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ABSTRACT 

The concept of data fusion (DF) has had a major impact on statistical methodology and practice within the US Department of 
Defense. In this paper we explore expanding this idea to include simulation modeling and analysis. Simulation fusion (SF) is 
the concept of combining data, models, experiments, and analyses to improve the outcome of simulation studies. In this pa-
per, we propose an initial framework and discuss various SF schemes. We provide several examples to illustrate these ideas 
and discuss some of the potential benefits of simulation fusion. 

1 INTRODUCTION 

A simulation study is a scientific/engineering procedure that transforms input (quantitative or qualitative data, ideas, hypo-
theses, objectives, etc.) into output (e.g., information, statistics, designs, solutions, and decisions.). A simulation study in-
volves many things: data collection, input modeling, simulation modeling, output analysis, sensitivity analysis, design of ex-
periments, optimizations, synthesis and presentation of results, and so forth. These are referred to in simulation textbooks as 
the “steps” in a simulation study, with the allusion (illusion) that they provided a distinct, sequential, and orderly progression 
to a successful outcome. This paper explores some of the consequences of assimilating, or fusing, the notion of simulation 
study steps into concurrent and complementary simulation study activities. Each activity, step, or sub-step can be carried out 
by different techniques or approaches—which in this paper we will call simulation elements—with the intent of freeing our 
thinking about simulation from the burdens in the baggage of current jargon. We make no claim that each of the examples of 
SF we present are in themselves new, indeed, some embody the best practices of experienced simulation users.  

Simulation Fusion is a notion, a context for rethinking what we do, not some well-defined methodology or set of algo-
rithms and associated software. Frameworks and concepts, while nebulous and “un-scientific”, can have impact (consider 
“supply chains,” “world views,” “zero-defects,” “six-sigma,” etc.).  Our hope is that the notion of SF will inspire simulation 
researchers, educators, and practitioners to view themselves a part of a more holistic society, rather than as researchers spe-
cializing in generating random variables, designing experiments, or developing methodology for output analysis, etc.; or as 
educators teaching within the design constraints and modeling concepts of a particular commercial software package; or as 
practitioners specializing in modeling or animating the dynamics of factories, hospitals, medical devices, climate change, etc.  

To illustrate the idea of SF, consider the following scenario. In a particular simulation study, say, one could use a 
process-interaction-based simulation model and benefit from its animation capability. Alternatively, one might build a more 
efficient and flexible event-scheduling-based simulation model. However, it might be more useful to build and simultaneous-
ly execute both types of models to balance and benefit from both simulation’s efficiency and animation capability. One could 
also combine the outputs of both models in a meaningful way and design experiments to leverage their strengths. For exam-
ple, one could run very fast event-scheduling experiments to identify and design alternatives while using animations to illu-
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strate the leading contender(s) to interactive decision makers. Simultaneously using multiple simulation approaches allow us 
to take advantages of the strengths of different approaches.  

Simulation fusion is the generalization of this concept to integrate various simulation elements to yield new and better 
simulation approaches and results. The goals of SF are similar to those of multi-disciplinary teams; each member in the team 
is an expert in one or more areas. Working closely together in the right manner they can combine their strengths and know-
ledge to be more effectual than the additive impact of the sum of their individual expertise. Exploiting the advantages of 
combining various types of simulation elements is the goal of SF. 

The objective of fusing multiple simulation elements include reducing output uncertainty, gaining simulation efficiency, 
balancing between speed and fidelity, improving result credibility, getting more robust results, and better decision-making. 
SF achieves these objectives by taking advantage of using multiple simulation elements that are good at performing particular 
functions. Selecting the simulation elements in the right combination, in the right way, in the right place, and at the right time 
is the art of SF. It requires a careful selection and possibly a lengthy and thorough testing to identify the best combination, 
making it impossible to carry out in a short period of time. Certain guidelines or a framework should be given to pre-define 
what combinations can lead to what expected results so that users can decide what simulation elements to fuse based on their 
own situations. Developing these guidelines and framework is the main research task of SF. 

