
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

IMPROVING SIMULATION THROUGH ADVANCED COMPUTING TECHNIQUES:

GRID COMPUTING AND SIMULATION INTEROPERABILITY

Simon J. E. Taylor Navonil Mustafee

Brunel University
ICT Innovation Group

School of Information Systems,
Computing and Mathematics

Uxbridge, UB8 3PH, UK

Swansea University
School of Business and Economics

Singleton Park
Swansea, SA28PP, Wales, UK

Shane Kite
Chris Wood

Stephen J. Turner

Saker Solutions
Upper Courtyard

Ragley Hall
Alcester, B49 5NJ UK

Nanyang Technological University
Parallel & Distributed Computing Centre

School of Computer Engineering
Singapore 639798, SINGAPORE

Steffen Straßburger

Ilmenau University of Technology
School of Economic Sciences

Helmholtzplatz 3
98693 Ilmenau, GERMANY

ABSTRACT

Today, due to exciting developments in advanced computing techniques and technologies, many scientists
can now make use of dedicated high speed networks and high performance computing. This so-���������-
	�
������

������
���
�
���

�
�����

�������
���
������������ether in global virtual research communities.
What do these advancements mean for modeling and simulation? This advanced tutorial instigates two
key areas that are affecting the way M&S projects are being developed and deployed. Grid Computing
addresses the use of many computers to speed up applications. Simulation Interoperability deals with
linking together remote simulations and/or speeding up the execution of a single run. Through the use of
case studies we hope to show that both these areas are making a major impact on the practice of M&S in
both industry and science, as well as in turn supporting the future capabilities of e-Science.

1 INTRODUCTION

��-	�
������

�������������

�������
���������������������

�
�
���
�
��������
�
�
�
����
������
����a-
ri��������

�
��
��
�
�����
��
����������
����������

�
��������
�
�����������������
�������������������
support that high performance communication networks and high performance computing give to a scien-

216978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

�

��
����-to-day activities. Combining these facilities with advanced distributed computing techniques,
novel software applications are being written that allow scientists to work together across the world more
effectively by sharing and processing huge data sets quickly, collaborating remotely in real time and ac-
cessing remote instrumentation that they were previously not able to.

What does e-	�
�������������������
�������

�����
����!"	#$��	����������������-	�
��������

����
of M&S exists as most work has been focused on specific scientific fields. However, work is gradually
starting on in-silico virtual laboratories that will use many techniques that are familiar to the M&S com-
munity. This drive will possibly become a new area of research for M&S specialists. In terms of e-
Science benefits for M&S, over the past decade there has been a major drive to create generalized high
performance computing techniques to speed up applications. This area, called Grid Computing, can po-
tentially have a major impact on M&S applications. In parallel with this have been developments in Si-
mulation Interoperability. These focus on methods to run simulations together over a network to either
speed up a simulation or link together geographically remote simulations. Both these areas can be highly
beneficial to M&S. So far ���
���������������������
��
����������

The purpose of this advanced tutorial is to raise awareness of the benefits of these distributed compu-
ting areas. To investigate these areas we present two case studies of Grid Computing and an overview of
Simulation Interoperability.

2 GRID COMPUTING

Grid Computing was introduced over ten years ago as an approach supporting hardware and software in-
frastructures that could provide access to dependable, consistent, pervasive and inexpensive high-end
computational resources (Foster and Kesselman 1998). The idea was that organizations would share
these resources in collaborative working environments to work on a specific problem for a specific time.
These organizations are called Virtual Organizations. On this basis Grid Computing enables coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organizations. A broader de-
finition of Grid Computing includes the use of computing resources within an organization for running
organization-specific applications. In practice, the supporting organizations tend to be academic and/or
government in nature and the resources tend to be high performance computing clusters.
 Commercial M&S tends to be performed by companies that do not really fit into the Virtual Organi-
zation model for many reasons. Further, typical commercial M&S software cannot practically run on
high performance computing clusters. An alternative to this is Desktop Grid Computing, or Desktop Gr-
ids. A Desktop Grid is one that aggregates non-dedicated, de-centralized, commodity PCs connected via
�����������!�
�����������������%''*#��+
�0���
���:���
���������
���
��
����������������
�
;����������u-
ting power available on a machine (especially multi-core systems), Desktop Grids can harvest spare com-
puting resources of desktop PCs (so-called cycle scavenging) (Choi et al. 2004). There are several differ-
ent desktop grid middleware that can be used to create such an infrastructure. Examples include BOINC,
CONDOR, Platform LSF, Entropia DCGrid and Digipede Network. Of these, CONDOR (Litzkow, Liv-
ny, and Mutka 1988) is arguably the most popular as it has a large deployment base, it is relatively easy to
use and is available free of cost. However, it is also large (it is general purpose), complex (there are many
features) and unsupported (the running of the application using the middleware is the responsibility of the
user). Further, like all distributed computing applications, grid desktop middleware uses different com-
munication schemes that need to be matched with local security policies. Some organizations may prefer
servers over peer-to-peer processes or vice versa, or indeed only allow communication via web services
or through specific ports in a computer (for example sharing port 80 = the port that supports the World
Wide Web). This can be problematic if the scheme and policy do not match as the user cannot control
such things easily. Further, there may well be the need for specific message compression or encoding that
the middleware may not support. The fact that many COTS Simulation Packages (CSPs) used in industry
on��� ����� ������ !
���
���� >
����
@� ����
� �����
���� �
��������� ������� ��� �
��� �ecause it either
does not run on that operating system or runs with limited functionality.

