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ABSTRACT 

This paper addresses the construction of a consistent interval estimator for the steady-state mean within a 

replication/deletion framework for output analysis when MSER truncation is applied.  Because the MSER 

truncation point is a random variable, the truncated output sequences for each replication typically are un-

equal in length.  A weighting scheme is applied to the replication means to correct for unequal sample 

sizes, as is standard in ANOVA.  A numerical example is provided to illustrate the procedure and conse-

quences. 

1 INTRODUCTION 

Over a half-century ago, Conway recognized the initial transient as the first among three principle tactical 

problems in steady-state simulation (Conway 1959; Conway, et al. 1963; Goldsman, et al. 2010).  An ar-

bitrary selection of initial conditions for simulation runs introduces bias in the estimation of output statis-

tics, such as the stationary mean.  The most common approach for mitigating such bias is to truncate or 

delete some number of observations from the beginning of the output sequence and to compute statistics 

using only the remaining observations.   

Alternate criteria for determining a good truncation point—one that adequately removes the bias 

without undue loss of precision—have been the subject of continuing invention beginning with Conway 

himself.  Recently, however, a consensus has emerged among researchers that MSER has all of the prop-

erties most desired in a truncation criterion.  It is effective and efficient at mitigating bias, robust across 

alternate forms of biasing functions, computationally trivial, easily understood, and does not require expe-

rimenter intervention to establish parameters.   

MSER was initially developed by McClarnon (1990), White and Minnox (1994), and White (1997) 

and was applied and extended by Rossetti et al. (1995), Spratt(1998), Cobb (2000), White, et al (2000), 

and Franklin (2009).  Mahajan and Ingalls (2004) determined three truncation criteria adequate, with 

MSER-5 recommended for its efficiency and robustness.  Oh and Park (2006) compared their EVR me-

thod ―with the method MSER-m known as the most sensitive rule in detecting bias and most consistent 

rule in mitigating its effects.‖ MSER was shown to outperform EVR in almost all experiments.  Sandikci 

and Sabuncuogy (2006) automated MSER-5 as their means for studying transients. Bertoli, Casale, and 

Serazzi (2007, 2009) selected MSER-5 as the initialization approach for their Java Modeling Tools pack-

age and included a usage wizard. The criterion gained additional traction with an exhaustive empirical 

evaluation by Hoad, et al (2008, 2011), who chose MSER-5 as the most suitable for automation over a 

wide range of published approaches to the transient problem, including heuristics, graphical procedures, 

initialization bias tests, statistical methods, and hybrid approaches.   
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White and Franklin (2010) confirm the empirical findings of White and Robinson (2010) regarding 

the relationship between the MSER truncation point and the degree of mean bias and autocorrelation in an 

output sequence.  They introduce a parametric approach to analyzing the expected behavior of MSER and 

apply this approach to an output model with geometrically decaying bias and constant-parameter AR(1) 

white noise.  Franklin et al (2009) explore the intuition that MSER minimizes the mean squared error 

(MSE) of the mean estimator.  This empirical result is confirmed by Pasupathy and Schmeiser (2010).  

They reason that MSE is the most appropriate criterion for evaluating alternate truncation criteria, show 

that the MSER statistic is asymptotically proportional to the MSE, and conclude that the MSER statistic is 

a solid foundation for initial-transient algorithms.  Pasupathy and Schmeiser also suggest two new algo-

rithms using the MSER statistic and compare these to the original MSER algorithm using empirical re-

sults for M/M/1 and AR(1) data processes.  Mokashi et al (2010) compared their N-Skart method with 

MSER-5 and achieved only modest improvements with considerably greater computational effort.  Most 

recently, Hoad and Robinson (2011) consider the practical implementation of MSER-5. 

2 TRUNCATION AND THE MSER CRITERION 

Denote the output of a single replication of a simulation as the time series [yi: i=1,2,…,n].  Truncation di-

vides this into two subseries [(yi: i=1,2,…,d),(yi: i=d+1,2,…,n)], where d is the truncation point.  For an 

output that is tallied, under truncation the estimator for the mean output is the sample mean of the second 

(reserved) subseries 
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Note that for correlated data the sample variance is a biased estimator.  For a covariance-stationary 

process the actual squared standard error is 
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where 2
 is the lag-zero autocovariance and k is the lag k –lag autocorrelation. Stationarity requires that 

the bracketed term is finite as n.  In practical terms this means that for sufficiently large n the brack-

eted term becomes de facto a constant.  Therefore we can consider ncSE
Y

/22   and estimate it as

ncSES
YY

/22  .  Since the MSER truncation point is based on minimizing  
2

Y
SE  (rather than estimating it), 
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we can effectively ignore the constant and determine a suitable MSER truncation point based on just the 

familiar variance estimator.  This explains why Franklin and White (2008) found that, as expected, the 

Phillips-Perron variance estimator performed no better in practice than the naïve variance estimator.  