Simulation fusion introduces a large degree of flexibility in performing a simulation study, leading to potential new ben-
efits that are difficult to achieve using conventional simulation methods. For example, end-to-end uncertainty can be signifi-
cantly diminished by reducing the uncertainties at various stages and their compounding uncertainty throughout a simulation 
study, i.e., input, models, outputs, analyses, and decisions (see Figure 1). These multiple reductions can be done sequentially, 
concurrently, or repeatedly. For example, outputs from different simulation models can be combined and used by analysis al-
gorithms to improve the overall decision quality (see Figure 2(a)). Decisions (quantitative or qualitative) from different simu-
lation models can also be synthesized to yield more accurate and robust final decisions (see Figure 2(b)). Outputs from a si-
mulation can be used as the input (fully or partially) to another simulation model to further reduce the uncertainty (see Figure 
2(c)).  

The remainder of the paper is organized as follows. Section 2 reviews relevant literature. Section 3 proposes the SF 
framework and briefly explains all simulation-fusion schemes. Section 4 provides several examples to illustrate the idea of 
SF and demonstrates its benefits. Section 5 makes a conclusion and outlines future work. 

2 THE PROPOSED SIMULATION FUSION FRAMEWORK 

In this section, we outline the proposed SF framework and suggest solutions for creating this framework. It should be noted 
that because there are certainly many more possibilities for SF, the goal here is to propose the concept and solution methods, 
rather than to lay out a comprehensive blueprint. Therefore, the presentation will be brief and preliminary. The actual imple-
mentation of the framework will probably require a long-term research effort from the whole simulation community. 

Simulation fusion can take place at different levels and at various stages during a simulation study. We first describe the 
framework based on the levels where fusion might be advantageous. Then, we introduce various fusion schemes based on the 
stages at which fusion can occur.  

2.1 Levels of Simulation Fusion 

Simulation fusion will be described at six possible levels: data level, statistical level, qualitative level, methodological level, 
sample path level, and cross-level level. Table 1 lists these levels and their corresponding functions and elements being fused. 
At the data level, raw data generated from various models or analyses are combined to yield more information-rich data that 
will be used by subsequent stages during the simulation study. The statistical level deals with fusing statistics such as estima-
tors, aggregated data, or sufficient statistics. The qualitative level is to combine decisions, results, or outcomes from different 
sources or stages to achieve a more robust and accurate simulation study. 

These three levels are similar to the low, intermediate, and high level fusions defined in classical data fusion (Dasarthy 
1994). The remaining three levels introduced in the following differentiate SF from classic data fusion. In the methodological 
level, various simulation methodologies or models are being used sequentially or simultaneously to produce new simulation 
methods that benefit from the strengths of all the fused simulation elements (see Example 2 in Section 3). At the sample path 
level, different simulation realizations generated using different random numbers are being fused to yield a set of sample 
paths or new kinds of meta models (see Example 4 in Section 3). The cross-level, by its name represents the flexibility of SF, 
which can occur at multiple levels. For example, one can fuse two models and fit the fused model with some statistics (or da-
ta) obtained by combining several statistics (or multiple data streams).  
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Common fusion operators include linear or nonlinear combination (such as weighted sum, min, max, or norm), multipli-

cation, concatenation, voting methods (for binary data/decision), evidence-combination theory, and algorithmic non-closed-
form operations.  

 
Table 1: Levels of Simulation Fusion 

Fusion Scheme  Functions Elements Being Fused 
Data Level Multiple sources of data are combined Raw quantitative data 

Statistical Level Several statistics are amalgamated Statistical estimates 
Qualitative Level Decisions or results are joined together High level decisions or scores 

Methodological Level Different simulation models and methodologies are 
used simultaneously  Models and methods 

Sample-Path Level Multiple simulation realizations are combined Sample paths 
Cross-Level Level Fusing elements across different levels Various simulation elements  

2.2 Simulation-Fusion Schemes 

Simulation fusion can take place at any stage of a simulation study as shown in Figure 1 and Figure 2. Several fusion 
schemes can be defined based on the stage at which fusion takes place as shown in Table 2. The proposed framework is built 
on these schemes.  