217

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

 Most Desktop Grid middleware works on the Manager-Worker principle. The Manager is a job dis-
patcher that receives and sends jobs out to Workers. Workers work on these jobs and return results. Most
�
�����������
���

���
� �������0Q��:����

�
���� ���� ����
���
���������������
�
�������X��������������
operating system constraints, the use of a Desktop Grid to support simulation is more complex and fol-
lows different design principles. These design principles (Mustafee and Taylor 2008) are summarized be-
low.

2.1 Middleware Integration Approach
To expand the issue introduced above, jobs sent from the Manager to a Worker ���
����������
����0
��d-
��Z:������

�
�������������������
������������

�����
��
������
������
������������
�������Z����
����n-
�
���������������������������
;�������

����������������+�Q���

����������������������

�����
����
���
n-
put data. ��

�

�������
�������������������[�
��\�����
�����]��������
����������

�����\	^������\	^�

����������
�����
�����������
��������
����������+�0Q��:������������������������

�����
���
�������������
model and the data needed for a simulation run. This approach is more common for applications such as
the Java Virtual Machine, i.e. the application needed to run Java programs. To be successful, this ap-
proach would require the CSP vendor and the middleware supplier to agree to either produce a specific
version of the middleware supporting the CSP or to bundle the CSP as part of the middleware. Neither
approach is particularly attractive.

 Within the context of this tutorial, the next two principles are specific to CSP software.

2.2 CSP-Runtime Installation Approach

This approach involves the installation of a CSP package at runtime, i.e., just before the simulation expe-
riment is conducted. In this case the CSP is sent to the Workers along with the model and data. This ap-
proach allows for flexibility to send jobs to machines which are free irrespective of the configuration of
that machine. However this approach may not be feasible for a number of reasons: (1) the size of CSPs
frequently exceed 100s of MBs and it may not be feasible to transfer such large amounts of data to mul-
tiple Workers over a network, (2) the CSP will first need to be installed on the desktop grid node before
the simulation can start, (3) such an installation is normally an interactive process and requires human in-
tervention, (4) an installation normally requires administrative privileges on the Worker computers, and
(5) transferring CSPs may lead to a violation of the software license agreement that may be in place be-
tween the CSP vendor and the organization (if the number of Desktop Grid nodes executing simulations
exceed the number of licenses purchased).

2.3 CSP-Preinstalled Approach
This involves installing the CSP at the Worker as a normal installation. The jobs sent to the Workers are
therefore the model and the data, removing the issues described above. As simulations are created by
trusted employees running trusted software within the bounds of a fire-walled network, security in this
open access scheme could be argued as being irrelevant. In this environment the sandbox security me-
chanism described above may be forfeited. This methodology allows for flexibility in allowing jobs to be
packaged and sent to machines with the right configuration.
 To illustrate the benefits of Grid Computing we now present two case studies. The first is a scientific
case from Systems Biology that describes how the SIMAP Utility developed at Brunel University was
�[�
�-����������
���������
���
���������\X`{X|��

���������
���������
�������
��������������>���
et al. 2009). The second is a case study from Saker Solutions, a simulation consultancy in the UK, that
�
��� ���� �\	^-^��
�
������� +��������� �
���
�-house grid computing software called SAKERGRID to
speed up simulation projects (Wood et al. 2010).

218

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

3 SYSTEMS BIOLOGY

In terms of Systems Biology, a biological system is a set of complex interactions (network structure) ra-
ther than many individual molecular components. This can be anything from a simple biological process,
such as a biochemical reaction cycle, a gene regulatory network or a signaling pathway in a cell, tissue, an
entire organism, or even an ecological web. Simulation can involve, for example, the process of simulat-
ing an abstract model of a biological system to test hypotheses with in-silico experiments or to provide
predictions to be tested by in-vitro and in-vivo studies. In order to achieve the goal of answering biologi-
cal questions, models have to reliably depict a biological system and be able to predict its behavior.
 The SIMAP Utility is a platform-independent software environment for biomodel engineering devel-
oped at Brunel University (Wang et al. 2009). This supports the modeling of biochemical networks, and
also the simulation and analysis of the dynamic behavior of biochemical models. It uses a modular archi-
tecture that allows other developers to easily plug-in various components and to update them without
reinstalling the whole tool. The system has been developed using Java technology and can be run on
many platforms that support JRE (Java Runtime Environment 1.5.x or higher). The tool can compute
changes of species concentrations over time with particular parameter values by simulating a Systems Bi-
ology Markup Language (SBML) model numerically with SOSlib. The simulation results can be pre-
sented in two ways: plots and report text files. The SIMAP Utility consists of several plug-in modules
which include the Data Management module, Simulation and Analysis Tools module, and a Grid Access
Point. The Simulation and Analysis Tools module includes a set of computational modules for simulating
and analyzing biochemical models. These are an Ordinary Differential Equations-based simulator, a sen-
sitivity analyzer, a parameter scanner, a model fitting module, a gene knockdown analyzer, and a model
logic checker.

3.1 CONDOR

For this research we used CONDOR as it has a large deployment base, it is relatively easy to use and is
available free of cost. CONDOR is an opportunistic job scheduling system that is designed to maximize
the utilization of workstations through identification of idle resources and scheduling background jobs on
them (Chapman et al. 2005). A collection of such workstations is referred to as a CONDOR pool. Dual-
core PCs are increasingly available in workplaces, and CONDOR exploits these multiple cores transpa-
rently.
 The CONDOR architecture defines resource providers and resource consumers over a manager-
worker architecture. The resource providers make their resources available to CONDOR for the
processing of jobs that originate from the resource consumers. The jobs to be processed may have depen-
dencies with regard to the operating system and the physical machines on which the job is to be
processed, the memory and disk space required, the available software libraries that are needed and so
forth. On the other hand, the resource providers may have certain constraints (e.g. only Java jobs can be
run) and pref������
�������Q��
���
�
���
����������
���������
�����0Z:�

��
������
��
��#���
��������
���
access to their resource is granted. CONDOR allows resource consumers and resource providers to adver-
tise these requirements, conditions and preferences by providing a language called classified advertise-
ments (ClassAds) that provide a flexible and expressive framework for matching jobs originating from the
former with resource offers from the latter. The ClassAds are scanned by a CONDOR matchmaker agent
running on only one computer in a CONDOR Pool to find a match between the requirements advertised
by the resource consumers and the resources advertised by the resource providers. Once a match has been
found by the matchmaker agent, it notifies both the resource consumer and the resource providers. Upon
receiving this notification, the resource consumer claims the resource advertised by the resource provider
through a claiming protocol. The job is executed by the resource provider and the results of the computa-
tion are returned back to the resource consumer.

