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ABSTRACT 

This paper introduces ordinary kriging as a new tool to predict network coverage in wireless local area 
networks.  The proposed approach aims to reduce the cost of active site surveys by estimating path loss at 
points where no measurement data is available using samples taken at other points.  To take the effect of 
obstacles on the covariance among points into account, a distance measure is proposed based on an em-
pirical path loss model.  The performance of the proposed approach is tested in a simulated wireless local 
area network. The results show that ordinary kriging is able to estimate path loss with acceptable error le-
vels.   

1 INTRODUCTION 
Designing a wireless local area network (WLAN) involves several steps, including the selection of 
Access Point (AP) locations and frequency/power assignments.  Network performance indicators such as 
data rate, packet loss, and jitter at a particular point in the target area of a WLAN depend on the received 
wireless signal strength at the point.  A WLAN is expected to provide 100% coverage with signal strength 
above a minimum threshold value over all its target area.  To ensure an acceptable level quality of service 
for users of a WLAN, network designers rely on site survey techniques and/or signal propagation models. 
 Site surveying for a new WLAN deployment usually starts with placing APs at preliminary locations.  
Signal strength and other service quality data are then gathered for a set of test points.  This survey data is 
used to modify AP locations to ensure adequate coverage for users in the target area of service.  The 
number and distribution of such test points depend upon the size of the service area as well as its physical 
topology and anticipated number of users.  Proper selection of preliminary AP locations is also important 
for an effective site survey and design (Hills 2001).  There are difficulties associated with data gathering 
as well.  Some parts of the target area might be inaccessible during the survey.  Changes in environment 
may affect quality of measurements and cause variations (Zvanovec, Pechac and Klepal 2003).  Site sur-
vey personnel must be experienced in carrying out complex site surveys and correctly interpreting the re-
sults.  Therefore, site surveying is a very time consuming and labor intensive process.  Several tools have 
been developed to aid site surveys and automate the design process based on preexisting site surveys.  For 
example, Rollabout (Hills and Schlegel 2004, Hills, Schlegel, and Jenkins  2004) is a rolling cart with a 
laptop computer that automatically collects data and creates the coverage map of a WLAN.  Commercial 
site survey software, such as Ekahau (Badman 2006), provide an array of effective tools to survey and 
plan WLANs. 
 If APs are not available to gather test point data, modeling tools are utilized for predicting network 
coverage over a target area.  In this approach, the network coverage is simulated using electromagnetic 
wave propagation models.  Comprehensive surveys on electromagnetic wave propagation models for 
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wireless networks are given in (Sarkar et al. 2003, Zvanovec, Pechac and Klepal 2003).  Simulation pro-
vides a cost-effective way to analyze alternative design configurations.  In addition, simulation can be 
used to determine preliminary locations of APs before a site survey.  However, the accuracy of a coverage 
prediction depends upon the propagation model and a detailed and accurate representation of the target 
area.  Most modern simulation software are capable of reading maps or blueprints and enable users to de-
fine objects on the map of a target area.  However, creating a realistic blueprint of the target area includ-
ing walls, wall types, furniture, stairs and elevator shafts can be costly and time consuming.  In addition, 
simulation results should be verified in a site survey before the final implementation. 
 In this paper, an ordinary kriging-based empirical approach is proposed to estimate the signal strength 
in WLANs.  The main objective is to create an accurate and complete network coverage map of a WLAN 
from a limited number of test point measurements.  Therefore, the cost of time consuming site surveys 
can be reduced.  In addition, the proposed approach can be used to estimate the network coverage where 
samples could not be taken due to inaccessibility.  Finally, the proposed approach can also be used to va-
lidate the accuracy of measurements during a site survey. 
 There has been limited work in the literature to estimate the network coverage in wireless networks 
using empirical approaches.  In Nasereddin, Konak and Bartolacci (2005), a radial basis function artificial 
neural network (ANN) is proposed to estimate the signal-to-noise ratio, which is an important indicator 
for quality of service in cellular wireless networks.  To predict the signal-to-noise ratio at a point p, this 
ANN approach utilizes three inputs: the x-y coordinates (indices) of point p, the index of the transmitter 
with highest transmitted power at point p, and the transmission power.  First the ANN is trained for 
known points, and then the trained ANN is used to predict the signal-to-noise ratio for unknown points on 
the target area.  Neskovic, Neskovic, and Paunovic (2000) propose a backpropagation ANN to predict the 
wave propagation for indoor environments.  In this case, the input of the ANN includes the distance from 
the transmitter to the point, objects along the straight line drawn from the transmitter to the point, and to-
pological information about the target area.  Therefore, this ANN approach aims to replace physical elec-
tromagnetic wave propagation models rather than to predict network coverage from empirical data.  
 Chen and Kobayashi (2002) propose a linear regression approach to determine the parameters of 
wave propagation models for WLANs based on the measured signal strengths at test points.  The fitted 
regression model is used to the estimate signal strengths for unknown points.  Chen and Kobayashi (2002) 
report that the quality of the estimation depends on the underlying wave propagation model.  On the other 
hand, the kriging approach proposed in this paper does not assume an underlying wave propagation mod-
el, and estimations are based only on field measurements.  In a recent paper, Konak (2009) reports that 
ordinary kriging is competitive with radial basis ANNs to estimate the signal-to-noise ratio in cellular 
wireless networks, particularly in cases with limited number of sample points available.  This paper ex-
tends the ordinary kriging approach proposed in (Konak 2009) by considering path loss due to obstacles 
and other factors in indoor environments.  Because WLANs are mainly used in indoors, the attenuation in 
signal strength due to obstacles, such as walls, building structures and large furniture, is significant.  
Therefore, obstacles in the environment must be incorporated into estimation.  However, this is not possi-
ble in the kriging approach proposed in (Konak 2009).  To take obstacles into account, a new distance 
measure is proposed based on an empirical path loss model.   