Data Fusion: Data fusion has been an active field for years. Efficient models and algorithms have also been developed. 
The well-known JDL Data Fusion model developed by the US DoD Joint Directors of Laboratories (JDL) has a major impact 
in defense-relevant research and applications (Steinberg et al. 1999; Llinas et al. 2004). This JDL Data Fusion model pro-
vides guidelines for data fusion in our SF framework. The main difference is that most existing data fusion techniques are 
developed for object detections and identifications, while the objective of data fusion in SF is to distill or combine different 
sources of data (including simulated data) to assist in subsequent analyses. Nevertheless, most techniques developed in the 
data fusion literature can be exploited in SF. It is suggested here that research effort should be put on existing data fusion me-
thods for descriptive analysis (exploratory data analysis) and predictive analysis (regression or classification) and synthesize 
them to be used by simulation.  

Input Fusion: The input to a simulation model could be general input information, such as fused raw data, output from 
other simulations (e.g., Figure 2(c)), or human input (such as Delphi exercises) or interventions. New protocols and integra-
tion techniques are required to synthesize different types of input data. 

Model Fusion: By fusing different simulation models, one can increase overall model fidelity and reduce the simulation 
output uncertainties, perhaps by allowing models to be biased. For example, when simulating a system with thousands of air-
craft, one can exploit the trade offs between fidelity and efficiency by modeling several aircraft in high fidelity and the re-
mainder in low fidelity. Model details are focused where needed to gain execution speed. The low-fidelity models can also be 
fine tuned by using output from the high-fidelity models. Two different types of aircraft models, one with more favorable 
maintenance parameters and the others with less favorable maintenance parameters, can also be created to bound uncertainty 
in the overall lifetime estimate. Such an exploitation of dependence is similar to the antithetic variate approach (Law 2006). 
See also Example 3.2 in Section 6. 

Output Fusion: Output fusion combines output data or information from multiple sources to create a coherent decision-
making process. Given multiple sources of uncertainty, the resulting modeling process is vulnerable to error. One such 
source, based on statistical hypothesis testing, are Type I and Type II errors. A strategy to reduce one type of error typically 
increases the other error. It is suggested that output fusion methods be explored that exploit the structure of discrete optimiza-
tion (DO) models designed to mitigate such error propagation. In particular, new methods for synthesizing output data should 
be investigated using DO models to improve decision-making capabilities while simultaneously reducing the two classical 
types of errors. This will require new criteria to combine multiple data sources, such as ordinal rankings and order statistics. 
Grid search, local search, greedy algorithms, and dynamic programming algorithms are also potential candidates for address-
ing these models, with the objective of obtaining both practical procedures that are applicable to large-scale, real-world prob-
lems and provable performance convergence results (see, e.g., Figure 2(a)). 

Analysis Fusion: To gain the maximum benefit from large-scale, multi-resolution simulations, experimental design and 
analysis tools should support various needs, from sensitivity analysis to optimization to real-time control. Measuring, control-
ling, and propagating uncertainty across heterogeneous simulation models makes this difficult. The design and analysis of 
(deterministic) computer experiments (DACE) community has emphasized uncertainty due to model risk (Santner et al. 
2003), while the discrete-event stochastic simulation community has focused on sampling noise (Ankenman et al. 2009). 
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Analysis methods should be considered that fuse both intrinsic (noise) and extrinsic (model risk) uncertainties into a unified 
analysis framework, since both are critical to robust decision making and control. Existing work in the literature should be 
leveraged to advance traditional experimental design and analysis techniques so that they facilitate sequential, fully adaptive, 
and multi-resolution output analysis of simulation models. 

