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ABSTRACT

We describe InterSim, a general purpose flexible framework for simulating graph dynamical systems (GDS)
and their generalizations. GDS provide a powerful formalism to model and analyze agent-based systems
(ABS) because there is a direct mapping between nodes and edges (which denote interactions) in a GDS and
agents and interactions in an ABS, thereby providing InterSim with great expressive power. We describe
the design, implementation, capabilities, and features of InterSim; e.g., it enables users to quickly produce
simulations of ABS in many application domains. We present illustrative case studies that focus on the
simulation of social phenomena. InterSim has been used to simulate networks with 4 million agents and
to execute large parametric simulation studies.

1 INTRODUCTION

A large number of complex systems such as those occurring in sociology, epidemiology, finance, biology,
and statistical physics (e.g., (Karaoz et al. 2004, Centola and Macy 2007, Perumalla and Seal 2010)) can
be modeled as graph dynamical systems (GDS) (Mortveit and Reidys 2007), which generalize a host of
commonly studied models, such as cellular automata. Such systems are extremely hard to study purely
analytically, and large-scale agent based simulations (ABS) are increasingly becoming fundamental tools
in their study; e.g., (Epstein 2007, Gilbert 2007). Simulation-based studies are computationally expensive,
since they involve complex and adaptive behaviors and a large parameter space (e.g., (Macy and Willer
2002, Hollander and Wu 2011)). For specific domains, such as epidemiology, there has been a lot of
research devoted to developing highly tuned tools which scale to very large populations, e.g., (Bisset et al.
2009, Perumalla and Seal 2010). Such tools crucially exploit properties of the specific processes being
modeled, e.g., the “susceptible-exposed-infectious-recovered” (SEIR) model in the case of epidemics, and
it is not easy to adapt such tools to incorporate models in other applications. Further, in most realistic
scenarios, distributed implementations are needed in order to scale to moderate or large instances and to
execute large experimental designs.

There has also been a lot of research on developing more general discrete event frameworks that allow
users to incorporate a wide variety of models, such as AnyLogic, BRACE, NetLogo, Repast and Repast
SC++, SASSY, and Swarm; e.g., (Hybinette et al. 2006, North and Macal 2009, Wang et al. 2010). See
also (Macal and North 2010) for a survey and (Aaby et al. 2010) for additional frameworks. The goal in
such approaches is to provide a flexible framework for researchers who may not be computer programming
experts. Such frameworks have proved to be very popular in the agent-based modeling and simulation
(ABMS) community, and have large user populations.

296978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Kuhlman, Kumar, Marathe, Mortveit, Swarup, Tuli, Ravi, and Rosenkrantz

Application contexts such as social interactions, epidemiology, (wireless) network communications,
and biology have high levels of interactions among agents, making discrete time simulation—where agent
interactions take place at every time step—applicable to many domains. Our work with discrete time and
discrete event epidemiology simulators, for example, clearly demonstrates that discrete time simulations
are much faster for specific applications because they do not incur the overhead of generating schedules
and coordinating events of agents that might involve synchronization, particularly over multiple processing
elements in distributed simulations for large problem sizes. Elegant solutions to distributed coordination can
be classified as conservative (Chandy and Misra 1979), and anti-conservative (rollback-based) (Jefferson
1985); other studies that build on these works are compiled in (Carothers and Perumalla 2010). These
issues are bypassed with discrete time simulation. A downside to discrete time simulation is that compute
cycles are wasted when agents have no inputs at a particular time, but at least in some cases, these wasted
cycles may be less costly than the overheads associated with discrete event simulation. Also, trends in
current computer architectures toward many-core and GPU suggest that the effects of wasted cycles will
diminish compared to communication costs on commodity clusters.

The goal of this paper is to describe and demonstrate InterSim, a new distributed tool for discrete
time, high interaction ABS that uses a GDS-based formalization. InterSim provides a simple and flexible
framework to capture any GDS, and is implemented using the Message Passing Interface (MPI). Our
specific contributions include the following.

1. General framework for simulating GDS. InterSim implements the complete class of GDS and
their generalizations; these include general kinds of (vector valued) update functions, interaction
networks, update orders, and finite state machines (FSM) that describe state transitions (GDS and
a variant are described later). The generality of GDS is reflected in the fact that it is a universal
model of computation. Additionally, InterSim allows complex coupling of multiple systems, such
as multiple networks and dynamics, in an easy manner. It uses “node interaction models” (NIM),
which capture agent behaviors. The distributed processing aspects of the framework are completely
transparent to the user, who only needs to be able to program the NIM serially using a well-defined
interface. InterSim has been used to evaluate 4.8 million agent networks on a moderate sized cluster.
A novel feature of our approach is the ability to use GDS theory to reason about system dynamics.
We know of no other simulation framework that is explicitly theoretically grounded in GDS.