CONDOR allows end-users to submit jobs and to query job status using two alternative mechanisms:
(a) through use of a submit description file, and (b) through use of programming APIs that are exposed by

219

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

CONDOR as Web Services (Litzkow, Livny, and Mutka 1988). The latter approach can integrate
CONDOR capabilities into existing software, and this is the approach used by us to integrate the SIMAP
Utility with CONDOR (through a Java-based job manager utilizing CONDOR Web Services).

3.2 SIMAP Utility Requirements for Grid Computing
In order to integrate Grid middleware with the SIMAP Utility, the key questions were how to minimize
work in porting and how to make the use of such technologies straightforward to support and configure.
Ideally, the SIMAP Utility would just need some simple information, such as the Grid server name and an
account, so that jobs can be simply submitted to the Grid. When jobs complete, the Utility should be able
to retrieve output files either through notifications or periodically via queries. Notification means that the
}�
�
��������������������������
������������
������0�

���:�������
�����
�
���
��
��]����������

�
����
���
is not allowed in many cases because of security policies or firewall settings (a trend that is getting more
and more severe each year). Owing to these security considerations, it was decided that a query-based
approach with a request/reply protocol should be use������

���
������
�����������
�������[�
��+���

�
^�
���������������������[�
��+���

�^�
���

����
�����
������}~�
���������
�������
����
���������
����

���
APIs of the CONDOR based job manager, which is a Java-based high level facade (API packages) for
submitting/querying/retrieving jobs between the SIMAP Utility and the CONDOR pool. This is now de-
scribed.

3.3 CONDOR-Based Job Manager

The integration of the SIMAP Utility with the CONDOR-based job manager through client side APIs is
illustrated in Figure 1. The Utility generates the required input file with a set of scanning parameters for
each simulation job, and then wraps the job command (shared by all jobs of a simulation) and the corres-
ponding input file into a job request and sends it to the CONDOR Pool resource consumer agent. The
Utility will query the job status after submission of job requests, and if any job completes correctly, it will
retrieve the relevant output files. During implementation testing of this approach two problems were iden-
tified: job submission and output file retrieval. When the number of job requests is large, for example
thousands, the submission procedure itself will take a lot of time (half hour or more). In order to obtain
��������
��
�����\X`{X|�^����
���
���������
���������� was queried. If the query frequency is not ap-
propriate, the useless workload may be put to the resource consumer agent by sending too many queries
or a bottleneck of many output files waiting for retrieval may accumulate. This is further complicated by
the small runtime of a typical Systems Biology simulation (less than a minute).

 With regard to submission time, the relationship between submission time and job execution time
was also investigated. In the first version of the job manager, all job requests were submitted in one
transaction. This means that the CONDOR resource consumer agent could submit jobs to other machines
to execute until all job requests are received. This led to delays as the transaction had to be completed
prior to commencing results collection. To improve this, job requests were submitted in batches. This al-
lowed the batched jobs to be distributed and to commence their execution before more jobs were received
by the CONDOR Pool.
 The retrieval of output files is dependent on the decision as to when to query job status. In the case of
thousands of jobs, all files cannot be retrieved at the time when all jobs complete because the size of thou-
sands of output files can reach several Gigabytes. A simple solution to this is to check the status of each
job in a loop and retrieve its output file at once if it completes until all jobs complete. The disadvantage of
this approach is that many useless queries regarding status of unfinished jobs may be made. In order to
improve the query efficiency, a feedback control-based approach was developed. Here the feedback used
for each query is the jobs completion rate R. This is the number of completed jobs divided by the number
of queried jobs. For example, consider the situation for 100 jobs in total, where a query checks the status
of the first submitted 20 jobs. If 15 jobs complete, then the jobs completion rate for this query is 15/20. If
R is smaller than a threshold T, it indicates that the current query frequency is faster compared with the

220

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

job completion speed. In this case, the query interval is increased by making the query process sleep
longer before launching the next query and decrease the number of queried jobs in the next time. On the
other hand, if R is larger than T, it indicates that the query frequency is slower compared with job comple-
tion speed so the query process should increase the rate of querying. Therefore, the interval between two
queries relies on the jobs completion rate. The effect of this feedback control-based approach is to throttle
job query frequencies by reacting to the job completion rate and thus balancing output vs processing.