The paper is organized as follows.  In Section 2, general path loss models are briefly introduced.  Sec-
tion 3 outlines the ordinary kriging.  Section 4 presents the formulated estimation problem and the pro-
posed approach.  In Section 5, computational results are presented using a simulated WLAN.   

2 SITE SURVEY AND PATH LOSS MODELS 
Path Loss (L) is a measure of the reduction in power density of an electromagnetic wave as it propagates 
through space.  Path loss occurs because of many reasons, such as free-space-loss, absorption, and dif-
fraction etc.  In wireless communications, path loss is usually expressed in decibels (dB) as follows: 
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where Pt and Pr are the transmitted and received signal power, respectively.  In a WLAN that meets quali-
ty-of-service requirements and performs correctly with expected data rate, a minimum level of Pr should 
be ensured at each point over the service area of the network.  Therefore, accurately measuring or predict-
ing LdB is an important concern in a WLAN design process.   
 In addition to site survey, path loss can be predicted using several empirical path loss models.  Empir-
ical models to predict path loss rely on average path losses measured for typical types of radio frequencies 
in various environments.  For example, the Okumura model (Okumura and Ohmori 1967; Okumura et al. 
1968) and the Hata model (Hata 1980) were developed based on empirical data measured in several urban 
areas in Japan to predict path loss of terrestrial microwave signals in urban environments.  Interested 
readers might refer to a comprehensive literature survey on empirical path loss models by Sarkar et al. 
(2003).  The most general empirical model for path loss is given as follows (Andersen, Rappaport, and 
Yoshida 1995): 

 
 1 0 10( ) 10 log ( )L d L c d� �  (2) 
where L0 is called reference point loss and represents the loss value at one meter(m) distance away from 
the transmitter, c is the path loss exponent depending on the environment, and d is the Euclidian distance 
(in m) from the transmitter.  Parameters L0 and c have been determined for various environments through 
empirical studies (see Zvanovec, Pechac and Klepal 2003) for possible values of L0 and c in various envi-
ronments. 
 Predicting path loss for indoors, which is the focus in this paper, is more challenging than for out-
doors because the variability in the environment is much greater in short distances, and layout of rooms, 
hallways, furniture as well as various construction materials create complex multipath relationships.  
When electromagnetic signals pass through walls or floors, they attenuate at significant levels.  The path 
loss due to walls can be taken in to account by considering each wall between a receiver point and a 
transmitter as follows (Cheung et al. 1998):  
 