2. Flexibility and reduced “end-to-end turnaround time.” Most studies of complex systems require a
large experimental design, with a large number of simulation runs, in order to explore the whole
parameter space. InterSim is flexible and easy to use. It is designed to optimize not only the time
for each run, but also the turn-around time, which is defined as the time from problem definition to
the time at which useful simulation results are generated—this includes the sum of software design,
implementation, and verification times. We have executed parametric studies with thousands of
parameter sets on 100000-agent systems using a 96-node commodity cluster (2 processors/node; 4
cores/processor) with 3 GHz Intel Xeon cores and 2 MB memory per core. This system is shared
among many users and typically concurrent simulations within a given study use 2 nodes each. For
very large networks, we may use 10 compute nodes. We realize turn around times on the order of
1 to 4 hours for more straight-forward models and total solution times on the order of a week of
wall clock time. An immediate benefit of the flexibility and fast turnaround time of InterSim is
that different kinds of complex dynamics models can be prototyped very quickly.

3. Integration with a simulation steering tool. InterSim has been specifically designed to integrate
with Indemics (Bisset et al. 2010). Indemics is another framework that permits high performance
computing in data-intensive simulations. A combination of these two frameworks leads to even
greater flexibility in simulations; e.g., the ability for users to steer (or modify) simulations on-the-fly.
The feasibility of this coupling has been demonstrated with an application-specific simulation code.
InterSim integration with Indemics is a topic for future work and is not discussed further here.
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4. Illustrative case studies. We demonstrate the utility of InterSim by means of two case studies
that illustrate selected types of models, networks, and behaviors that can be captured using NIM.
The case studies show how multiple networks, and increasingly complex and adaptive behavioral
models for agents can be incorporated. We show that models can be implemented in InterSim very
easily, and discuss some sample results on the system dynamics.

In discussing the Open Services Gateway Initiative Framework (OSGi) and Cyberinfrastructure Shell
(CiShell), (Borner 2011) mentions the following: “My aim here is to inspire computer scientists to implement
software frameworks that empower domain scientists to assemble their own continuously evolving [software],
adding and upgrading existing (and removing obsolete) plug-ins to arrive at a set that is truly relevant for
their work—with little or no help from computer scientists.” This statement also serves as a primary driver
of our own work in the context of ABMS.
Organization. We discuss the GDS model in Section 2 and the high level architecture of InterSim in
Section 3. In Section 4, we describe an implemented threshold-based dynamics model that is composed
with InterSim. Illustrative case studies are discussed in Section 5. We conclude with Section 6.

2 EVOLVING GRAPH DYNAMICAL SYSTEMS: THEORETICAL FOUNDATIONS

A Graph Dynamical System (GDS) is an abstract representation of a group of interacting entities (agents)
and the nature of their interactions. This representation provides a sound basis to develop simulations of
diffusion processes in such systems where the graph may evolve in time. Our formulation is contagion-
centric, where a contagion is any entity, such as an opinion or virus, that can propagate through a system.

