk/2)
is 75%OBM.

Obtaining the B-DPBM takes computation time
O(l2) because it takes O(l) to compute each A

′
k−1(2i−

1),A
′
k−1(2i),B

′
k−1(2i−1), and B

′
k−1(2i), listed in Equations

(18) and (21). It is noted that we need no more than 4 cells
to obtain the B-DPBM, and these 4 cells are used to store
the value computed in Equations (18) and (21).

3.2 Estimating the Optimal Batch size

This subsection discusses how to estimate the center of
gravity for the stochastic process, and the optimal batch
size for the DPBM estimator.

Result 6. For large n and m, and assuming that γ0 converge
to a finite limit,

γ0 ≈ nE(V̂B(m/2))/R0 (23)

Result 6 follows from Result 1 and simple algebra.
Based on Result 6, a natural estimator of γ0 is

γ̂0 ≈ nV̂B(m/2)/R̂0, (24)

where R̂0 =
(∑n

i=1 Y 2
i −nY)2

n−1
, which can be computed using

2 storage space by maintaining a sum and sum of squares.

Result 7. For large n and m, and assuming that γ1 and γ0

converge to a finite limit,

E(V̂D(m))≈ R0

( γ0

n
− γ1

mn

)
, (25)

E(V̂B(m/2))≈ R0

(
γ0

n
− 2γ1

mn

)
. (26)

Result 7 is a direct consequence of Results 1 and 2.

Result 8. For large n and m, and assuming that γ1 and γ0

converge to a finite limit,

γ1 ≈ nm
[
E(V̂D(m))−E(V̂B(m/2))

]
/R0 (27)

Result 8 follows from Result 7 and simple algebra.
Based on Result 8, a natural estimator of γ1 is

γ̂1 ≈ nm
[
V̂D(m)− V̂B(m/2)

]
/R̂0. (28)

Based on Results 4, 6 and 8, a natural estimator of the
optimal batch size m∗ is

m̂∗ ≈
(

1.12n(
γ̂1

γ̂0
)2

)1/3

+ 1. (29)

3.3 Algorithm of Mse-Optimal DPBM

Having completed the discussion of the DPBM and B-
DPBM, and the estimator of the optimal batch size m̂∗,
we now ready to develop an algorithm, called mse-optimal
DPBM, for estimating the variance of the sample mean via
estimating the optimal batch size of the 75%OBM, without
knowing the sample size in advance.
Mse-optimal DPBM Algorithm:

Step 0 (Initialization). n = 1;k = 0;m = 2k = 1;L(i) =
0, i = 1, . . . ,8g;
mA = mB = mC = mD = 1; rA = rB = rC = rD = 0.

Step 1. If the rA-th cell in A has room (mA < m), then
set mA← mA + 1 and go to Step 5.

Step 2. If A has room (i.e., rA < 2g), then go to (2.1);
else go to (2.2).

(2.1) Initialize mA and increment the current
cell for A, i.e., mA = 1 and set
rA← rA + 1. Go to Step 4.

(2.2) Check whether this is the first collapse.
If k = 0 go to (2.2.1); else if k = 1 go to (2.3);
else (2.2.2).

(2.2.1) Collapse the vector to update first
B and then A. Initialize the values of
mA,mB,rA, and rB.

• B(i) = A(2i) + A(2i + 1),
i = 1, . . . ,g−1; B(g) = A(2g).

• A(i) = A(2i − 1) + A(2i),
i = 1,2, . . . ,g.

• mA = 1,mB = 2k,rA = g+ 1,rB = g.

Go to Step 3.

(2.2.2) To form the B-DPBM estimator
and estimate the optimal batch size

• Compute V̂B(m/2) (refer to Equation
(22)).

• Compute m̂∗ =
(

1.12n( γ̂1
γ̂0

)2
)1/3

+1.

(refer to Equation (29)).

• Determine whether to increase the
batch size or the number of batches:
If m≤ m̂∗, go to Step (2.3); else let
g = g+ 1 and go to Step 2.

(2.3) Collapse the vector to update first D,
then C, then B, then A.
Initialize the values of mA,mB,mC and mD.
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• D(i) = B(2i)+B(2i+1), i = 1, . . . ,g−1;
D(g) = B(2g).

• C(i) = B(2i−1)+ B(2i), i = 1, . . . ,g.

• B(i) = A(2i)+A(2i+1), i = 1, . . . ,g−1;
B(g) = A(2g).

• A(i) = A(2i−1)+ A(2i), i = 1, . . . ,g.

• mA = 1,mB = 2k,mC = 2k + 2k−1,mD =
2k−1.