 2 1( ) ( ) r

r W
L d L d L

�

� ��  (3) 

where W is the set of the walls between the receiver and transmitter, Lr is the path loss factor (dB) related 
with wall r.  For example, the path loss due to a typical dry wall is about 5.4 dB (see (Anderson et al. 
2002, Anderson and Rappaport 2004) for path loss values of different wall and material types).  The em-
pirical model given in (3) is simple to implement and widely used in many real-world cases.   

3 ORDINARY KRIGING 

Kriging was developed by Krige (1951) and Matheron (1963) to accurately predict ore reserves from the 
samples taken over a mining field.  Kriging is an interpolation technique based on the methods of geosta-
tistics.  Being concerned with spatial data, geostatistics assumes that there is an implied connection be-
tween the measured data value at a point in a space and where the point is located (i.e., each data value is 
associated with a location in the space).  Assume that each point i in space is associated with a value zi of 
interest.  Let u represent a point where value zu is unknown (i.e., no sample is available at point u) and let 
V(u)={1���Nu} be the set of points in the neighborhood of point u such that value zi is known for each 
point i�V(u).  In ordinary kriging, the most commonly used type of kriging, unknown value zu at a point u 
is estimated as a weighted-linear combination of the known values in V(u) as follows (Issaks and Srivas-
tava 1989):  

    ( )

�u i i
i V u

z w z
�
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 Kriging is used to determine the optimal weights, which produce the minimum estimation error, in 
equation (4).  Weights are calculated as follows:  
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where ,( )i jh�  is a semivariogram which is a function of distance hi,j between points i and j, and � is the
Lagrange multiplier to minimize the kriging error.  A semivariogram represents the spatial covariance be-
tween points in space.  According to geostatistics, as distance hi,j between two points i and j increases, the 
correlation between those points is expected to decrease (i.e., Cov(zi, zj) � Cov(zi, zk) if hi,j � hi,k ).  This 
assumption holds in many real-world cases.  For example, water pollutant levels in samples taken in close 
proximity are expected to be more correlated than in samples taken distance apart.   
 Ordinary kriging assumes that the mean is constant in the local neighborhood of a point.  Therefore, 
the expected value of estimation error at an unknown point u is zero (i.e., �( ) 0u uE z z� � ).  The weights 
determined by (5) are called optimal since they minimize the variance of estimation error (i.e., 

�( )u uVar z z� ).   
 Prior to determining the weights using (5), a meaningful distance measure and semivariogram func-
tion should be selected.  In ordinary kriging, a successful estimation depends on the choice of the semiva-
riogram function.  Although there are an infinite number of possible semivariogram functions, most 
commonly used semivariogram models, such as linear, exponential, and spherical models, provide good 
results for most data sets.  For example, the exponential semivariogram model is given as follows (Bailey 
and Gatrell 1996):  
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where C0 is the nugget effect, C1 is the still parameter, and R is the range parameter.  R defines the dis-
tance beyond which the correlation between two points is assumed to be essentially zero.  The nugget ef-
fect represents variability at distances smaller than the typical sample spacing in the data set.  Still para-
meter is the maximum value of the semivariogram function.  Selecting a good semivariogram function 
requires a careful study of the data set and subjective judgment.  General guidelines for a good semivario-
gram selection are given in Bailey and Gatrell (1996).   
 Kriging has certain advantages over other interpolation techniques.  Kriging is an optimal interpola-
tion method because it produces an unbiased estimate with minimum variance.  An important concern in 
interpolation is to choose the best set of available sample points to be interpolated to estimate an unknown 
point.  The strength of kriging lies in the fact that it defines an optimal set of known points to interpolate 
by adjusting the weights of the known points.  Notice that not only the distances between known and un-
known points, but also the distances between known points are considered in equation (5).  As a result, 
clustered sample points containing redundant information are given less weight in estimation.  Another 
advantage of kriging is that every estimate has a corresponding kriging standard deviation.  Thus, a relia-
bility map of predictions can be produced.  Once the weights and � are calculated using equation (5), the 
variance of an individual estimation �uz can be calculated as follows:  
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4 PROPOSED ORDINARY KRIGING APPROACH TO PATH LOSS ESTIMATION  