Figure 1: The SIMAP Utility Grid Access Point and CONDOR Pool Integration: Grid Access Point Com-
ponents and Interaction

3.4 EXPERIMENTS AND RESULTS

In order to investigate the performance of the SIMAP Utility with a CONDOR Pool using the modifica-
tions described above, a set of experiments were performed on a representative case study, the mamma-
lian ErbB signaling pathway (Chen et al. 2009). Briefly, in this pathway the ERbB1-4 receptor tyrosine
kinases (RTKs) and the signaling pathways they activate govern most core cellular processes such as cell
division, motility and survival and are strongly linked to cancer when they malfunction due to mutations,
etc. An ODE-based mass action ErbB model has been constructed and analyzed in order to determine
what roles each protein plays and to ascertain how sets of proteins coordinate with each other to perform
distinct physiological functions. The model comprises 499 species (molecules), 201 parameters and 828
reactions. The model implements compartments for plasma, endosomal membranes, cytosol, nucleoplasm
and lysosomal lumen, as well as clathrin-mediated endocytosis.
 The testbed comprised of a CONDOR Pool with 32 Desktop PCs (64 cores). Each machine was con-
figured with dual 2.1GHz cores and 2 Gigabytes RAM. A further PC configured with the same specifica-
tion hosted the resource consumer agent. All the machines were connected to the network at 100Mbps.
On a single PC of this specification using a single core a single simulation in our case study has an ap-
proximate run time of 20 seconds. The job size was around 1 MB as were the output results files. To in-
vestigate the performance 32 to 4096 simulation jobs were ran in steps. The corresponding speedup graph
is shown in Figure 2. This shows that the CONDOR implementation achieved a speedup of around 12 us-
ing 16 machines (32 cores). When the number of jobs is small, such as 32 or 64, fewer machines are ef-
fectively used in the CONDOR Pool giving a smaller speedup of around 6. Another conclusion from the
results is that the speedup does not increase beyond 16 machines (i.e. 32 cores). This indicates that the
system has entered a full loaded status with this kind of job granularity.

SIMAP Utility Grid Access Point

Input
files/commands

Output files

submit

query
progress

retrieve
files

Resource
Consumer
Agent

CONDOR Pool

221

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

Figure 2: Speedup of jobs on different numbers of machines

 To determine if better performance could be achieved the role of the CONDOR resource consumer
agent was studied. The small model size and the relatively large data file might mean that this agent was
�������������������
������
����������������������������

��
����������������~����������� confirm this as-
sumption, a test was performed which investigated the effect of an additional resource consumer agent.
512 original jobs were submitted (20s computation time) over 32 machines through one resource consum-
er agent and then through two resource consumer agents. The performance improvement by using 2 re-
source consumer agents is shown in Figure 3 and demonstrates that using two resource consumer agents
achieves a better speedup than just one.

Figure 3: Relative speedup (32/16 machines) with increasing job granularity (1 resource consumer agent)

222

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

 Overall what have we learnt from this study? Grid Computing using CONDOR and a Desktop Grid
can be highly beneficial to Systems Biology, especially when there are a huge amount of runs. Typically

�����Q����Z����
����
��
��
��������
�����������������
��
�

�����������������
��������[�
��\�����
�������x-
cellent speedups are usually derived from jobs with long execution times relative to communication over-
heads. However, this case study has served t��
���� ������
����� �
����� ��
����
���������
������
��������
achieved. Further, this has shown that the use of desktop PCs, a resource available in many different
companies and institutions, can be deployed to benefit this highly useful scientific application.
 X�����������
���

�����

���
���
��
�����������

����������-the-
�������
���������
�����
�\X`{X|�
has its drawbacks. Much of this work studied how to get the most out of CONDOR rather than SIMAP.
The project team spent several months experimenting with different techniques and approaches. In the
end this led to a successful result. The team also has experience in developing Grid solutions for CSP ap-
plications (Mustafee and Taylor, 2009). For technologies such as CONDOR, this leads to many new
problems. Further, an expansion to combining Distributed Simulation with Desktop Grid computing may
be better developed with Grid middleware dedicated to simulation. Given the specific needs of CSP
software management and varying organizational security policies, it could be argued that developing
Grid middleware dedicated to CSPs is a better approach.
 The next case study takes this view and presents an in house approach to Grid Computing.

4 AN INDUSTRIAL CASE STUDY

Some (not all) simulation runs take a long time to execute and some simulation experiments (not all) have
a large number of runs. Flexsim is a CSP that is a PC-based, object-oriented simulation tool used to mod-
el, simulate, and visualize any manufacturing, material handling, logistics or business process. Flexsim
has been developed to allow users to build models directly in a 3D environment with the ease of conven-
tional 2D models whilst still allowing more advanced modelers the flexibility to design new objects and if
required even embed their own C++ code into the tool, thus allowing Flexsim's modeling objects to be
customized to exactly match the processes being studied. As with other CSPs, simulations in Flexsim can
take a long time.
 Until recently Flexsim, in common with most simulation software required a hardware dongle, the
������
�������������
�����
��
������
���������������������������������Z

��	��������~�������������e-
leased a version of its software which utilizes a soft license so that dongles do not need to be present. A
local license allows one instance of Flexsim to run on the machine that it is connected to. A network li-
cense allows multiple machines to use a pool of licenses that are available from the license server. Using
a network license means that any number of machines can have Flexsim installed, but the number of in-
stances that can be run simultaneously is limited by the number of licenses in the pool. This means that
any Grid Manager not only has to limit jobs to the machines that have Flexsim installed but also has to
monitor the number of licenses available in the pool. The input and output data for a Flexsim model is
typically stored using one (or more) of three different mechanisms: internal Flexsim tables, an Excel
spreadsheet (either directly, via a DSN or via an intermediate flat text file, such as a CSV) or a database
(via a DSN).
 Handling unforeseen problems that occur whilst a scenario is being run in a distributed environment
is one of the key issues of implementing a Desktop Grid. Individual machines may crash or be interrupted
������
���������
���������
������
����������������������
�
���

��
�������
�����
��������
������0�������
�����
�����:�
����[�
���~������������
��

����
��
�
��

���

�����������Q����
�������������
�����������������a-
chine, but no results are returned. Replications which are not completed because of a failure outside of
the simulation need to be automatically re-run without further input from the user. Equally, if the failure
is related to the simulation then this needs to be logged and reported to the user.
 Whilst models are in development it is possible that a bug will be encountered that prevents a scena-
rio from completing. In this event a Grid must ensure that the job is halted allowing other jobs to use the
computing resources and communicate as much information as possible to the modeler that submitted the
suspended job to aid them in eliminating the cause of the problem. Of course, it is a fundamental require-

223

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

ment that the individual replication can be reproduced in isolation so that the exact situation identified
from a replication running on a Grid can be reproduced on a standalone machine.
 Given that even when using a Desktop Grid it may take a considerable amount of time to run a large
number of scenarios of a particular model, it is important that an appropriate prioritization strategy is em-
ployed by a Grid Manager to allow more urgent jobs to supersede presently queued jobs if the need arises.
Scheduling is a complex topic in any paradigm and in the case of distributing simulation experimentation
this is no less the case. Machines (resources) have different speeds and capabilities, models (jobs) require
different amounts of time from the resources and users (customers) have different priorities.

