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ABSTRACT

Characterizing the transient behavior of queueing systems
is a difficult problem, which has been addressed by either
simplified analytical models or simulation. We seek to
capture the transient performance of systems from a new
perspective: based on high-fidelity simulation experiments,
we estimate a number of transfer function models (the
discrete approximations of those ODEs provided by an
analytical approach) which characterizes the evolution of
the system’s dynamic behavior.

1 INTRODUCTION

This paper is concerned about the transient behavior of
queueing systems, which is graphically illustrated as in
Figure 1. For a given queueing system, we are interested in
the dynamic responses Y(t) of the system with an input pro-
cess X(t). We refer to the functional relationships between
Y(t) and X(t) as “transfer functions”—X(t) is transferred
into Y(t) by going through the system. Here, X(t) repre-
sents the arrival process of entities into the system, and Y(t)
can be the performance measures of a queueing system such
as the moments of the number of entities in the system at
time t. Although it has long been recognized that transient
analysis are needed to appropriately model many complex
production, service, communication and air transportation
systems, characterizing the dynamic input-output relation-
ships for queueing models remains a very difficult problem
yet to be addressed adequately.

For Markov queueing models, time-dependent ordinary
differential equations (ODEs) can be derived to represent
this input-output dynamics. However, analytical solutions
to these ODEs are rare. A few exceptions include the known
solutions for the M(t)/G/∞ and M/M/1 systems presented in
queueing books (Gross and Harris 1985, Kleinrock 1975).
The mainstay of the transient analysis work has been the de-
velopment of numerical solutions of time-dependent ODEs
characterizing the transient behavior of the Markov models.
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Figure 1: Time-dependent input and output in relation to a
queueing system.

Ingolfsson et al. (2007) provides a fairly complete review of
these methods including Rothkopf and Oren (1979), Clark
(1981), Taaffe and Ong (1987), Green and Kolesar (1991),
Eick, Massey and Whitt (1993a, 1993b), Jennings et al.
(1996), Massey and Whitt (1997), etc. Other techniques for
approximating the transient behavior of queues include fluid
approximations, accurate when there is little variability, and
diffusion models, which are used for heavily loaded systems.
These methods can be roughly divided into two categories:
those that are highly accurate but computationally intensive
(comparable to detailed simulation), and those that are fast
but inaccurate. Nevertheless, a common limitation of these
methods is that they rely on simplistic assumptions such
as Markov property and is not able to adequately capture
many features of realistic systems.

Computer simulation is an alternative appealing ap-
proach to address the transient (or nonstationary) behavior
of dynamic systems because of its high fidelity and flexibility
and, more and more, also because of its easy of use. The
shortcoming of simulation is that many replication runs
are required to obtain good estimates of time-dependent
performance measures, and the computational intensive na-
ture of simulation prevents it from being used for real-time
“what-if” analysis in decision making.

In light of this, we propose the simulation-based transfer
function Modeling approach to analyze the transient behavior
of queueing systems. The objective of this research is to
estimate a small number of transfer function models (TFMs),
which characterize the evolution of the system’s dynamic
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performance, based on extensive off-line simulation. The
resulting TFMs are the discrete approximations of those
ODEs provided by an analytical approach. Given the current
state of the system, we can use such TSMs to predict in
a timely manner the future evolution of the system under
any input process, and hence allow for real-time “what-
if” analysis. Furthermore, since the TFMs are estimated
from detailed simulation data, they embody the high fidelity
of simulation. In this paper, the dynamic responses of our
TFMs are the time-dependent departures from the system and
moments of the number of entities in the system. The inputs
are the typically time-varying entity arrival process into the
system, which may be considered as controllable variable
in some decision context such as production planning.

We approach the transient analysis of queueing systems
from a new perspective by integrating computer simulation,
adaptive statistical methods and queueing analysis. Our
methodology is three fold:

• In advance of the need to make decision, extensive
off-line simulations are performed to collect suffi-
cient amount of transient data. This can be achieved
by exploiting the availability of large quantities of
idle (perhaps networked) computer resources.

• Based on the simulation data collected for a queue-
ing system, TFMs (discrete approximations of time-
dependent ODEs) can be estimated representing the
input-output dynamics of the system. These TSMs
can be used to support real-time decision mak-
ing without performing any additional simulation:
Given its initial state, the system’s future perfor-
mances can be recursively evaluate under different
scenarios for the input process to the system.