The aim of the proposed approach in this paper is to create an accurate and complete network coverage 
map of a WLAN from a limited number of test point measurements.  Let P denote a set of surveyed test 
points during a site survey. For each point i�P, let zi and (xi, yi) denote the measured path loss and the xy-
coordinates of the point, respectively.  The problem is to estimate the path loss at a point u where a mea-
surement was not taken.  We propose a procedure based on ordinary kriging to estimate the path loss at a 
point u as follows: 

(i). Define a neighborhood of point u in the xy plane and identify the surveyed points in this neigh-
borhood.  In this paper, N-nearest surveyed points are used as the neighborhood of point u.  Let 
V(u) be the set of N surveyed points which are closer to point u than other points in set P.  

(ii). Define a distance measure and calculate the distances and semivariogram values among the 
points in V(u) including point u.  

(iii). Calculate the optimal weights using equation (5). 
(iv). Estimate zu using equation (4) and calculate the variance of the estimation using equation (7). 

  
 In Step (i), set V(u) can be determined in various ways.  In this paper, one of the reasons for using N-
nearest neighbors approach is to study the effect of N on the estimation error.  The Euclidian distance is 
commonly used as the distance measure in ordinary kriging, and it can also be used in Step (ii).  In indoor 
WLANs, however, the covariance between two points may not solely depend on the distance between 
points but also on the obstacles between them.  For example, two points close to one another may have 
very different path loss values if there is thick concrete wall between them.  To take the effect of walls 
and other obstacles on the spatial covariance between two points into account, we propose a distance 
measure based on equation (3).  Note that equation (3) is intended to predict the path loss between a 
transmitter and a receiver, and its unit is dB.  In this paper, the distance between two points i and j is de-
fined as follows:  
 

    

2 2
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� �  and Wi,j represents the set of obstacles between points i and j.  The first part 

of equation (8) is the Euclidean distance between points i and j.  The second part expresses the path loss 
due to the obstacles in terms of the Euclidian distance.  For example, assume that the path loss factor of a 
wall between two points is 5 dB and the free space parameter c is 2 for the environment in which the wall 
resides.  The path loss between these two points due to this wall is equal to the free space path loss of 
1.778 m (i.e., 10(5/(10x2))).  Therefore, equation (8) will increase the distance between these two points by 
1.778 m.   
 In this paper, the exponential semivariogram model given in equation (6) is used with parameters 
C0=1, C1=10, and R=100.  Because the power of electromagnetic waves significantly attenuates at first 
several meters, the exponential semivariogram model is a good fit.  By setting R=100, it is assumed that 
the spatial correlation between two points that are 100 m apart is zero.  Although the range of an AP de-
pends on many factors, 100 m is usually assumed as the maximum range of a typical AP.  By setting C0=1 
and C1=10, it is assumed that the maximum semivariogram value is 10 times more than its minimum val-
ue.  Because log10 is used in equation (2), the slope of path loss function is smoother compared to corres-
ponding change in the distance.  Therefore, a small range is preferred for the semivariogram function.  
Note that in this paper simulated data is used to test proposed approach, which justifies the selected para-
meter values of the exponential semivariogram model based on the knowledge of the underlying system.  
In real-world data, however, the parameters of a semivariogram model should be fitted based on empirical 
data.   
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5 EXPERIMENTAL STUDY 

To demonstrate the effectiveness of ordinary kriging in estimating path loss in WLANs, the electromag-
netic wave propagation in a WLAN with three APs was simulated over an area of 100×100 m2 including 
different types of walls as shown in Figure 1.  To generate a data set, the area was divided into 50×50 gr-
ids and path loss values were sampled at all intersection points of the grids (a total of 2601 data points).  
Then, the data points were randomly divided into two sets as a training set (i.e., the set of points where the 
path loss value is assumed to be surveyed) and a test set (i.e., the set of points where the path loss value is 
not known).  Let � be the probability of selecting a data point as a training point while randomly partition-
ing data points into training and test sets.  For example, a set of random training points are marked by (�) 
on the area in Figure 1 for �=.05.  The goal is to estimate the path loss values for test points using train-
ing points.  