Decision Fusion: In decision fusion, decisions from multiple simulations are scored and weighted based on criteria such 
as model fitness, data source quality, and so forth. Final decisions are then made based on these weighted scores using vari-
ous rules, e.g., sum, min, max, or algorithmic operations (Figure 2(b)). It is suggested that research be conducted to explore 
the use of these rules under the simulation-fusion framework.  

Sample-Path Fusion: Sample-path fusion combines correlated or uncorrelated sample paths to create new sample paths 
or meta models. Full details including event relationships are preserved in the fused sample paths. Such an information-rich 
fusion makes sample-path fusion different from conventional variance reduction techniques, such as common random num-
bers, where statistics (rather than sample paths) from correlated sample paths (rather than uncorrelated and correlated), ran-
dom variables, or systems are combined to reduce estimation variation. See Example 3.4 in Section 3. 

Bootstrap Fusion: The bootstrap-based fusion scheme is to remedy the bias caused by intentionally fusing specific si-
mulation elements. The idea is to randomly select simulation elements and analysis methods to create a series of randomized 
simulation systems. Studies have shown that input bootstrapping makes a major impact on reducing simulation output errors 
(Barton and Schruben 1993, 2001). 

Duality Fusion: Many dynamic system models have their duals, which provide valuable complementary information to 
the original systems. One example is a tandem queue and its reversed queue. A reserve queue is the same system as the tan-
dem queue except that jobs travel in reverse order. These two systems are dual to each other in the sense that they have the 
same throughput. Fusing simulation data from these two systems could reduce uncertainty in estimation (see Example 3.3 in 
Section 3 and Chan and Schruben 2008a). This fusion scheme is a not-fully exploited, yet promising, opportunity in uncer-
tainty reduction.  

Multi-Scheme Fusion: To the extreme, multiple fusion schemes can be combined, integrated, aggregated, or propagated 
in the form of series, parallel, hierarchical, embedded, fork-join, or feedback schemes. It is recommended that studies be car-
ried out to investigate which schemes are better in uncertainty management. Discussions on the effectiveness of combining 
simulation modeling, experimenting, and analysis can be found in Schruben (2009). 

Besides the fusion schemes above, uncertainty-reduction and optimization algorithms that iteratively use fusion schemes 
also warrant a research effort from the community. Caution, however, should also be taken when fusing highly noisy da-
ta/methodologies to avoid potential side effects. Table 2 summarizes some possible fusion schemes and Figure 2(a)-(c) depict 
several examples. Illustrative examples are given in the next section. 

 
Table 2: Various Simulation-Fusion Schemes 

Fusion Scheme Functions Elements Being Fused 
Data Fusion Multiple data sources are combined Data 
Input Fusion Data and other information are fused Data, Information 
Model Fusion Different kinds of models are married Methodologies, Ideas 
Output Fusion Multiple simulation outputs or other info are integrated Data, Info, Estimates 

Analysis Fusion 
Different kinds of simulation information are used for expe-

rimental designs or heuristics optimization algorithms, 
which could also be fused 

Data, Information, Algo-
rithms, Approaches, Solu-

tions 

Decision Fusion Decisions from multiple simulations are scored, weighted, 
and synthesized 

Decisions, Estimates, 
Predictions 

Sample-Path Fusion Correlated or uncorrelated sample paths are combined Sample Paths 

Bootstrap Fusion Multiple data sources, models, algorithms are bootstrap-
pingly selected and fused All 

Duality Fusion Dual models or methods are used simultaneously All 
Multi-Scheme Fusion Combination of two or more of the schemes above All 
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Figure 1: Stages where simulation fusion might take place 
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(c) Data and Input Fusion (Hybrid Fusion) 

Figure 2: Examples of Simulation Fusion at Different Levels, Degrees, and Orders 
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3 ILLUSTRATIVE EXAMPLES 

In this section, we use several examples to illustrate the idea of SF. The first example is related to input fusion.  