3 APPLYING MSER WITHIN A REPLICATION/DELETION FRAMEWORK 

Denote the output of m independent replications of a simulation as the set of m time series [yij: 

i=1,2,…,ni; j=1,…,m]. Without loss of generality, consider that each of these series has the same initial 

condition y0 and the same run length nj=n j.  As before, truncation divides each time series into two sub-

series [(yij: i=1,2,…,dj),(yi: i=dj+1,2,…,n; j=1,…,m], where dj is the truncation point for the j
th
 series.  For 

an output that is tallied, under replication/deletion we obtain a random sample of m values for the mean, 

each estimated from one of the reserved subseries as the corresponding sample mean  
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Note, however, that the MSER truncation point for the j
th
 replication is the integer random variable 

Dj*.  This means that attempts to create interval estimators using run-based replication (Conway’s second 

principle problem) are biased if constructed from independent point estimates based on different sample 

sizes.  Two solutions present themselves immediately:  (1) find and apply the maximum truncation 

amount to all runs to reduce them to a common size; or (2) use weighted estimators for both the mean and 

variance.  In this paper we will investigate the second option, which is standard in ANOVA and preserves 

as much usable data as possible.  

Denote the total number of observations reserved across all runs as   


m

j jdnN
1

*
.  We will re-

gard the jY ’s as having a common expected value and underlying variance, but different standard errors 

because  of the different sample sizes.  We adjust for this using a weighted average 
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j=1

m

å , i.e., we have a convex combination, then Y is an unbiased estimator of the common 

mean.  A well-known result is that variance of Y is minimized when wi=(n-dj*)/N.  Finally, in order to ob-

tain an interval estimator we need an estimator for the variance ofY   
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which is an unbiased estimator with   


m

j jwm
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21  degrees of freedom.  Note that if the weights are all 

equal (wj=1/m j) this reduces to the familiar sample variance formula with m-1 degrees of freedom.  

Note also that for unequal weighting the degrees of freedom in general will not be integer and the corres-

ponding t-value will need to be generated with software.  
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4 AN EXAMPLE 

We ran a simulation of an M/M/1 queueing system at traffic intensity 0.95 (arrival rate = 19/time unit, 

service rate = 20/time unit) for n=10,000 and n=100,000 observations.  We used delay in queue as our 

performance measure, which is suitable for tally statistics as described in Section 3. The output from each 

of 10 runs was truncated based on MSER-5 and the 10 resulting sample means were pooled using the 

weighting process described above to form a 90% confidence interval.  This process was repeated 1,000 

times to create 1,000 confidence intervals.  Nominally we would expect 90% of such intervals to cover 

the true answer (= 0.95) obtained from theory.  We created an indicator variable for each confidence in-

terval to record whether it covered or did not cover the true mean.  The results were analyzed using JMP-

9 and are summarized in Figure 1. 

Using a run length of 10,000 we obtained empirical coverage of 79% for a nominal 90% CI.  When 

run lengths of 100,000 were used, the empirical coverage improved to 86.5%.  Since all CIs were based 

on 10 runs, the degrees of freedom would be 9 if all run lengths were equal.  Actual degrees of freedom 

varied, ranging from 9 down to 8.68 in our 2000 sets of experiments.  Using a conservative 8 degrees of 

freedom had virtually no impact on the coverage, improving it only from 86.5% to 86.9% when run 

lengths of 100,000 were used.  Upon inspection, failure to achieve nominal coverage seems to be because 

the confidence intervals are centered at the MSER estimate of the mean, which is known to be biased.  As 

we observed, the bias has a greater impact when shorter runs are used. 

 

 

Run length n = 10,000 Run length = 100,000 

  
Mean 0.79 

Std Dev 0.407512 

Std Err Mean 0.0128867 

Upper 95% Mean 0.815288 

Lower 95% Mean 0.764712 

Replications m 1000 
 

Mean 0.865 

Std Dev 0.3418946 

Std Err Mean 0.0108117 

Upper 95% Mean 0.8862162 

Lower 95% Mean 0.8437838 

Replications m 1000 
 

 

Figure 1: Statistics of the indicator variable recording coverage of the 90% confidence interval on the 

mean delay in queue for a simulated M/M/1 queue. 
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5 CONCLUSION 

In this paper we provide a brief overview of the MSER truncation criterion, a technical note on the con-

struction of interval estimates using replication/deletion and MSER truncation, a weighting scheme that 

can be applied to this end, and an example of such an application.  Empirical results from the example 

suggest that the weighting of unequal samples modestly underestimates the width of confidence intervals 

on the mean, with underestimation decreasing as a function of increasing run lengths.   
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