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ABSTRACT

The cross entropy method is a popular technique that has been used in the context of rare event simulation in
order to obtain a good selection (in the sense of variance performance tested empirically) of an importance
sampling distribution. This iterative method requires the selection of a suitable parametric family to start
with. The selection of the parametric family is very important for the successful application of the method.
Two properties must be enforced in such a selection. First, subsequent updates of the parameters in the
iterations must be easily computable and, second, the parametric family should be powerful enough to
approximate, in some sense, the zero-variance importance sampling distribution. We obtain parametric
families for which these two properties are satisfied for a large class of heavy-tailed systems including
Pareto and Weibull tails. Our estimators are shown to be strongly efficient in these settings.

1 INTRODUCTION

Tail probabilities of sums of heavy-tailed increments are a fundamental problem in the applied probability
field. A large number of applications boils down to these building blocks. In this paper we focus our
attention on the tail probabilities of a finite sum of heavy-tailed random variables, and we propose a method
to improve variance reduction of an existing class of estimators with proved efficiency.

Let Sm = X1 +X2 + ...+Xm be a sum of independently and identically distributed (i.i.d.) random
variables, with S0 = 0 and that the Xn’s are suitably heavy-tailed. The primary interest is the design of
efficient estimators for the tail probability of the sum

u(b) = P(Sm > b) .

The basic intuition behind the construction of efficient importance sampling estimators is that one
should mimic the behavior of the zero variance change of measure, which coincides with the conditional
distribution

P(S ∈ ·|Sm > b) (1)

(see for example, Asmussen and Glynn 2008). Therefore, the behavior of the heavy tailed random walk
conditional on the rare event becomes the target to be tracked by paths generated under the importance
sampling distribution. It is well known from the theory of heavy-tailed large deviations that this “target”
is characterized by the so-called “principle of big jump”, which states that as b↗ ∞ the rare event occurs
due to the contribution of a single large increment of size Ω(b) (For non-negative f (·) and g(·) we adopt
the notations 1) f (b) =O(g(b)) if f (b)≤ cg(b) for some c > 0, 2) f (b) = Ω(g(b)) if f (b)≥ cg(b), and 3)
f (b) = o(g(b)) as b↗∞ if f (b)/g(b)→ 0 as b↗∞.). On the other hand, paths with more than one jumps
of order Ω(b) shall not be neglected in the construction of importance sampler, because of an observation
pointed out by Binswanger and Hojgaard. (1997) that the second moment of the estimator for heavy tailed
large deviation probabilities is very much sensitive to the likelihood ratio of these paths (see also Example
1 in Section 2).
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Guided by these observations, it is natural to suggest a mixture based sampler for the increments as
the candidate importance sampler. Recently several state-dependent importance sampling estimators based
on such mixtures (Dupuis, Leder, and Wang 2006 and Blanchet and Liu 2011) have been developed and
shown to be strongly efficient (which means that the number of samples needed to achieve a fixed relative
precision is bounded as b↗∞). In simple words, one samples the next increment from different regions of
its support with different probabilities. We shall delay the specific form of the mixture to the next section.

Since the zero variance change of measure (1), optimal among all possible sampling distribution,
involves the unknown quantity of interest u(b) and is therefore infeasible, the search of global optimal
sampling distribution is a futile attempt. But if one restricts optimization within a specific parametric
family of sampler, there is hope that an improved change of measure within that family can be obtained.
One powerful tool that exactly fits into this setting is Cross Entropy (CE) minimization (see for example,
Rubinstein and Kroese 2004 and Kroese, Rubinstein, and Glynn 2010). Instead of directly minimizing the
variance of the estimator, the CE method minimizes the cross-entropy discrepancy between two densities.
The main advantage of the CE method is that, if the parametric family is well chosen, the optimization
problem often admits closed-form solutions, as opposed to the variance minimization (VM) method (we
refer readers to Chan, Glynn, and Kroese (2011) for an in-depth comparison between these two methods).