4.1 SAKERGRID

 SakerGrid has been developed by Saker Solutions in the UK as a dedicated Desktop Grid solution for
CSPs. It has been configured to support a range of simulation tools. The current implementation supports
the CSP Flexsim.
 SakerGrid uses a CSP-preinstalled approach as (1) it does not require any modification to the CSPs,
thus CSPs that expose package functionality can be grid-enabled, (2) it does not require any modification
to the grid middleware, (3) CSPs that are usually installed on the PCs of the simulation practitioners can
be utilized for running simulation experiments from other users in the background and (4) it supports the
restrictions imposed by the license requiring the presence of a hardware dongle. In SakerGrid, a Worker
has been designed to integrate with CSPs by using this approach. When the Worker is started it scans the
machines of the Desktop Grid for all of the available simulation packages including various versions of
the same package and where appropriate, libraries, and registers these with the Grid Manager. In this way
SakerGrid supports different products and versions of products transparently to the user. When the Grid
Manager is ready to distribute a block of work it will use this information to determine which of the
Workers are capable of handling it.
 The key elements to creating a grid-based solution is really in the integration and support of the user
interface and the CSP. One might therefore take the view that it does not matter which middleware is
used. However, the motivation for developing a dedicated system is that Saker wished to supply a sup-
ported grid solution in an unknown, possibly highly restricted, security environment that is optimized for
simulation and provides for future expansion to allow for distributed simulation.
 As shown in figure 4, there are three components to SakerGrid; the Manager, the Worker and the
Client. Each deployment consists of one Manager that handles the job queue and dispatches the jobs to
>�����
�
���������
����������������������
�������
���>��������������������tes on the Worker the results
are returned to the Manager where they are combined with the results from the other Workers. At this
point the Worker is available to receive the next block of work from the Manager. The Client is used by
the analyst to submit jobs to the Manager, monitor the progress of their execution and to download the re-
sults when they are complete.

Figure 4: SakerGrid Architecture

224

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

 The SakerGrid middleware isolates the CSP from the network and other implementation details of the
Grid. This means that the CSP can be used without modifications. All non-sensitive models and datasets
are cached by the Workers to reduce the amount of network traffic and to reduce the start-up time of the
Worker when it is issued a job. The modular architecture of the Manager allows the models and data to be
stored either locally or on a central server, whilst the jobs are pending in the queue before they are dis-
patched to the appropriate Worker when required.
 The reduction in running time that has been achieved can be clearly seen in Figure 5. It gives a com-
parison of the overall running time of 1, 5, 10, 20, and 40 replication scenarios with a model that runs for
approximately 7.5 minutes per replication The model used was a finished client model which although a
�����
�����
��������Q�������
�����������������������
����������
�����

�����
������Q���
����

���������������
advantage of allowing experimentation with significant numbers of replications. Whereas previously a 40
replication scenario would have be�������������������
������Z���
�����
�����������������������
�� ��

�
than 30 minutes giving almost instant results. Similar reductions in overall running time have also been
observed on larger models with some taking up to 14 hours per replication.

Figure 5: Overall scenario time for a model with a run time of approximately 7.5 minutes per replication

 The experience of using SakerGrid to test models during development has been that the overall
project duration is reduced by approximately 10%. However, the amount of testing that can now be ac-
complished in this time is far greater than if the test packs were run sequentially. This enables the modeler
to not only test the specific area of the model that has been modified during that phase of the develop-
ment, but also to run a comprehensive regression test without increasing the duration of the project. This
in turn has lead to higher quality, more robust models.

5 SIMULATION INTEROPERABILITY

The previous sections have successfully shown how Grid Computing can benefit simulation by using
many computers. Simulation interoperability presents alternative sources of benefit from using multiple
computers. It can be defined and interpreted in many different ways. For many simulation applications,
interoperability of a simulation system with other information systems may be a necessity. A typical sce-
nario for this type of simulation interoperability would be the initialization of the model with input data
from a database or for storing results.

A different interpretation of simulation interoperability concerns the question of how different, poten-
tially heterogeneous simulation systems can interoperate with each other. For example:

225

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

� An automotive company is planning to build a new factory. The manufacturing line is modeled

and simulated using a CSP. Experimentation investigates how many engines can be produced in
one year against different levels of resources (machines, buffers, workers, etc.)

� A regional health authority needs to plan the best way of distributing blood to different hospitals.
A model is built using a CSP. Experimentation is carried out to investigate different supply poli-
�
�
����
�
��0������:���������������
������

����
��
�

� A police authority needs to determine how many officers need to be on patrol and how many
need to be in the different police stations that it manages. A model is built and experiments are
carried out to investigate staffing against different scenarios (football matches, terrorist attacks,
etc.)

In Schumann, Schulze, and Straßburger (2000) the former form of interoperability is described as
0�������:�����������������
�0������%:�

�����
���
����������
�
������

�
���
����

��

�
����������
��ndards
and applications for both forms of interoperability and illustrates potential usage scenarios.