• rA = g+ 1,rB = g,rC = g,rD = g.

Step 3. Update the total number of collapses, and the
batch size. k = k + 1, m = 2k.

Step 4. Initialize the sum stored in the current cell
A(rA), i.e., A(rA) = 0.

Step 5. Add the new observation yn in the current cell
in A, i.e., A(rA) = A(rA)+ yn.

Step 6. Add the new observation yn in the current cell
in vector J, where J = B or C or D.

(6.1) If the rJ-th cell in vector J has room
(mJ < m), then set mJ ← mJ + 1 and go to
(6.3).

(6.2) Initialize the value of mJ and the sum
stored in the current cell in J(rJ).
mJ = 1,rJ = rJ + 1,J(rJ) = 0.

(6.3) J(rJ) = J(rJ)+ yn.

Step 7. If there is no new observation, compute the
variance estimator V̂B(mB), where mB is defined as

mB = m/2; (30)

else update the sample size (i.e., n = n + 1) and
return to Step 1.

It is noted that in Step (2.2.2), we increase g by 1 each
time when m > m̂∗. It might save computational effort to
increase g more than 1, for example, doubling the value g.
In future research, one could investigate how to increase
the storage space efficiently when the algorithm determines
to increase the number of batches instead of increasing the
batch size.

4 The Performance of Mse-Optimal DPBM Procedure

We evaluate the m̂∗ on the first-order autoregressive (AR(1))
processes with φ = 0.82,0.96 and 0.98. The AR(1) process is
defined as Yi = μ +φ(Yi−1−μ)+εi; i = 1,2, . . . ,n, where the
εi’s are identically independent distributed normal random
variables with mean 0 and variance (1−φ 2)var(Y ). The cor-
relation of the AR(1) at lag h is ρh = ρ |h|, where for simplicity
we use ρ ≡ ρ1. The relationships for ρ ,γ0,var(Y ),var(Y n),
and n are

ρ = (γ0−1)/(γ0 + 1),

var(Y ) =
nvar(Y n)

1+ 2∑n−1
h=1(1−h/n)ρh

=
nvar(Y n)

1+ ρ
1−ρ

− 2ρ(1−ρn)
n(1−ρ)2

.

The corresponding parameters for the AR(1) processes are
listed in Table 1.

The sample size n (Row 4) guarantees a 95% confidence
interval on the mean μ with a half length equal to 0.05μ
(Wilson, 1979). The parameters of the three processes are
selected such that E(Y ) = 0 and var(Y n) = 1. The φ for all
three processes is greater than 0.82, which indicates that the
correlation of the simulation outputs is moderately large.

The actual optimal batch size m∗ (Row 5), defined in
Equation (17) for DPBM (75%OBM) is obtained via the
simulation experiments. In practice, m∗ can not be computed
because the parameters of the data process are unknown.

Table 1: Performance for AR(1) Processes

Parameters

φ 0.82 0.96 0.98 1

γ0 10.0 50 100 2

γ1 49.5 1250 5000 3

n 500 2500 5000 4

m∗ 24 125 242 5

mse(V̂D(m∗))) 0.1 0.1 0.1 6

mse(V̂B((mB))) 0.12 0.12 0.12 7

increase ratio 20% 20% 20% 8

Note that the last column indicates the row numbers.

We apply leading-digit rules (Song and Schmeiser 2008)
to report the estimates in the last three rows. That is, we
report the point estimate through the leading digit of the
standard error. The estimated mse of the B-DPBM (Row
7) does not differ much (about 20%) (Row 8) from the
ideal mse value for the DPBM (Row 6). The three AR(1)
processes studied here encourage future research for the
evaluation of more-general processes.

5 Conclusion and Future Research

This paper proposes a mse-optimal batching algorithm that
requires limited memory space and reasonable computation
time, and has good statistical properties such as small mean-
squared-error (mse), but does not require knowledge of the
simulation run length a priori. From a theoretical point
of view, this paper does not significant extend previous
research, since the key formula used in this paper is Song and
Schmeiser’s optimal batch size approximation and Song’s
DPBM algorithm. In terms of the practical application,
however this paper represents an advance in that it present
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an implementable batch-size selection procedure without
requiring that the sample size a priori.

There are several issues that merit future research. For
instance, an area that deserves further exploration is the
possible advantage of using partial batches into the DPBM
in order to achieve better statistical property such as mse.
Alternatively, one could investigate how to increase the
storage space efficiently when the algorithm determines to
increase the number of batches instead of increasing the
batch size. Moreover, the three AR(1) processes studied in
this paper encourage future research for the evaluation of
more-general processes.
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Figure 2: The idea of collapsing in DPBM
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