The successful application of the CE method is closely tied to the quality of the selected parametric
family of densities to start with. Two properties must be enforced in such a selection. First, the parametric
family should be powerful enough to approximate, in some sense, the zero-variance importance sampling
distribution and, second, subsequent updates of the parameters in the iterations must be easily computable.
We shall focus on elaborating these properties on the mixture family of our choice in this paper and
demonstrate empirically the performance of this approach applied to the mixture family. We noticed that
in existing works, the application of the CE method on estimating tail probabilities of sums of heavy-tailed
random variables has been restricted to importance sampling densities that do not capture the “principle of
big jump”; for example Chan, Glynn, and Kroese (2011) and Blanchet, Chan, and Kroese (2010) considered
importance sampling densities by tilting the scale parameters of the Weibull and log-normal increment
distributions, respectively. As expected, the corresponding estimators are asymptotically efficient in a weak
sense, as opposed to the strong efficiency criterion that our proposed family satisfies (see Theorem 1 below).
Our contribution of this paper is to justify the applicability of the CE method to a parametric family of
densities that capture the large deviations behavior of the heavy-tailed sum, and the resulting estimator is
strongly efficient.

The rest of the paper is organized as follows. In Section 2 we introduce the assumptions for the
heavy-tailed increments, and put forward the parametric family of importance sampling densities to work
on. Section 3 justifies the preservation of strong efficiency when switching among the same parametric
mixture family. In Section 4 the CE method is reviewed and we discuss how it can be applied to the
mixture family under consideration, after which the iterative equations are derived in closed-form. Finally
in Section 5 we test the performance of our approach on two examples and give further discussions.

2 ASSUMPTIONS, NOTATIONS
AND PARAMETRIC FAMILY OF IS DISTRIBUTIONS

2.1 Heavy-tailed Increment Distributions

Families of heavy-tailed distributions used in practice include regularly varying (Pareto-type tails) Weibull
and log-normal. Our two sets of assumptions, discussed next, encompass virtually all models used in
practice. We assume the increment distribution satisfies either of the following two Assumptions.
Assumption 1 F has a regularly varying right tail with index α > 1, i.e.,

F̄(x) = 1−F(x) = L(x)x−α ,

where L(·) is a slowly varying function at infinity, that is, limx→∞ L(xt)/L(x) = 1.
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Assumption 2 There exists b0 such that for all x > b0 the following conditions hold.

2a limx→∞ xλ (x) = ∞.
2b There exists β0 ∈ (0,1) such that ∂ logΛ(x) = λ (x)/Λ(x)≤ β0x−1 for x≥ b0.
2c Λ(·) is concave for all x≥ b0; equivalently, λ (·) is assumed to be non-increasing for x≥ b0.

We remark that under Assumption 2, the increment distribution F is essentially assumed to possess
a tail at least as heavy as some Weibull distribution with shape parameter β0 < 1. Note that under these
Assumptions, adopted from Blanchet and Liu (2011), the increments Xi’s are subexponential, which means
that

P(Sm > b)∼ mP(Xi > b) ,

as b↗ ∞ (see Lemma 6 of Blanchet and Liu 2011).

2.2 Parametric Family of IS Distributions

State-dependent importance sampler (SDIS) is designed to sample the increments of the system from a
distribution that is dependent on the current status of the system being simulated. We consider a mixture
based SDIS. Let us denote by p

j
= (p j,0, ..., p j,K) the vector of mixture probabilities applied to the jth

increment, j = 1,2, ...,m− 1, where K + 2 is the number of mixture determined by the heaviness of the
tail (the lighter the tail is, the larger K is). We consider the following family of mixture based densities
parameterized by the mixing probabilities

p = {p
1
, p

2
, ..., p

m−1
}= {(p1,0, p1,1, ..., p1,K), ...,(pm,0, pm,1..., pm,K)}

where K ≥ 0, from which we sample the kth increment of the heavy-tailed system:

hk

(
x; p

k

∣∣Sk−1 = s
)
= pk,0 f0 (x|s)+

K

∑
j=1

p j f j (x|s)+

(
1−

K

∑
j=0

p j

)
f† (x|s) ,

where f† and f j for j = 0,1, ...,K are properly normalized density functions, which have disjoint supports
and depend on the current position of the system Sk−1 = s. One can think of the mixture as a mechanism
to control the magnitude of the increments based on evaluations of the current status of the system, and
therefore it’s a natural choice in order to induce the “principle of big jump” in the sampled paths. The
two prevalent specifications are from Dupuis, Leder, and Wang (2006) and Blanchet and Liu (2011). The
former works for random walks with increments of regularly varying-type tails that satisfy Assumption 1,
in which case a mixture of two is used, i.e., K = 0. In particular,

hk (x|s) =
(

I (x > a(b− s))
F̄ (a(b− s))

+
I (x≤ a(b− s))