An Evolving GDS (EGDS) is given by S (C ,X ,K ,J ,F ,D ,R) where C is a set of contagions,
X is a family of graphs, K is a family of vertex state spaces, J is a family of edge state spaces, F
is a family of X -local functions for vertices, D is a family of X -local functions for edges, and R is a
family of update sequences. For each contagion c j ∈ C , there is a time-evolving graph X j(Vj,E j) ∈X
over which c j propagates (Vj is the vertex set and E j is the edge set of the graph). Also for each c j,
there is a vertex state space K j ∈K , an edge state space J j ∈J , an X j-local (vertex) function Fj ∈F ,
an X j-local (edge) function D j ∈D , and an update scheme R j ∈R. Furthermore, for each vertex vi ∈Vj,
there exists a local (vertex) transition function fi(S(vi),S(n[vi]),S(e[vi])) ∈ Fj which determines the next
state s(vi) ∈ K j of the vertex for contagion c j. Here, S(vi) is the entire state of vi over all contagions,
S(n[vi]) is the entire state of all neighbors n[vi] of vi, and S(e[vi]) is the entire state of all edges e[vi]
adjacent to vi over all contagions. For each edge ek ∈ E j, there exists local (edge) transition function
dk(S(ek),S(n[ek]),S(e[ek])) ∈ D j which determines the next state s(ek) ∈ J j of ek for contagion c j. Here,
S(ek) is the entire state of ek over all contagions, S(n[ek]) is the entire state of the two vertices incident on
ek, and S(e[ek]) is the entire state over all contagions of all other edges e[ek] incident on either of the two
vertices. The update scheme R j determines the order in which fi and dk are executed, both within and across
contagions. The contagion-centric formulation for EGDS S provides a natural framework to investigate
the simultaneous diffusion of multiple contagions within ABMS. At any time l, the configuration C(l) of
an EGDS is a vector (Sl(v1), . . . ,Sl(vn),Sl(e1), . . . ,Sl(em)), where n and m are the total number of nodes
and edges, respectively, in the system. The time evolution of an EGDS is represented by the sequence of
successive configurations of the EGDS.
Example: We now present a simple example with one contagion, only vertex states, and a static graph to
illustrate the ideas mentioned above. The undirected graph G(V,E) for this EGDS is shown in Figure 1.
The state of each node is assumed to be from K = {0,1}, where 0 (1) indicates that the contagion has not
(has) propagated to the node. For each node vi ∈V the local interaction function fi, which depends on the
current states of vi and the neighbors of vi, is defined as follows.
(a) If the current state of vi is 1, then the value of fi is 1 regardless of the states of the neighbors of vi.
(b) If the current state of vi is 0, then the value of fi is 1 if at least one of the neighbors of vi is in state 1;
otherwise, the value of fi is 0.
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Note: Each configuration has the form (s(1),s(2),s(3),s(4),s(5)), where s(vi)
is the state of node vi, 1≤ i≤ 5. The sequence of configurations of the system
are shown below. After time step 2, the system remains in the configurations
(1,1,1,1,1).

Initial Configuration: (1, 0, 0, 0, 0)
Configuration at time 1: (1, 1, 1, 0, 0)
Configuration at time 2: (1, 1, 1, 1, 1)

Figure 1: An example of a synchronous Graph Dynamical System (GDS).

The above local transition function belongs to the general class of simple threshold functions. Such
a function is characterized by the specification of a threshold value for each node; the value represents
the minimum number of neighbors needed for the state of a node to change from 0 to 1. In this example,
the threshold value for each node is 1. From the definition of local vertex transition functions, it is seen
that once a node reaches the state of 1, it remains in that state for ever. In this illustration, the update
scheme is assumed to be synchronous. In other words, all the local transition functions are computed in
parallel using the current values of the inputs. A sequence of configurations for this system is also shown
in Figure 1.

To make the EGDS formulation more concrete, we provide illustrative model features in Figure 2, with
additional discussion in (Bisset et al. 2011). Currently, some features associated with D are rudimentary.

1. Graphs: (a) Directed (to capture asymmetric interactions) and undirected; (b) Time-varying multiple networks, with a different
network for each contagion.

2. Extended set of states for nodes and edges: (a) A finite state machine (FSM) for each contagion and node, representing the
set of state transitions for a node (e.g., Figure 3); (b) States for edges (e.g., time labels to indicate the time intervals for which
an edge exists); (c) Multi-dimensional states for nodes and edges for each contagion.

3. Generalized local transition functions: Each local function fi at node vi may be Markovian or depend on the history of the
state values during the last T time steps. Such a function has the general form

sl+1(vi) = fi(Sτ (vi),Sτ (n[vi]),Sτ (e[vi])), l−T +1≤ τ ≤ l

where (as before) Sτ (vi) is the total state over all contagions of node vi at time τ , Sτ (n[vi]) is the total states of all neighbors of vi
at time τ , Sτ (e[vi]) is the total state of all incident edges of vi at time τ . The local functions may be multi-valued or stochastic.

4. Different state update schemes: (a) Synchronous, sequential ordering based on a permutation or a word (Mortveit and Reidys
2007); (b) Hybrid (which combines the synchronous and sequential models).

Figure 2: Evolving Graph Dynamical Systems.

increasing levels of conviction

increasing levels of conviction

view 1, opinion 1

view 2, opinion 25 6 7 8 9

0 1 2 3 4 }
}

Note: Arrows represent state transitions and
different arrow colors indicate different mech-
anisms giving rise to the state changes. Within
each view, agents can change to stronger and
weaker levels of conviction. If an agent changes
from one view to another, the transition goes to
the lowest conviction state. This FSM is used in
case study 2 to model the evolution of opinions
and ideology, and hence consensus-building.