• Queueing theory, though inadequate to address the
transient behavior of non-Markovian systems, may
suggest an appropriate form of the TSMs repre-
senting the dynamics of a general system.

This paper describes our initial efforts to investigate
the transient behavior of queueing systems via simulation
and transfer function modeling.

2 STATEMENT OF THE PROBLEM

In this section, we define our research problems in more
precise terms. We assume that the system is given, which
implies that the distribution of service time g(x) and the
number of servers s does not change over the time horizon
being considered. Our task is to predict over a time period
(0,T ] the dynamic performances of a system, m1(t), m2(t),
and d(t), for a certain input process a(t) (t ∈ (0,T ]). Next,
we define these inputs and outputs in mathematical terms.

Time-Varying Input Process
Let A(t, t + Δt) be the number of jobs arrived during

the interval (t, t + Δt), and define a(t) as the arrival rate
a(t) = limΔt→0 A(t, t +Δt)/Δt assuming that the limit exist.
We assume that there is no multiple arrivals and therefore
a(t)Δt is the probability that an arrival occurs in (t, t +Δt).

Dynamic Performance Responses
Let N(t) be the number of entities in the system at time

t, and define the first two moments of N(t) as:

m1(t) = E[N(t)] and m2(t) = E[N2(t)]. (1)

In addition to m1(t) and m2(t) we are also interested in
the departure process of the system. Assuming that there is
no multiple departures, we denote Dn(t, t +Δt) = P{N(t) =
n,D(t)} where D(t) represents the event that a departure
occurs within the time interval (t,t + Δt).

Also, denote by D(t, t + Δt) the probability that there
is a departure within (t, t + Δt):

D(t, t + Δt) =
∞

∑
n=1

Dn(t, t + Δt). (2)

We define:

dn(t) = lim
Δt→0

Dn(t, t + Δt)
Δt

and d(t) = lim
Δt→0

D(t, t + Δt)
Δt

(3)
These limits have the following interpretation. Given the
state of the system at time t, the probability that a departure
occurs during the interval (t, t +Δt) is d(t)Δt +o(Δt). Thus
we may say that d(t) is the departure rate from the system
at time t. Similarly, dn(t) is the rate of departure at time t
when there are n entities in the system.

Our objective is to establish a dynamic relationship
between the the input process a(t) and the outputs of interest,
namely the first two moments of N(t) and the departure
rate d(t).

3 TRANSIENT ANALYSIS OF QUEUEING
SYSTEMS

In this section, we discuss our transient analysis approach
based on several queueing systems.

3.1 M(t)/M/∞

For the purpose of intuition and motivation, we start with
the simplest queueing model M(t)/M/∞, which is in fact
analytically tractable. The analytical analysis of M(t)/G/∞ is
given in Massey and Whitt (1993). Here, we use M(t)/M/∞
to illustrate what we want to obtain in the transient analysis
of a queueing system.

517



Liu and Yang

Suppose that the arrival rate is a(t) (t ∈ (0,T ]), and
service rate is μ . From the Kolmogorov forward equations
for the state probabilities of M(t)/M/∞, we have the fol-
lowing differential equations for the first two moments of
N(t).

m′
1(t) = a(t)− μ ·m1(t) (4)

m′
2(t) = a(t)+ 2a(t) ·m1(t)+ μ ·m1(t)

−2μ ·m2(t) (5)

Due to the Markov property, the departure rate is simply

d(t) = μ ·m1(t) (6)

Obviously, given an intial state of the system, future per-
formances represented by m1(t), m2(t), and d(t) can be
evaluated based on (4), (5), and (6) in a recursive manner
for a certain arrival process a(t). Note that μ is considered
as a fixed system parameter.

Apparently for an M(t)/M/∞ system, there is no need to
incorporate computer simulation or statistical modeling into
its transient analysis. Unfortunately, the situation is much
more complicated for other systems. We will show next that
as finite number of servers is introduced or the Markovian
assumption is relaxed, we may not be able to easily obtain
the solutions to those ODEs like (4), (5), and (6), or even
worse, it may be impossible to analytically formulate any
ODEs.