F (a(b− s))

)
f (x),

where a ∈ (0,1) is necessary for analytical reasons and is typically set to be close to 1.
For increments that have distributions covered by Assumption 2, for example Weibull, estimators based

on two mixtures might fail to achieve bounded relative error. As discussed in the previous section, this
is because the weight of the contribution of those “rogue” paths (i.e., paths with multiple jumps of order
Ω(b)) to the relative variance of the estimator is growing increasingly pronounced. Consider the following
example.
Example 1 Suppose we are interested in estimating P(X1 +X2 > b), where X1,X2 are i.i.d. Weibull
with parameter β ∈ (0,1), i.e., P(Xi > t) = F̄(t) = exp

(
−tβ

)
. Note that P(X1 +X2 > b) ∼ P(X1 > b)+

P(X2 > b) due to the properties of subexponential distributions. A two-mixture sampler leads to the
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following importance sampling strategy: sample the increments

(Y1,Y2) =

{(
X1,X2

∣∣(X1; X2 > b−X1)
)

w.p.1/2(
X1
∣∣(X2; X1 > b−X2) ,X2

)
w.p.1/2.

The corresponding IS estimator is therefore

µ̂b =
fX1(y1) fX2(y2)

fX1,X2(y1,y2)
=

2F̄(b− y1)F̄(b− y2)I (y1 + y2 > b)
F̄(b− y1)+ F̄(b− y2)

.

It’s not hard to see that for some choice of β < 1, the relative error is unbounded as b↗ ∞. In particular,
consider the path (y1,y2) = (b/2,b/2), one has

E
(
µ̂2

b

)
P(X1 +X2 > b)2 =

Ep (µ̂b)

P(X1 +X2 > b)2

≥ 1

P(X1 +X2 > b)2
fX1(b/2) fX2(b/2)
fY1,Y2(b/2,b/2)

fX1(b/2) fX2(b/2)

=
F̄(b/2)2 fX1(b/2)2

P(X1 +X2 > b)2 F̄(b/2)
≈

exp
(
−3(b/2)β +2bβ

)
4

,

which grows rapidly as b↗ ∞ if e.g., β = 2/3.

As the previous example illustrates, more mixtures are needed for the increments covered by Assumption
2 to absorb the impact of such “rogue” paths on the second moment of the estimator. Following this
observation, Blanchet and Liu (2011) proposed a multi-point mixture family, which is general enough to
cover all the increment types that satisfy Assumption 1 and Assumption 2. The support of the mixture
based densities is defined in terms of the hazard function of the increments, and the number of mixtures
used is dependent on the tail heaviness of the increments which is expressed in terms of the concavity
of the hazard function of the increment distribution. More mixtures are needed when the tails are not as
heavy as regularly varying, for example Weibull. More precisely, let Λ(x) =− log F̄(x) be the integrated
hazard function of the increments, given a∗,a∗∗ > 0, let

f0(x|s) = f (x)
I
(
x≤ b− s−Λ−1 (Λ(b− s)−a∗)

)
P(x≤ b− s−Λ−1 (Λ(b− s)−a∗))

,

and

f†(x|s) = f (x)
I
(
x > b− s−Λ−1 (Λ(b− s)−a∗∗)

)
P(x > b− s−Λ−1 (Λ(b− s)−a∗∗))

.

The densities f j’s are defined by a set of cut-off points c j = a j(b− s) for j = 1,2, ...,K − 1 where
0 < a1 < a2 < ... < aK−1 < 1 is a sequence satisfying, for given β0 ∈ (0,1) and a positive constant σ1,

aβ

j +(1−a j+1)
β ≥ 1+σ2,

and
a j+1−a j ≤ σ1/2,

for each 1≤ j ≤ k−2 for some σ2 > 0, and ak−1 ≥ 1−σ1,a1 ≤ σ1. Set c0 = b− s−Λ−1 (Λ(b− s)−a∗)
and cK = b− s−Λ−1 (Λ(b− s)−a∗∗) we define

f j(x) =

{
f (x)I (x ∈ (c j−1,c j])/P(X ∈ (c j−1,c j]) 1≤ j ≤ K−1
f (b− s− x)I (x ∈ (cK−1,cK ])/P(X ∈ (b− s− cK ,b− s− cK−1]) j = K
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for j = 1,2, ...,K. Note that the two specifications of the mixtures (by Dupuis, Leder, and Wang 2006
and Blanchet and Liu 2011) have the same spirits when the increments are regularly varying (see equation
(14) in Blanchet and Liu 2011). Blanchet and Liu (2011) also showed that this mixture based distribution
converges in total variation to the zero-variance distribution in a certain random walk problem, as b↗ ∞.
In what follows, we shall work on a more general form of the mixture given as follows

hk

(
x; p

k

∣∣Sk−1 = s
)
=

(
K

∑
j=0

pk, jI (A j (s))w j (s,x)+

(
1−

K

∑
j=0

pk, j

)
I (A†(s))w† (s,x)