Figure 3: Example FSM including multiple opinions and levels of conviction.
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Figure 4: Schematic of an InterSim MPI process executing
on a processing element.

Algorithm 1: Simulation

input : Graph(s) Gi, agent properties vP , edge
properties eP , number of iterations ni,
maximum time per iteration lmax, base
conditions B0, NIM identifier NIM , NIM
properties NIMP , seed conditions I .

output: Changes in agent states S as a function of time
l.

Read in all Inputs: Gi, vP , eP , NIM and NIMP , ni,
lmax, B0.
for (each iteration j) do

Read (initial) seed conditions Ij .
1 Reset all properties and NIM

parameters to their base
conditions.
for (l = 0; l ≤ lmax; + + l) do

Loop over the agents owned by this process.
for (v = 0; v ≤ vmaxowned; + + v) do

2 Invoke the NIM for agent v.
3 if (state of v changes) then Reset model

parameters of new state for
agent v.

Send state changes to output.
Send state changes to other processes.

3 InterSim FRAMEWORK

To set up the framework description, we need some terminology. An iteration is a diffusion instance. Initial
conditions at time l = 0 are specified for the network (e.g., agent initial states) and for NIM properties.
Network dynamics and structure evolve over time until the maximum time lmax is reached, at which point
the iteration terminates. A simulation is a set of iterations. Possible variations across iterations include
differences in initial agent states, evolutionary NIM parameters, interventions, and network structure.

3.1 Description

This high-level description of the InterSim simulation framework follows the theoretical description. InterSim
is a distributed framework, with an instance running on each process element (e.g., CPU, core) of a cluster.
MPI is used for communications. A schematic of an MPI process instance is given in Figure 4. InterSim
is the gray box that contains control and data structures, and the set of connectors to node interaction
models (NIM), input and output modules, and MPI. InterSim and the modules that plug into it (light blue
rectangles) through the connectors combine to form the simulator. The input module is general and hence
has only one implemented module. The MPI connector handles communications among the MPI processes
along with marshalling and demarshalling of data.

NIM are written by the user and are compiled and linked to the infrastructure. NIM provide the node
and edge behaviors for a particular application such as social behavior, statistical physics modeling, or
communications networks. A NIM can also contain interventions. One NIM is instantiated for each system
agent so that the NIM may evolve its own properties in an agent-specific fashion. A threshold-based NIM
is described in Section 4. The framework and interaction model connector enable great flexibility and
complexity in behaviors across applications; e.g., a NIM can solve a nonlinear system of equations As = b
for an agent state vector s at each time step. The output module connector enables different types of
outputs. We have implemented output modules that print to file every state change, and that write to file
only summary data. The latter module can reduce 5 to 10 GB output files to 100KB files, which is useful
for large parametric studies where disk space becomes a limiting resource.

The gray box contains data structures for networks, agent and edge properties, and messaging. Each
agent and edge of any network may have any number of integer, double, and character property values.
Other primitive data types can be added in a straight-forward fashion. This enables elaborate descriptions
of state and allows a user to specify any combination of parameters needed for a NIM that may evolve
multiple contagions. Differences in property types across simulations are handled through input files; there
are no code modifications. A subset of agents are owned by each MPI process; i.e., an MPI process is
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responsible for updating state of its owned agents and edges. Each MPI process provides the properties
(including state) of its owned agents and all agents that influence its owned agents (i.e., its pure influencers).

InterSim controls overall execution. A high-level description is provided in the algorithm above, which
is executed on all MPI processes. Inputs are read in at the beginning of a simulation. Seed values (explained
in Section 5) are the only data read on a per iteration basis. The algorithm loops over iterations j, times
l, and owned nodes v. The NIM for each agent is reset at the start of an iteration. At each time, the NIM
for each agent v is invoked, wherein state changes are determined. If state changes, then the next state for
v is reset; this is required for the case of cycles in the FSM. State changes are written to a file and they are
shared among MPI processes so that each process’ pure influencers have their current states for the next
time step.

There is a well-defined interface for a NIM, given in Figure 5. The three methods are executed according
to the corresponding identifiers in the algorithm, and are sufficiently general for any agent interaction model.

1. resetForNewIteration(): at the beginning of a new diffusion instance, reset local transition function state.
2. computeNextState(): at time l, compute the next state for agent v j at time (l +1).
3. resetForNextState(): at time l, if a state change was computed for agent v j , reset parameters for the next state

local transition function.