3.2 Simulation and Transfer Function Modeling

The purpose of this work is to generate for general queueing
systems a very small number of TFMs characterizing their
transient behavior. These TFMs are just like the ODEs
provided in section 3.1. As already mentioned, our major
tasks are: (i) performing preliminary queueing analysis to
identify the appropriate forms of the TSMs, and (ii) running
simulation experiments for data collection and estimate the
TFMs, which are the discrete approximations of the time-
dependent ODEs for the dynamic output performances. We
next discuss these two aspects respectively.

3.2.1 Preliminary Queueing Analysis

The traditional methods of queueing theory is shown to
be inadequate in terms of addressing the transient behavior
of a general queueing system. Since ODEs like those for
M(t)/M/∞ is not available for a general queue, we seek
to obtain the second best: develop TSMs, the discrete ap-
proximations of ODEs, from simulation data. Nevertheless,
as already pointed out, queueing analysis can shed light on
our simulation-based statistical modeling.

For the analytical analysis of a general queueing system,
we make the following assumption regarding successive
arrivals into the system:

Assumption 1 The time interval between the ith

entity and the (i+ 1)th entity is independent of the arrival
process prior to the arrival epoch of the ith entity, for all
i = 1,2, . . .. Moreover, new arriving entities do not affect
the time in the system of previous entities of the same class.

Examples of arrival processes satisfying Assumption 1
include (a) all renewal processes, and (b) a nonhomoge-
neous Poisson process. For a queueing system satisfying
Assumption 1, the differential-difference equations of the
state probabilities can be written as:

dp0(t)/dt = −a(t)p0(t)+ d1(t)
dpn(t)/dt = −a(t)pn(t)−dn(t)+ a(t)pn−1(t)

+dn+1(t), n ≥ 1 (7)

where pn(t) = P{N(t) = n,n ≥ 0} and dn(t) is defined in
Section 2 as the system’s departure rate at time t while
having n entities in the system. By multiplying both sides
of the nth equation in (7) by n and summing, the first two
moment differential equations of N(t) follow as:

m′
1(t) = dE[N(t)]/dt = a(t)−d(t) (8)

m′
2(t) = dE[N2(t)]/dt

= a(t)+ 2a(t)m1(t)+ d(t)−2M(t) (9)

where

d(t) =
∞

∑
n=1

dn(t) and M(t) =
∞

∑
n=1

ndn(t) (10)

The two expressions in (10) are finite as long as E[N(t)]
is finite at time t. Note that equations (8) and (9) hold
for any queueing systems that satisfy Assumption 1. In
addition, they also accomodate the cases where the system
is temporarily overloaded (i.e., the arrival rate of entities
is greater than the service rate of the system during some
time intervals). Hence, we are considering a fairly general
system free of the various simplistic assumptions made in
a standard queueing analysis.

Unfortunately, despite the simple forms of (8) and (9),
they are not ready to be used for prediction purpose. The
problem lies in the fact that on the right-hand side of these
ODEs, there are functions d(t) and M(t) involved. Except
for Markovian systems, both d(t) and M(t) are dynamic
responses themselves depending on the arrival process a(t)
and the initial state of the system. Hence, built upon (8)
and (9), the task to predict the performances (m1(t), m2(t),
and d(t)) boils down to describing the evolution of d(t)
and M(t), which is difficult.
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To gain some idea about the functional expressions of
d(t) and M(t), we next provide the analytical results for a
G(t)/G/1 model. Similar derivation

Proposition 1 Consider a G(t)/G/1 with arrival pro-
cess a(t), and the p.d.f of the service time is g(x) (x∈ [xL,xU ]).
Under Assumption 1, we have

dn(t) =
∫ xU

xL

a(t − x)p0(t − x)P{A(t− x,t) = n−1}g(x)dx

∫ xU

xL

n+1

∑
�=2

P{A(t − x,t) = n− �+ 1}d�(t − x)g(x)dx .

Proposition 1 can be proved by recognizing that a
departure will occur during the interval (t,t + Δt) with
N(t) = n if one of the two following conditions holds:

1. The system was empty at time t −x and one entity
entered into service between t − x and t − x+ Δt.
During its service which lasts a period of x, there
were n−1 new arrivals

2. A departure occurred during (t−x,t−x+Δt) with
N(t−x) = � (� = 2,3, . . . ,n+1). During the service
of the first of the remaining �−1 entities , there
were n− �+ 1 new arrivals.