5.1 Interoperability between simulation systems and other information systems

Interoperability between a simulation system and other information systems may be required for different
purposes. A very common scenario is the retrieval of simulation initialization data from a data base. In a
simulation application supporting the operational control of a production system this could involve the
download of order data from an operational Enterprise Resource Planning (ERP) system which then
serves as the basis for verifying different short term control strategies. The feedback into a Manufacturing
Execution System (MES) could be the best determined order sequence.

In a more general case, interoperability may be required to automatically create a simulation model.
In such approaches of automatic (or semi-automatic) model generation a simulation model is not created
manually using the modeling tools of the chosen simulator, rather it is generated from external data
sources using interfaces of the simulator and algorithms for creating the model. This is often also referred
����
�0����-��
�����������������
��:���������������	���

�������%'�'#����������

�����
�������������
�
is that they, if successful, can reduce the amount of time needed to create a simulation model as well as
the expertise needed for creating and conducting simulations. There is a wide variety of potentially rele-
vant external data sources and IT systems. They include systems relevant during the product develop-
ment, like Computer Aided Design (CAD) and Computer Aided Planning (CAP) and systems from pro-
duction and shop floor control, like ERP and MES.

What is required to enable the depicted types of interoperability? Generally speaking, there must be
appropriate interfaces and data formats (preferably standardized) to enable the required information ex-
change syntactically and semantically. First of all, the simulation systems must have the appropriate ca-
pabilities. Regarding interfaces, many simulation systems at least facilitate data exchange with spread-
sheets and data bases in some way. Some also provide network access via socket interfaces. The import of
XML files is also generally possible, but often has to be implemented in the simulation model itself. Most
simulation systems also provide interfa��
����
��������Z������������
������
���
����
�
��0{���
��������:#��
although the capabilities vary quite significantly. These interfaces help to solve the syntactic interopera-
bility problem, i.e. they provide the means to technically exchange data with other IT systems.

Secondly, the semantic issue, i.e., in which format data exchange should take place, must be ad-
dressed. There are only very few standards in support of this issue. They include the older SDX format
(Simulation Data Exchange, see (Sly and Moorthy 2001)) and the quite young SISO standard CMSD
(Core Manufacturing Simulation Data, see (SISO 2009)).

SDX is an XML-based file format for exchanging primarily geometric information. SDX is a vendor
dependent format and is only supported by one major CAD system (Factory CAD) and some CSPs
(AutoMod, WITNESS, Simul8, Plant Simulation). SDX can be regarded as a viable solution for exchang-
ing geometry data, primarily in a uni-directional way from the CAD system to simulation system. The ba-
sic idea is that geometric objects can be defined in the CAD system as relevant for the simulation and that

226

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

they can carry parameters identifying some basic properties for the simulation. Most requirements that go
beyond geometrical information can not be transferred using SDX.

CMSD, on the other hand, represents an attempt to create an open standard, which can transfer not
only layout- and structural data of a system, but also system load data (e.g. orders), control data (resource
allocations, shift plans, etc.) and several other items. CMSD is also based on XML. Its main advantage is
that is represents an open standard. Limitations exist for describing the dynamic behavior of a model.
Also, CMSD is currently not supported by any major system vendor. Still, it holds a large potential for fa-
cilitating interoperability between simulations systems and other information systems. It could therefore
become a future standard for integrating simulation systems into the IT landscape of companies.

5.2 Interoperability between multiple simulation systems
Interoperability between multiple simulation systems concerns the question of how models, developed in
potentially different commercial simulation packages (CSPs) can interact with each other. One example
based on a practical scenario from General Motors is given in Miller et al. (2007). In this scenario, parts
of the automotive plant (e.g., Body Shop, Paint Shop, General Assembly) are modelled independently and
at different levels of resolution in different CSPs. The question addressed in their paper is how these
models can be combined into a single model of the factory for investigating the dependencies between the
models. The solution presented suggests the use of aggregation techniques to create a single model repre-
senting the overall factory at the desired aggregated (less detailed) level of resolution.

While this may have worked for this particular scenario, the more general solution from the interope-
rability perspective would have been to simply stick with the existing models and combine them into a
distributed simulation (Fujimoto 2000).

The main motivation for using distributed simulation in this case would therefore be to facilitate
���������
�����0����
�����������:��Z

�
���

�����
��
�
������

�����

�����
������
������������������o-
tentially alleviating the cost of creating new models. Other motivations may also exist (e.g., memory and
processing requirements, geographically distributed resources), but shall not be discussed in this section.

When combining models developed in multiple CSPs we again have to find solutions for the syntactic
and the semantic interoperability. However, as we are trying to link simulation models together at run-
time, i.e., in an on-line fashion, we have additional requirements compared to what was discussed in the
previous section. We have to implement efficient synchronization mechanisms - the core problem when
applying distributed simulation techniques. Several well known approaches to the problem of synchroniz-
ing logical simulation clocks exist. They can be classified into conservative and optimistic approaches. As
most of the CSPs in use do not provide any efficient state-saving techniques, one is typically forced to
apply conservative approaches with lookahead. Related challenges can be imposed by the capabilities of
the respective CSPs (access to event lists, inclusion of external events, etc.) - see Strassburger et al.
(1998) for a detailed discussion of these issues.

Distributed simulation typically requires the use of a distributed simulation middleware. A distributed
simulation middleware is a software component that implements the distributed simulation algorithms to
achieve synchronisation and to efficiently exchange data at runtime. Middleware such as HLA-RTI (IEEE
2000) provides the advantage of being based on an open standard. The High Level Architecture for Mod-
eling and Simulation (HLA) defines an interface specification, which simulations have to use to interact
with each other. This interface specification can be seen as a solution to the syntactic interoperability
problem. The question if and how a CSP can be brought to communicate via this interface specification is
a complex problem, but several CSPs have been shown to be able to achieve this task (Straßburger 2006,
Taylor et al. 2006).