Figure 5: Programming interface to which NIM must conform.

3.2 Impacts

Here we tie InterSim features to the goals of Section 1. The GDS foundation enables one to reason about
simulations using the body of proven results for these systems (e.g., (Mortveit and Reidys 2007)). The wide
range in application domains and expressiveness in dynamics models are achieved because the framework
is application agnostic, it automatically manages simulation parameters and provides them to a NIM for its
use, and a NIM can implement any behavior consistent with the generic interface of Figure 5 while making
use of any combination of simulation parameters (including agent and edge properties). The applicability
of the infrastructure to a wide range of dynamical systems is addressed by the following lemma; the proof
is omitted for space reasons.
Lemma 1 Given one or more agent-based contagion diffusion processes that can each be modeled as GDS
as described in Section 2, the InterSim framework can simulate the system dynamics.

The same set of features enable fast turn around times and ease of use (note that one of these features does
not imply the other). First, the infrastructure handles all distributed processing; the application programmer
only needs to think serially in designing and constructing NIM software to capture the requisite dynamics.
Second, the application programming interface (API) of Figure 5 provides structure for NIM. Third, the
NIM of the system form a library and these can be used as starting points for new NIM development.
Fourth, the framework and NIM interact in one place in the simulation code, so the programmer can focus
on this one interface (in many codes, dynamics functionality is dispersed throughout the code). Fifth, there
is a well-defined set of methods for retrieving agent and edge properties and for storing state updates. A
number of test cases with system developers and external developers have demonstrated that turn around
times from 1.5 to 4 hours can routinely be realized and that inexperienced programmers can write NIM
and use the simulator.

4 ILLUSTRATION: IMPLEMENTING A THRESHOLD MODEL IN InterSim

While the infrastructure is agnostic to the form of local functions, threshold functions are attractive in
social contexts because they capture influence of one agent on another; e.g., (Bischi and Merlone 2009).
Furthermore, in (Watts 2002) it is argued that even when more intricate models of social interaction are
“wired” into a person, threshold behavior may remain dominant for a number of reasons.

We describe features of the threshold model implementation. The case studies demonstrate the use of
this model for multiple contagions and networks, and state transition mechanisms. There are two submodels
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1. Constant contagion amount.

2. Contagion amount a function

of edge weight.

3. Contagion amount selected from

a uniform distribution with user

specified limits.

Figure 6: Contagion amount
models currently implemented.
Additional models can be read-
ily added.
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Figure 7: Schematic representation of state transition threshold
model for an agent. The total amount of contagion is plotted
against the probability of transition. The transition threshold and
other parameters are inputs to the models.

of the threshold model: (i) a contagion amount (CA) model that quantifies the contagion passed in one
interaction from one agent to another along their common edge and (ii) a state transition (ST) model that
describes the criterion for an agent state change. Figure 6 displays three options for specifying contagion
amount (through input file values). Parameters for a state transition model are given in Figure 7; these
parameters permit deterministic and stochastic state transitions. All parameters can be specified as a function
of state or on a per-agent basis, and can also be functions of global simulation parameters such as time.

In its simplest Markovian form, a state transition of agent vi for c j occurs when the contagion amounts
a j received from all neighbors vk, denoted n[vi], exceed a threshold t at the current time; i.e., ∑vk∈n[vi] a j ≥ t,
where this equation is a threshold-based specialization of the equation in Figure 2. The CA and ST models
combine to produce a model that extends a generalized contagion model (Dodds and Watts 2005).

5 CASE STUDIES

Two cases studies are presented that demonstrate features of the infrastructure, the types of NIM that can be
plugged into it, and new insights into network dynamics. Some features are beyond those of Sections 2 and
3. We emphasize that these examples serve to illustrate capabilities of the simulation system and describe
general trends; to simulate these phenomena for a particular application, model parameters would be
developed from data. The first case study uses a simpler dynamics model and highlights the use of multiple
networks and contagions, while the second utilizes a multi-mechanism NIM with a single contagion. We
also focus on threshold functions for reasons mentioned in Section 4. We use one social network which
we call epinions, obtained from Jure Leskovec’s website at Stanford, a 75879-agent network of trust
relationships between agents who trust one another’s opinions, and rewirings of it.