By definitions (10), we have derived the following from
Proposition 1:

d(t) =
∫ xU

xL

a(t − x)p0(t − x)g(x)dx

+
∫ xU

xL

(d(t − x)−d1(t − x))g(x)dx (11)

M(t) =
∫ xU

xL

a(t − x)(E[A(t − x,t)]+ 1)p0(t − x)g(x)dx

+
∫ xU

xL

E[A(t − x,t)](d(t − x)−d1(t − x))g(x)dx

+
∫ xU

xL

(M(t − x)−d(t− x))g(x)dx (12)

where E[A(t−x, t)] =
∫ t

t−x a(τ)dτ is the expected number of
arrivals during (t−x,t). It can be seen that d(t) and M(t) de-
pends on the arrival process a(t) and dynamic performances
in the past. If, by appropriate approximations, we can turn
the right-hand sides of (11) and (12) into expressions that
only involve the input a(τ) (τ < t), and the historical values
of m1(τ), m2(τ), d(τ) and M(τ) (τ < t), then from equa-
tions (8), (9), (11) and (12), we can recursively compute the
dynamic responses for a certain arrival process a(t) given
the initial values {m1(0),m2(0),d(0),M(0)}.

For a G(t)/G/s system, similar derivation leads to
equations—though much more complicated in form—that
are of the same nature as those for a G(t)/G/1. Due to space
constraint, here we only present the results of G(t)/G/1 for

the purpose of illustration. These analytical expressions pro-
vides very helpful indications as to the forms of the TFMs
in our simulation-based methodology, which is discussed
next.

3.2.2 Simulation-Based Transfer Function Modeling

In the proposed method, we seek to describe the transient
behavior of a queueing system by four discrete TFMs:

m1(t) ≈ f1(a(t −1),a(t −2), . . . ,Y(t −1),Y(t −2), . . .)
m2(t) ≈ f2(a(t −1),a(t −2), . . . ,Y(t −1),Y(t −2), . . .)

d(t) ≈ f3(a(t −1),a(t −2), . . . ,Y(t −1),Y(t −2), . . .)
M(t) ≈ f4(a(t −1),a(t −2), . . . ,Y(t −1),Y(t −2), . . .)

(13)

where Y(t − n) = (m1(t − n),m2(t − n),d(t − n),M(t − n))
represents the multiple-output vector at time t − n (n =
1,2, . . .). With these models, given the current state of the
system at time 0 we will be able to predict the evolution
of the system over (0,T ] under a certain input process a(t)
(t ∈ (0,T ]).

The finite-difference approximations of equations
like (8), (9), (11) and (12) suggest appropriate forms of
equations f1, f2, f3, and f4. Take equation (11) for an
example. If we assume that (i) p0(τ) ≈ p0(m1(τ),m2(τ))
and p1(τ)≈ p1(m1(τ),m2(τ)) can be well approximated in
terms of m1(τ) and m2(τ), and (ii) d1(τ) ≈ d(τ)p1(τ) ≈
d(τ)× p1(m1(τ),m2(τ)). Substituting these approximations
into (12) and replacing the integration in (12) by finite-
difference approximation, we obtain a specific function
form for f3. Notice that (8) and (9) hold for any queueing
systems that satisfy Assumption 1, whereas (11) and (12)
are derived for G(t)/G/1 only. Again, we base our discus-
sion here on the analytical results for G(t)/G/1 simply for
ease of illustrating our methods.

To estimate models (13) we run simulation experiments
at different combinations of the input process a(t) and
initial condition X(0) = (m1(0),m2(0),d(0),M(0)). Un-
der a certain a(t) and X(0), multiple replications are per-
formed. For each replication, the state of the system is
recorded over the simulation period (0,T ], and estimates
for {(m1(t),m2(t),d(t),M(t)), t = 1,2,3, . . .T} can be ob-
tained across multiple replications. Here we assume that
the sampling interval is unit 1, and the simulation length T
is an integer.