 
 

Figure 1:  Simulated WLAN coverage over 100×100 m2 area.  The area was divided into 50×50 grids.  
The path loss values at the corners of the grids were calculated using the empirical model in equation (3) 
with parameters: L0=40.2, c=4.2, and Lr ranges from 3 to 15.  Walls are shown by back lines, and the 
thickness of a wall indicates its path loss factor.  Training points that are randomly selected with �=.05 
are marked by (�).  
 
 This paper proposes a distance measure by equation (8) to take the effect of obstacles on the spatial 
covariance between two points into account.  It is hypothesized that the proposed distance measure is ex-
pected to improve estimation accuracy.  Therefore, in the first experimental study, the proposed distance 
measure was compared to the Euclidean distance for different levels of � ranging from 0.02 to 0.1.  For 
each level of �, 20 random sets of training and test points were generated, and for each random set of 
training and test points, the path loss values at test points were estimated from 5-nearest training points 
using the kriging procedure with two different distance measures (Euclidian distance and equation (8)) as 
described in Section 4.  The Mean Squared Errors (MSE) of estimated values by the two distance meas-
ures were compared using a two-way Analysis of Variance (ANOVA) model including the distance 
measures and � as the factors.  The result of the ANOVA showed that the proposed distance measure 
yielded significantly smaller estimation errors compared to Euclidian distance (the p-value of the distance 
measure factor was 0).  Figure 2 illustrates the box plots of the Mean Absolute Errors (MAEs) of esti-
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mated values by the two distance measures for different levels of parameter � in order to demonstrate 
how much estimated values are close to the actual values.  As seen in Figure 2, the proposed distance 
measure in this paper is effective in reducing the estimation error.  Even for small �=0.02, MAE is less 
than 5%, and the estimation accuracy improves as more training points are used.
 

 
Figure 2: Box-plots of MAEs achieved by (E)-Euclidian distance measure and (L)-the distance measure 
proposed by equation (8) in this paper.  Parameter � indicates the probability of selecting a point in the 
area as a training point.  For each level of �, the simulated data was partitioned into 20 random training 
and test sets.  MAEs were calculated based on test sets. 
 
 In the second experimental study, the effect of the neigborhood size (N of N-nearest neighbor) was 
studied.  Figure 3 illustrates the observed MAE values with diffent levels of N for �=0.05.  Initially, MAE 
quickly improved with the inclusion of a few nearest neighbors, and then it remained steady as additional 
but farther points were included.  This result demonstrates an advantage of kriging- it determines an 
optimal set of known points to interpolate an unknown point by adjusting the weights of the known points 
in equation (4).  Increasing the neigborhood size in the N-nearest neighbor approach may cause clustering 
of training points.  However, kriging sucessfully compensates for the negative effects of this clustering by 
assigning individual points within a cluster less weight than isolated points. 

6 CONCLUSIONS 
This paper proposes ordinary kriging to predict network coverage in WLANs based on available samples 
taken in an active ����	�
����		��	���	����	��	���	�
������ knowledge, this paper is the first implementa-
tion of kriging as a tool in WLANs network survey and design.  The objective of the proposed approach is 
to reduce the cost of time consuming and labor intensive site surveys.  The proposed approach can also be 
used to validate samples taken during a site survey.  In addition, a distance measure is proposed to count 
the effect of obstacles on the spatial covariance among points.  This distance measure has been shown to 
be effective.  The proposed approach can be easily embedded within a site survey computer program to 
interpolate signal coverage for points which are not surveyed in the target area.  As further research, it 
will be interesting to compare the proposed kriging approach with other approaches such as artificial 
neural networks.  
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Figure 3: The effect of the neighborhood size on the estimation accuracy for �=0.05. 
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