5.1 Case Study 1

The first case study illustrates the use of multiple undirected networks in modeling people getting out of the
stock market during a financial downturn. We investigate the effect on population dynamics of alterations in
three networks over which different contagions spread, and of Markovian and history-dependent dynamics
models. We show here novel results of how thresholds affect the probability of a cascade (i.e., the
probability that most of the agents that can be “affected”—by leaving the stock market—are indeed
affected) for multiple weighted networks, and how memory affects results. Previous work only examined
a single contagion and unweighted network with no memory in the dynamics model (Centola and Macy
2007). The turn-around-times for the two NIM of this study were 1.5 hours and 2.5 hours.

There are three distinct networks which spread gossip, general news, and financial news, respectively,
which are distinct contagions c j. For example, the gossip network describes pairs of agents that share

302



Kuhlman, Kumar, Marathe, Mortveit, Swarup, Tuli, Ravi, and Rosenkrantz

gossip. The great majority of agents (∼ 99.5%) in each simulation are initially invested in the stock market
and each form of information encourages an agent to get out of the market. Gossip, general news, and
financial news contribute contagion amounts of a j = 1, 2, and 3, respectively. When an agent receives
a critical amount of information through a combination of these three sources in one day (i.e., when the
sum of contagions exceeds a threshold tT ), it will cash out its stock portfolio. An agent still in the stock
market will only accept information transmitted to it from neighboring agents that have already exited
the stock market. The FSM in the NIM for this study is a ratchet-up or progressive model (i.e., the only
state transition is from being invested in the stock market to being divested) and is of much interest to the
sociology community (Granovetter 1978, Centola and Macy 2007).

The financial news network in all simulations is the epinions network. The other two networks are
generated by rewiring edges of the epinions network. For each simulation, a rewiring probability r is
specified. The gossip and general news networks are each generated by randomly rewiring a fraction r of
edges (so all three networks are different). Here, rewiring means that an edge is unhooked from one agent
and randomly assigned to a new agent; thus, the degrees of agents are different across networks. Values
of r investigated are 0, 0.2, 0.5, and 0.8.

All agents are initially invested in the stock market except for a seed set of five agents; the seed agents
are divested. For each of the 100 iterations of a simulation, a different set of seed agents is used. These
same agent seed sets are used across the 104 simulations, for comparison purposes.

To streamline the presentation, we sum contagion amounts and thresholds over all three forms of
information (contagions c j), and an agent gets out of the stock market when the following condition is met:
cT = ∑

3
j=1 a j ≥∑

3
j=1 t j = tT . This criterion is evaluated at every time step. For NIM1, there is no memory;

each invested agent is influenced by every divested neighboring agent on every day. For NIM2, there is
history dependence: each divested agent only spreads information to its invested neighbors once—at the
time of its divestiture—and the invested agent only remembers the information for two time steps.
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Figure 8: For the financial contagion, (a) probability of cascade as a function of threshold tT for different
rewiring probabilities r for NIM1; (b) probability of cascade as a function of rewiring probability for
different thresholds; and (c) average cascade size—for iterations that cascade—as a function of rewiring
probability for different thresholds. In (b) and (c), solid curves are results for NIM1; dashed curves are for
NIM2. Note that these results also apply to probabilistic diffusion, where for example plow = 0, phigh = 0.5
in Figure 7; simulations will merely take longer to reach the final states.

Figure 8 summarizes the results. Each curve represents the average results of 100 iterations. Figure
8(a) shows the probability of a cascade as a function of threshold for the four rewiring probability values
using only NIM1. The curves show a relatively sharp transition from high probability to low probability as
threshold increases from approximately tT = 17 to 30. Figure 8(b) exchanges the roles of r and tT to show
more clearly the influence of r: as r increases, the cascade probability decreases. Also, results for NIM1
are the solid curves, while those for NIM2 are dashed. Figure 8(c) shows the cascade size—only for those
iterations that cascade—as a function of r and threshold. Now, we see the opposite trend: as r increases,

303



Kuhlman, Kumar, Marathe, Mortveit, Swarup, Tuli, Ravi, and Rosenkrantz

cascade size increases. In the latter two plots, the 2-step memory window decreases the probability of
cascade and cascade size. To our knowledge, this is the first time multiple weighted networks and multiple
(complex) contagions have been investigated with threshold models of diffusion.