3.1 Example 1 

Suppose we are trying to fuse two input methods to generate input data for a simulation model. The objective of this example 
is to reduce the uncertainty of the fused data. Let us call these two candidate methods as Method 1 and Method 2. Let  and 

,  be the input and output of these methods, respectively. The mean and variance of  are denoted by  and , 
respectively. Both methods transform  into  according to certain stochastic functions . For illustration 
purposes, we make a simplifying assumption that both functions have a multiplicative form, i.e., , and that 

 and , where  is the common deterministic factor of the two methods and  the stochastic factor that diffe-
rentiates the two methods. , and  are all independent. 

One simple fusion scheme is to average the two ’s, i.e., . As our objective is to reduce the uncertainty 
of the fused , we aim at finding ’s so that  and  are negatively correlated. Because ’s only differ at the factor , this 
is equivalent to finding  so that , where  is the correlation function. The variance of  can be computed as 
follows: 

 

  

 
For this variance to be less than , we obtain the following equation specifying the relationships between the ex-
cepted difference between the two methods and the variance of transformed difference in  in units of the variance of : 
 

  

 
When , the above relationship can be reduced to: 
 

  

 
This inequality provides a guideline for selecting the right methods to fuse the data so that uncertainty is reduced. It roughly 
says that the uncertainty introduced by the difference factor between the two methods should be less than the amount of un-
certainty reduction by using Method 2.  

Observe that one can also use the classical antithetic variates (AV) approach to reduce the uncertainty of  (Law 2006). 
In that case, one would collect  and  in such a way that they are negatively correlated to obtain  and 
thus reducing the variance of .  

To compare the SF scheme outlined above and the classical AV approach, we note that they are not identical but dual. In 
AV, one tries to select ’s for given ’s such that . Dually (i.e., reversely) in SF, one tries to select ’s for 
given ’s such that , i.e.,   

 
 AV:  select ’s for given ’s s.t.  
 SF:  select ’s for given ’s s.t.  
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There are many open questions for research in input fusion. For example, what if the function  is non-

multiplicative? What if more than two models are fused? What if SF is used in conjunction with AV or other common ran-
dom numbers or control variates approaches?  

3.2 Example 2 

The second example is about fusing different simulation models to balance between efficiency and fidelity. We use the two 
parallel-server-queue simulation models given in Schruben (2009) to illustrate the idea. The purpose here is to estimate the 
mean queue length. The first model, called ERG_1, is a fast model because it records the trajectory of the queue using only a 
single integer variable and does not keep track of the voluminous individual waiting time data. The second model, called 
ERG_3, runs orders of magnitude slower than ERG_1 because it provides greater details on the exact individual waiting time 
data (See Schruben 2009 for a detailed discussion of these two models). It is shown in the literature of indirect estimation that 
the variance of the average waiting time is less than the variance of the average queue length (Law 1975, Glynn and Whitt 
1989). This result suggests that instead of estimating the average queue length directly, one should estimate the average wait-
ing time and use the Little’s Law to obtain the average queue length indirectly. The amount of variance reductions, which is 
due to the detailed individual waiting time data, is shown to be about 20%. .  

Our objective in this example is to determine a rule to use both models to estimate the mean queue length. In particular, 
we are interested in estimating the mean queue length, , by using a fused model, called ERG_1_3, where  is the length 
of the simulation (such as number of jobs simulated). ERG_1_3 generates  by making a simulation run of length  
from ERG_1 and independently another simulation run of length  from ERG_3, where , is a constant. 
Denoted by  the mean queue length estimator obtained  from the simulation of ERG_1 with length  and 

 the similar estimator from the simulation of ERG_3 with length . We fuse  and  
by using the following simple convex combination: 

 
 . 

 
Let  and  be, respectively, the speeds of ERG_1 and ERG_3 in executing a simulation run of length . The speed of 
ERG_1_3, , is then equal to, 

 
 . 