Towards the semantic interoperability problem, even with the HLA no final solution exists. HLA
supports defining a common semantics on a very basic level with its object model templates. They allow
the definition and description of the data to be shared between CSPs and their models. Using reference
object models one can establish a common frame of reference for a certain domain (e.g., manufacturing,

227

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

real-time training simulation, etc.). Mechanisms to match simulation models which differently interpret
certain data to be exchanged are not commonly available yet.
 A group developing standards for facilitating interoperability between different CSPs is the Commer-
cial Off-the-Shelf Simulation Package Interoperability (CSPI) Product Development Group (PDG) within
SISO. A first standard of this group has been recently approved (SISO 2010) and defines reference mod-
els for common CSP interoperability problems. They build the basis for discussing interoperability prob-
lems involving multiple simulation systems and are ultimately targeted at providing a basis for integrating
appropriate CSP-to-CSP interfaces into the commercially available simulation systems. The Interopera-
bility Reference Models (IRMs) are intended to be used as follows:

� To clearly identify the model/CSP interoperability capabilities of an existing distributed simula-
tion, e.g., the distributed supply chain simulation is compliant with IRMs Type A.1, A.2 and B.1.

� To clearly specify the model/CSP interoperability requirements of a proposed distributed simula-
tion, e.g., the distributed hospital simulation must be compliant with IRMs Type A.1 and C.1.

An IRM is defined as the simplest representation of a problem within an identified interoperability
problem type. Each IRM can be subdivided into different subcategories of problem. As IRMs are usually
relevant to the boundary between two or more interoperating models, models specified in IRMs are as

������
���

�������0�������:�����
����������
�
���������������������
����

���������

��������
��

�u-
lation mode�
�����
�������������������
�����
�����������������\	^
������
����
������0������:���������e-
ments that can be mapped onto particular CSP elements. Where appropriate, IRMs specify time synchro-
nization requirements and present alternatives. IRMs are intended to be cumulative (i.e. some problems
may well consist of several IRMs). Most importantly, IRMs are intended to be understandable by simula-
tion developers, CSP vendors and technology solution providers. A previous advanced tutorial (Taylor et
al. 2009) has addressed this topic.

6 CONCLUSIONS

Motivated by advances in e-Science, this paper has presented two threads of advanced computing as ap-
plied to M&S. There are many more such as Groupware and Cloud Computing, and the benefits of these
are being felt in many areas. M&S has to a certain extent been neglected but is catching up quickly. We
hope that this advanced tutorial will promote discussion and more demand of these technologies.

ACKNOWLEDGMENTS

The authors would like acknowledge the contributions made by Jun Wang, Xuan Liu, Qian Gao and Da-
vid Gilbert of Brunel University to the Systems Biology work.

REFERENCES

Bergmann, S. and S. Strassburger. 2010. Challenges for the automatic generation of simulation models
for production systems. In Proceedings of the 2010 Summer Computer Simulation Conference, ed. A.
Bruzzone, et al. 545-549. San Diego, California, Society for Computer Simulation.

Chapman C., C. Goonatilake, W. Emmerich, M. Farrellee, T. Tannenbaum, M. Livny, M. Calleja and M.
Dove. 2005. Condor Birdbath-Web Service interfaces to Condor. In Proceedings of the 2005 UK e-
Science All Hands Meeting. 737-744.

Chen, W.V., B. Schoeberl, P.J. Jasper, M. Niepel, U.B. Nielsen, D.A. Lauffenburger, and P.K. Sorger.
2009. Input=output behavior of ErbB signaling pathways as revealed by a mass action model trained
against dynamic data. Molecular Systems Biology 5: 239.

Choi, S., M. Baik, C. Hwang, J. Gil, and H. Yu. 2004. Volunteer availability based fault tolerant schedul-
ing mechanism in desktop grid computing environment. In Proceedings of the 3rd IEEE International
Symposium on Network Computing and Applications, 366-371. IEEE Computer Society, Washington,
DC.

228

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

Foster, I., and C. Kesselman. 1998. The grid: blueprint for a new computing infrastructure. San Francis-
co, CA: Morgan Kaufmann.

Fujimoto, R.M. 2000. Parallel and Distributed Simulation Systems. New York, NY: John Wiley and Sons
Inc.

IEEE 2000. IEEE 1516 Standard for Modeling and Simulation (M&S) High Level Architecture (HLA).
New York, NY: Institute of Electrical and Electronics Engineers.

Litzkow, M., M. Livny, and M. Mutka. 1988. Condor - a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Computing Systems, 104-111. Piscataway, NJ, IEEE
Computer Society Inc.

Miller, J.S., R. Combs, E. Foster, J. Tew, D.J. Medeiros, and O. Ulgen. 2007. Clinic: aggregating subsys-
tem models into an automotive total plant throughput model. In Proceedings of the 2007 Winter Si-
mulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J.D. Tew, and R.R.
Barton. 241-249. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Mustafee, N., and S.J.E. Taylor. 2008. Investigating grid computing technologies for use with commercial
simulation packages. In Proceedings of the 2008 UK Operational Research Society Simulation Work-
shop. 297-307. Birmingham, UK, Operational Research Society.

Mustafee, N., and S.J.E. Taylor. 2009. Speeding up simulation applications using WinGrid. Concurrency
and Computation: Practice and Experience 21(11): 1504-1523.

Schumann, M., T. Schulze, and S. Straßburger. 2000. Different forms of interoperability for harbor mod-
els. In Proceedings of the International Workshop on Harbour, Maritime & Multimodal Logistics
Modelling and Simulation (HMS). 97-105.