5.2 Case Study 2

The second case study examines a single contagion, which can be thought of as the diffusion of opinions or
ideologies (Centola and Macy 2007), dynamics of consensus building (Olfati-Saber et al. 2007), changes in
degrees of human emotions (e.g., happiness and unhappiness (Fowler and Christakis 2008)), or willingness
to join a rebellion (Granovetter 1978) within a group that could number hundreds or even millions of people.
The novel aspect here is that three mechanisms for changing opinions are incorporated, and we show how
different permutations (i.e., prioritizations) of these mechanisms lead to different network dynamics. This
feature extends generalized contagion concepts (Dodds and Watts 2005) and to our knowledge, this is the
first time different mechanisms have been used as the source of variation in state transitions. In addition,
we run multiple sets of simulations to show the effects on network dynamics of dynamics properties,
probabilistic state transitions, and interventions.

The FSM of Figure 3 is used to model the dynamics of a population. States 0 through 4 represent one
view, with the strength of conviction increasing as states progress from 0 to 4. States 5 through 9 represent
a second view, with increasing conviction in going from state 5 to state 9. (Note that additional views
can be added to this setup.) The state transitions are also given in the figure, with six threshold-based
mechanisms in different colors. The blue and orange arrows among states 0 through 4 indicate an increase
and decrease in conviction, respectively, while the green arrows represent a change in opinion. Analogous
transitions exist for states 5 through 9. When an agent changes its opinion (e.g., from state 2 to state 5), it
starts with minimum conviction. To simplify the analysis, we assume that the thresholds for state transition
mechanisms for states 0 through 4 are the same as those for the analogous transition mechanisms for states
5 through 9, and likewise for contagion amounts.

Table 1 shows the thresholds used; values are given in pairs that reflect the symmetry between opinions.
In Table 1(a), thresholds increase with increasing levels of conviction, meaning that it is more difficult to
achieve greater levels of conviction. Reductions in conviction have the same threshold across convection
levels in Table 1(b). Thresholds are generally greatest for changing opinions, as reflected in Table 1(c).

Three execution orders (priorities) of the three mechanisms, per time step, are provided in Table 2. For
example, mechanism order 1 (M01) is such that at every time step, an agent is updated for (i) increasing
conviction, then for (ii) change of opinion, and finally for (iii) decreasing conviction. A state transition
occurs for the first mechanism that meets its transition criterion.

Table 1: Thresholds for state transitions for the three sets of mechanisms: (a) for increasing conviction;
(b) for decreasing conviction; and (c) for changing opinion. The thresholds are the same for the same
conviction level for both opinions in the FSM of Figure 3 and hence the first column contains two states.

(a)

State Threshold
0/5 1
1/6 1
2/7 2
3/8 3
4/9 –

(b)

State Threshold
0/5 –
1/6 2
2/7 2
3/8 2
4/9 2

(c)

State Threshold
0/5 1
1/6 2
2/7 4
3/8 4
4/9 4

Table 3 provides the contagion amounts transmitted to agents in column 1 by agents in the states in
the remaining columns. States not listed in columns 2 through 6 do not influence the state in column 1.
Table 3(a) conveys the notion that higher levels of conviction have greater influence on increasing conviction
than do lower levels of conviction. The values in Table 3(b) mean that the same and higher conviction
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Table 2: For the FSM of Figure 3, there are six state transition mechanisms indicated by the colored arrows.
The analogous mechanisms for states 0-4 and 5-9 are treated the same herein; thus there are 3 sets of
mechanisms. This table provides 3 priority orderings of mechanisms, giving 3 types of simulations.

Name Sequencing of State Transition Mechanisms
MO1 (i) increasing conviction, (ii) change of opinion, and (iii) decreasing conviction
MO2 (i) increasing conviction, (ii) decreasing conviction, and (iii) change of opinion
MO3 (i) change of opinion, (ii) decreasing conviction, and (iii) increasing conviction

states oppose reductions in conviction (i.e., the contagion amounts are negative). In Table 3(c), where an
agent changes opinion, opposing agents with as great or greater conviction are most influential. (Note that
the thresholds and contagion amounts in Tables 1 and 3, here functions of state, can instead depend on
individual agents if that level of heterogeneity is needed.)

Table 3: Contagion amounts transmitted to each agent in the state of column 1 by the agents in the states
of columns 2 through 6. The tables reflect the three sets of state transition mechanisms in Figure 3: (a) for
increasing conviction; (b) for decreasing conviction; and (c) for changing opinion. The contagion amounts
are the same for the same conviction level for both opinions in the FSM and hence there are pairs of states
in column 1 and pairs of states in the other column headings.