 
Because ERG_3 is recommended by the literature, we evaluate the performance of ERG_1_3 against ERG_3. Define the fol-
lowing effectiveness measure (E) that is the weighted average of the effectiveness of speed (ES) and the effectiveness of va-
riance (EV): 

 

  

 
Because ERG_1 is faster than ERG_3 but with a bigger variance, we can assume that  and 

, where  and . For simplicity, we also assume independences to obtain 
. Plugging the expressions of all estimators into above expression for , we obtain 

 
  

 
This effectiveness measure should be less than one if the overall performance of ERG_1_3 is better than that of ERG_3. This 
depends on the values of  and . Based on the reported values in the literature,  is roughly 0.8 and  is about 0.1 or 
more. Figure 4 depicts the effectiveness measure of ERG_1_3 against ERG_3 under different values of  and . Only when 

 is small such as 0.2 can ERG_3 out-performs ERG_1_3. In other cases, ERG_1_3 is superior. This result means that unless 
one pays more than 80% of attention to the variance reduction (or less than 20% of attention to the speed of the simulation), 
fusing two simulation models yields a desirable outcome.  
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As in the first example, there are also many research opportunities in model fusion. For example, can we find the optimal 

 when fusing the two models under various constraints? What if we fuse more than two models, such as ERG_2, or ERG_4 
in Schruben (2009)? What if we consider other factors, such as animations and extendibility, when calculating the effective-
ness measure? 

 

 
 

Figure 3: Model Fusion: Fusing Two Simulation Models, ERG_1 and ERG_3 
 

 
 

Figure 4: Effectiveness of ERG_1_3 Against ERG_3 under Different Values of  and  

3.3 Example 3 

The third example is about duality fusion. Consider a tandem queue that includes  stages connected in series by interme-
diate finite-size buffers. Jobs enter the system at the first stage, proceed through the system stage by stage, and eventually 
leave the system from the last stage. It has been shown that such a system is reversible in the sense of having the same 
throughput when reversing the job flow, that is, having the jobs enter the system from the last stage, going backward through 
the system, and leaving from the first stage (Yamazaki and Sakasegawa 1975, Chan and Schruben 2008a). This job-flow-
reversing system is called the reverse system of the original system. 

The simulation fusion scheme here is to exploit the use of both systems in achieving various objectives. For example, 
can one reduce estimation variances by exploiting the correlations of the two systems? Or can one verify the correctness of 
the two simulation models by comparing their results, which should produce the same throughput as described by theory?.  
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3.4 Example 4 

Combing different samples from a simulation using various rules is also one type of SFs. It can take place at different stages 
of a simulation study. Importance sampling is example and can occur at the input and output stages (Srinivasan 2002). Sam-
ple-path fusion generalizes such an idea to fuse not only statistics from different samples but the entire sample paths, corre-
lated or uncorrelated. Correlated sample paths can be realizations using dependent random numbers or related system confi-
gurations. Uncorrelated sample paths can be realizations under different parameter values. Fusing these sample paths 
provides a way of modeling the response of a system in change of certain parameter values.  

Chan and Schruben (2008b) have shown that simulation sample paths can be modeled as linear programs. The main dif-
ference between these sample-path linear programs and the usual simulation samples taken in most simulation studies is that 
these sample path linear programs preserve all information contained in the sample path and have the capability of predicting 
other sample paths by using duality information (which is free) from the linear program solutions. Such a difference makes it 
possible to fuse different sample paths along with their duality information to construct new kinds of meta models or re-
sponse-type models that fully exploit the sample path and duality information. 

4 CONCLUSIONS AND FUTURE WORK 

There is no single model or method that work perfectly for any systems under any situations. Combining different models or 
methods is a way to produce new, more robust and efficient models or methods. The spirit of SF is to trade off strengths and 
weaknesses of various simulation elements. While we have provided a preliminary definition of a general simulation-fusion 
framework, its full implementation requires a much larger effort from the community. The benefits of SF are vast. Therefore, 
we suggest and encourage researchers to explore this young and promising research area.  
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