With the time series data collected from simulation, we
can estimate the models (13) of appropriate forms suggested
by preliminary queueing analysis. As mentioned earlier in
Section 3.2.2, approximate functional relationships such as
p0(τ) ≈ p0(m1(τ),m2(τ)) and p1(τ) ≈ p1(m1(τ),m2(τ))
are also needed for determining the appropriate forms of
the TFMs (13). In some previous work (Rothkopf and
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Table 1: Design of experiments for the M/G/s simulation

Settings a(t) (t ∈ (0,T ]) m1(0) m2(0) d(0) K(0)
1 1.8 2.3 8.47 1.83 6.08
2 1.8 4.23 25.10 2.48 12.60
3 1.8 7.84 71.28 2.84 23.60
4 2.1 2.94 13.21 2.10 8.26
5 2.1 5.16 35.80 2.65 15.74
6 2.1 8.90 90.62 2.90 27.08
7 2.4 3.69 19.99 2.34 10.84
8 2.4 6.26 0.950 2.77 19.25
9 2.4 10.09 114.80 2.92 30.75

Oren 1979, Taaffe and Ong 1987), such relationships are
obtained assuming that N(τ) follows a certain distribution
(e.g., negative binomial distribution). In our method, with
simulation data available, we can easily fit logistic regres-
sion models to obtain the functional dependence of these
probabilities upon the first two moments of N(τ), which is
highly accurate in our empirical experiences.

4 EMPIRICAL EVALUATION

We applied our proposed method on a number of queueing
systems. Although the systems considered here are relatively
simple, we are not aware of any existing transient analysis
methods of these systems that can be considered as parallel
to our work.

In the remainder of this section, we will refer to a
setting as a combination of the input process a(t) and the
initial condition X(0) = (m1(0),m2(0),d(0),M(0)). For
each system being investigated, simulation experiments are
performed under different settings. The simulation data are
divided into two sets: the estimation data set (EDS) and the
validation data set (VDS). The former is used to estimate the
TFMs (13), and the latter is used to evaluate the goodness of
the estimated TFMs in the sense of predicting the system’s
dynamic evolution. The settings of the experiments included
in the VDS are different from those of the experiments in
the EDS.

4.1 A Single-Station System with Multiple Servers

We consider the transient behavior of a single-station system
with 3 servers. The service time follows gamma distribution
with a mean of 1 and standard deviation of 0.2. Simulation
experiments were performed over a period of (0,T ] at nine
different settings as given in Table 1.

Note from Table 1 that in our current experiments, the
input process is Poisson with a(t) held constant throughout
the entire period (0,T ] of a simulation run, which may not
be a good choice. To collect simulation data efficiently for
the estimation of the TFMs, it may help to let a(t) vary over

Table 2: A system consisting of two stations in tandem

Parameters Station 1 Station 2
Number of Servers 3 3
Mean Service Time 0.5 1

Std. of Service Time 0.1 0.2

the simulation period. In addition, the levels of the arrival
rate and the initial conditions were selected in a somewhat
arbitrary manner in the hope of providing a good coverage
of the possible settings. Developing an efficient design
strategy for the simulation experiments is an important part
of our on-going research.

The Experiments performed under settings 2, 4, 6, and
8 are included in the EDS, based on which the TFMs are
estimated. Experiments performed under settings 1, 3, 5,
7, and 9 are included in the VDS. We compare the TFMs-
predicted system evolutions with the simulated cases in the
VDS. Figures 2 (a), (b), (c), and (d) show the comparison
results of four dynamic responses m1(t), m2(t), d(t), and
M(t) (t ∈ (0,T ]) for Setting 3 specified in Table 1. Figure 2
displays the comparison for Setting 7.

In each figure, there are two curves and two vertical
axis. The solid curve represents the evolution of the output
response estimated from the simulation data in VDS, which is
highly accurate and considered as “true” in our experiments.
The dotted curve represents the prediction error, which is the
absolute difference between the TFMs-predicted responses
and the corresponding “true” values. The left vertical axis
depicts the scale for the “true” responses, and the right
vertical axis gives the scale for the prediction error.

For all the five settings in VDS, we generated similar
plots as those in Figure 2 and 2. Obviously, the prediction
provided by the TFMs tracks the dynamic performances
very well. We have also applied the proposed method on
single-station systems with failures and maintenances, and
the resulting TFMs are able to provide very good prediction
of the system’s transient behavior as well.

4.2 Two Station in Tandem

We consider a system consisting of two stations in tandem.
The system parameters are given in Table 2. The service
time at both stations follows gamma distribution.

As in the single-station case, we simulate this two-
station system under 27 different settings. Each setting repre-
sents a different combination of the input process to the whole
system a(t), the initial condition at the 1st station X[1](0) =
(m[1]

1 (0),m[1]
2 (0),d[1](0),M[1](0), and the initial condition at

the 2nd station X[2](0) = (m[2]
1 (0),m[2]

2 (0),d[2](0),M[2](0)).