(a)
affected 0/5 1/6 2/7 3/8 4/9

0/5 2 2 3 4 4
1/6 2 2 3 4 4
2/7 2 2 3 4 4
3/8 2 2 2 3 4
4/9 2 2 2 2 4

(b)
affected 0/5 1/6 2/7 3/8 4/9

0/5 – – – – –
1/6 1 -1 -1 -1 -1
2/7 1 1 -1 -1 -1
3/8 1 1 1 -1 -1
4/9 1 1 1 1 -1

(c)
affected 5/0 6/1 7/2 8/3 9/4

0/5 2 2 2 3 3
1/6 2 2 2 3 3
2/7 1 1 2 3 3
3/8 1 1 1 2 3
4/9 1 1 1 1 3

The initial conditions in most simulations are the same: 20 agents are in each of the states 1, 2, 3, 6, 7,
and 8, and the remaining 75759 agents are in state 0. Thus, the great majority of agents (75819) have view
1 (states 0 through 4), with different convictions, and we investigate whether 60 nodes with an alternative
view 2 (states 5-9) can persuade the 75819 to change their view. Each simulation consists of 50 iterations
and the differences among iterations are the agents that are seeded in states 1, 2, 3, 6, 7, and 8. Agents in
each of these six states form a connected subgraph, and each agent has at least 20 neighbors, so the agents
form well-connected groups. The ith iteration of each simulation has the same initial conditions so that
we can compare dynamics across simulations. Results are averaged over all iterations of a simulation.
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Figure 9: States of agents in the epinions network as a function of simulation time for the FSM of
Figure 3 for different precedence orderings of state transition mechanisms based on Table 2: (a) MO1; (b)
MO2; and (c) MO3. The legend is the same for all plots and state is abbreviated “st.”
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The three plots in Figure 9 show results, in order, for the three mechanism orderings in Table 2.
State 4 emerges as the dominant state for MO1 (Figure 9(a)), with periodic behaviors of the other states
never reaching more than 20% of nodes. For MO2 in Figure 9(b), state 4 once again dominates, but the
periodicity of other states is destroyed, and the maximum conviction state for view 2 (state 9), although
oscillating, is increasing and more than doubles its maximum fraction from that in Figure 9(a). For MO3,
over 65% of agents cycle back-and-forth between the minimum conviction states for the two views (states
0 and 5); state 4 is no longer dominant. These results clearly show that the priority order of state transition
mechanisms matters, that for studies of particular behaviors these priorities must be determined, and that
the framework readily handles different mechanisms and orderings.
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Figure 10: States of agents in the epinions network as a function of simulation time for the FSM of
Figure 3, the MO2 ordering of state transition mechanisms, and all thresholds in Table 1 are increased by
a factor of four: (a) deterministic results; (b) probabilistic results with plow = 0 and phigh = 0.5 in Figure
7; and (c) the conditions of (b) plus 500 agents fixed in state 9. The legend is the same for all plots and
state is abbreviated “st.”

In Figure 10, we focus on MO2 and all thresholds are increased by a factor of four. Figure 10(a) shows
that state 2 now dominates, not state 4. Figure 10(b) depicts results for stochastic diffusion where plow = 0
and phigh = 0.5 in Figure 7. State transitions occur more gradually in time and the fraction of agents in
state 4 decreases. Overshooting is observed for state 1, where the fraction of agents initially increases and
then monotonically decreases. This is of much interest in the sociology community and has been well
documented as occurring in real groups (Bischi and Merlone 2009). In the two plots thus far, the fraction
of agents with view 2 is minuscule. To investigate how to make view 2 more prevalent, we run simulations
with the intervention that 500 agents are initially in state 9 and these agents do not change their state;
otherwise conditions are the same as those in Figure 10(b). Figure 10(c) illustrates mixed results. On the
one hand, 500 agents is less than 1% of the population, and yet it causes 11% of agents to migrate to that
state. However, despite the disproportionate increase of state-9 agents, 11% is not nearly a majority. More
agents in state 9 are required to change the majority view.

6 CONCLUSIONS

We have described a general-purpose, agent-based, discrete time simulation framework based on GDS. Our
framework is flexible and can handle a range of agent behaviors arising out of diverse applications. We
have demonstrated some of the features of the system through two case studies. The framework (i) permits
developers to construct software plug-ins that describe agent behavior using only serial programming
conventions (i.e., no parallel or distributed programming skills are required), (ii) provides a general plug-in
interface to allow agent behaviors across many problem domains, where all user code is confined to one part
of the simulation software, and (iii) enables fast turn around times (the duration from problem specification
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to generating useful simulation results), often in the range of 2 to 4 hours. While it is demonstrably scalable
to large networks and parametric studies, future work includes improving these features.
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