SISO. 2009. Standard for: Core Manufacturing Simulation Data = UML Model (Draft Version from May
11, 2009), Simulation Interoperability Standards Organization (SISO) = CMSD Product Development
Group.

SISO. 2010. Standard for Commercial-off-the-shelf Simulation Package Interoperability Reference Mod-
els (SISO-STD-006-2010), SISO COTS Simulation Package Interoperability Product Development
Group.

Sly, D., and S. Moorthy. 2001. Simulation data exchange (SDX) implementation and use. In: Proceedings
of the 2001 Winter Simulation Conference, ed. B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W.
Rohrer, 1473-1477. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Straßburger, S., T. Schulze, U. Klein and J.O. Henriksen. 1998. Internet-based simulation using off-the-
shelf simulation tools and HLA. In Proceedings of the 1998 Winter Simulation Conference, eds. D.J.
Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, 1669-1676. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers, Inc.

Straßburger, S. 2006. The road to COTS-interoperability: from generic HLA-interfaces towards plug-and-
play capabilities. In Proceedings of the 2006 Winter Simulation Conference, eds. L. F. Perrone, F. P.
Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 1111-1118. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers, Inc.

Taylor, S.J.E., X. Wang, S.J. Turner, and M.Y.H Low. 2006. Integrating heterogeneous distributed COTS
discrete-event simulation packages: an emerging standards-based approach. IEEE Transactions on
Systems, Man & Cybernetics: Part A 36(1):109-122.

Taylor, S.J.E., N. Mustafee, S.J. Turner, K. Pan and S.Straßburger. 2009. Commercial off the shelf simu-
lation package interoperability: issues and futures. In Proceedings of the 2009 Winter Simulation
Conference, ed. M.D. Rossetti, R.R. Hill, B. Johansson, A. Dunkin and R.G. Ingalls, 203-215. Pisca-
taway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wang J, X. Liu, N. Mustafee, Q. Gao, S.J.E. Taylor and D. Gilbert. 2009. Grid-enabled SIMAP Utility:
motivation, integration technology and performance results. In Proceedings of the UK e-Science All
Hands Meeting.

229

Taylor, Mustafee, Kite, Wood, Turner, and Straßburger

Wood, C., S. Kite, S.J.E. Taylor and N. Mustafee. 2010. Developing a grid computing system for com-
mercial-off-the-shelf simulation packages. In Proceedings of the Operational Research Society Simu-
lation Workshop (SW10). 184-191. Birmingham, UK, Operational Research Society.

AUTHOR BIOGRAPHIES

SIMON J. E. TAYLOR is the Founder and Chair of the CSPI-PDG under SISO. He is the co-founding
Editor-in-\�
����������}��X�����
�����|�
������	��
����
��X|	#�Journal of Simulation and the Simula-
�
���>���
����
��
�
���]����
�\��
�����+\!�
�	~[~!��%''5-2008). He is a Reader in the School of
Information Systems, Computing and Mathematics at Brunel and leads the Distributed Systems Research
Group. He has published over 100 articles in modeling and simulation. His recent work has focused on
the development of standards for distributed simulation in industry. His email address is <si-
mon.taylor@brunel.ac.uk>.

NAVONIL MUSTAFEE is a lecturer in Information Systems and Operations Management at the School
of Business and Economics, Swansea University (UK). His research interests are in grid computing, pa-
rallel and distributed simulation, and healthcare simulation. His e-mail address is
<n.mustafee@swansea.ac.uk>.

SHANE KITE has been involved in the Simulation industry for over 25 years. With a background in
Manufacturing Engineering at Ford, Shane developed early applications of graphical simulation in the au-
�����
���
���
������

�����������������
����	���>�����������������
�������
��	
����������	�������
�����
a successful career in simulation. Prior to becoming Managing Director of Saker Solutions he was Presi-
dent of Lanner Inc. and a board member and founder shareholder of Lanner Group, the developers of the
Witness Simulation product. Shane is a member of the INFORMS College on Simulation and the Society
of Computer Simulation as well as the UK Operational Research society. His email address is
<shane.kite@sakersolutions.com>.

CHRIS WOOD is a consultant at Saker Solutions. Since completing his degree in Computer Systems
Engineering at Warwick in 2006 he has worked on a number of both software engineering and simulation
projects. His email address is <chris.wood@sakersolutions.com>.

STEPHEN JOHN TURNER is Professor of Computer Science and Head of the Computer Science Divi-
sion in the School of Computer Engineering at Nanyang Technological University (Singapore). He re-
ceived his MA in Mathematics and Computer Science from Cambridge University (UK) and his MSc and
PhD in Computer Science from Manchester University (UK). His current research interests include: Pa-
rallel and Distributed Simulation, Grid Computing, High Performance Computing and Multi-Agent Sys-
���
��]��

���
��	������������	~	X�
�\X�	�	
�����
���^�������~����������
�
���^{[��]

����
�������

�
is <Steve@pmail.ntu.edu.sg>.

STEFFEN STRAßBUGER is a professor at the Ilmenau University of Technology in the School of
������
��	�
����
���^���
��
��������
�����
����
�������������0�
������{����������:�������������������
Fraunhofer Institute in Magdeburg, Germany and as a researcher at the DaimlerChrysler Research Center
in Ulm, Germany. He holds a Ph.D. and a Diploma degree in Computer Science from the University of
Magdeburg, Germany. He is a member of the editorial board of the Journal of Simulation. His research
interests include distributed simulation as well as general interoperability topics within the digital factory
�����Z���]��

���
�������
���\��
�����	~	X�
�\X�	�	
�����
���^�������~����������
�
���^�������{���l-
opment Group. His web page and email address are <www.tu-ilmenau.de/wi1> and
<steffen.strassburger@tu-ilmenau.de>, respectively.

230