520



Liu and Yang

0 5 10 15 20 25
2

4

6

8

m
1(t

)

Time t 

 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
0

20

40

60

80

m
2(t

)

Time t 

 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
1

2

3

d
(t

)

Time t 

 

 

0 5 10 15 20 25
0

0.1

0.2

0.3
A

b
so

lu
te

 E
rr

o
r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
0

20

40
M

 (
t)

Time t 

 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

 
 
 
 
    
 
 
 
 
 
 
 

         (a)               (b)  
 
 
  
 
 
 
 
 
 
 
 
 

         (c)               (d)  
  
Figure 2: Comparison of the predicted dynamic responses and their “true” values (Under Setting 3 as specified in Table 1).
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Figure 3: Comparison of the predicted dynamic responses and their “true” values (Under Setting 7 as specified in Table 1).

522



Liu and Yang

0 5 10 15 20 25
1.1

1.2

1.3

m
1[1

] (t
)

Time t 

 

 

0 5 10 15 20 25
0

0.05

0.1

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
2.5

2.8

3.1

m
2[1

] (t
)

Time t 

 

 

0 5 10 15 20 25
0

0.05

0.1

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
4

5

6

7

8

9

10

m
1[2

] (t
)

Time t 

 

 

"True" dynamic output

0 5 10 15 20 25
4

5

6

7

8

9

10

m
1[2

] (t
)

Time t 

 

 

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
A

b
so

lu
te

 E
rr

o
r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
20

40

60

80

100

120
m

2[2
] (t

)

Time t 

 

 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

0 5 10 15 20 25
2

3

4

d
 [

2]
(t

)

Time t 

 

 

0 5 10 15 20 25
0

0.05

0.1

A
b

so
lu

te
 E

rr
o

r

 

 

"True" dynamic output
Prediction error

 
 
 
 
 
 
 
 
 
 
 
   

           (a)               (b)  
  
 
 
 
 
 
 
 
 
 
 

         
           (c)                (d)  

  
 
 
 
 
 
 
 
 
 
 
 
                (e) 

Figure 4: Comparison of the predicted dynamic responses and their “true” values for the 2-station system.
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We use the superscript [i] to denote station i (i = 1,2).
Among these 27 settings, 14 were used for the EDS, and
the other 13 for the VDS.

For each station i (i = 1,2), we use the simulation data to
estimate a set of TFMs (denoted as TFMs[i]) characterizing
the transient behavior of that station. Note that a [2](t), the
input process to station 2, is equal to d [1](t), the departure
process from station 1.

Once we have estimated TFMs[1] and TFMs[2], for given
initial conditions X[1](0) and X[2](0), we can predict the
transient performance of this two-station system under a
certain input a(t) to the whole system. Specifically, our
prediction process can be divided into two steps:

1. With a[1](t) = a(t) and given X[1](0), we use
TFMs[1] to predict the transient performances for

station 1, namely (m[1]
1 (t),m[1]

2 (t),d[1](t),M[1](t))
with t ∈ (0,T ].

2. With a[2](t) = d[1](t) and given X[2](0), we use
TFMs[2] to predict the transient performances for

station 2, namely (m[2]
1 (t),m[2]

2 (t),d[2](t),M[2](t))
with t ∈ (0,T ].

Figure 4 provides the prediction results of TFMs [1]

and TFMs[2] under one of the settings in VDS. For the
case presented in Figure 4, station 1 is lightly utilized and
station 2 is heavily utilized. As can be seen from Figure 4,
we are able to predict with a high accuracy the dynamic

performances of interest, m[1]
1 (t), m[1]

2 (t), m[2]
1 (t), m[2]

2 (t),
and d [2](t) (the departure rate from the 2-station system).

5 CONCLUSIONS

We proposed a new perspective to approach the transient
analysis of queueing systems: simulation and transfer func-
tion modeling. Such an approach would be expected to
fundamentally overcome the computational-expensive na-
ture of simulation and the analytical intractability of realistic
systems, and thus support real-time decision making. The
results presented in this paper represent our initial explo-
ration down this path, and our empirical experience based on
relatively simple queueing systems is encouraging. We are
currently investigating experiment design methods for sim-
ulation experiments, and model fitting strategies of TFMs.
Our methods will be further adapted to realistic systems
that involve multi-class entities, reentrant flows, etc.
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