)
f (x),

where A†(s) =
⋃K

j=0 A j, and w j (s,x) ,w† (s,x) > 0 satisfy E(w j (s,X)) = E(w† (s,X)) = 1. Note that the
mixture family specified by Dupuis, Leder, and Wang (2006) corresponds to setting

w j (s,x) =
I (x > a(b− s))

F̄ (a(b− s))
,

for j = 0,†; and the one proposed by Blanchet and Liu (2011) corresponds to setting

w j (s,x) =
I (A j(s))
P(A j(s))

=
I (x ∈ (c j−1,c j])

P(x ∈ (c j−1,c j])
,

for j = 0,1, ...,K−1,† and c−1 =−∞ with a slight abuse of notation. And

wK (s,x) =
f (b− s− x)I (x ∈ (cK−1,cK ])

f (x)P(X ∈ (b− s− cK ,b− s− cK−1])
.

If we write the joint density of the increments under the original measure as

f(x) = f (x1) f (x2) ... f (xm) ,

where x = (x1, ...,xm), we can express the joint importance sampling density for the mixture based SDIS as

h(x;p) =
m−1

∏
k=1

(
K

∑
j=0

pk, jI (A j (sk−1))w j (s,xk)+

(
1−

K

∑
j=0

pk, j

)
I (A†(sk−1))w† (s,xk)

)
· (I (Sm−1 < b)P(Xm > (b−Sm−1))+ I (Sm−1 ≥ b)) f(x) .

3 STRONG EFFICIENCY OF THE FAMILY UNDER CONSIDERATION

The following Theorem highlights the main reason leading to the strong efficiency of the mixture family.
The proof, which relates to the techniques studied in Dupuis, Leder, and Wang (2006) and Blanchet and
Liu (2011), is given in Blanchet and Shi (2011).
Theorem 1 Let P and Pp be the original probability measure and the one induced by the mixture family
with mixing probability vector p. If there exists an ε > 0 such that p > ε ·1, for all b > 0, where 1 is a
vector of ones of dimension (m−1)× (K +1), then

dP
dPp

I (Sm > b)
P(Sm > b)

= O (1) ,

as b→ ∞.
The result enables us to comfortably switch to different choices of mixing probabilities within the

same parametric family without violating the strong efficiency property of the final estimator, which lays
the ground for the applicability of the CE method to be introduced shortly.
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4 CROSS ENTROPY METHOD
AND THE ITERATIVE EQUATIONS FOR THE MIXTURE FAMILY

4.1 Review of Cross-Entropy Method

If we restrict our search of importance sampler to this particular parametric class, the optimal choice of
the vector p can be obtained by minimizing the so-called Kullback-Leibler divergence or the cross-entropy
distance.
Definition 1 The Kullback-Leibler cross-entropy between two densities g and h is given by

D (g,h) =
∫

g(x) log
g(x)
h(x)

dx

=
∫

g(x) logg(x)dx−
∫

g(x) logh(x)dx.

If we fix g to be the optimal importance sampling density g∗ (x) ∝ ϕ (S (x;b)) f (x), where ϕ (S (x;b))
is the performance measure of the system (for example, S(X) = ∑

m
j=1 X j, and ϕ (S (x;b)) = I (S (x)> b)),

then our search of the optimal mixture is the output of the following parametric optimization problem

min
p

D (g∗,h(·,p))⇐⇒max
p

D(p) = max
p

Ep?ϕ (S (X;b)) logh(X;p)

= max
p

Ep̃ϕ (S (X;b))
h(X;p?)

h(X; p̃)
logh(X;p)

= max
p

Ep̃ϕ (S (X;b))
f(X)

h(X; p̃)
logh(X;p) , (2)

where f(X)/h(X; p̃) is the likelihood ratio between the original measure and the measure induced by the
mixture based density with some fixed parameter p̃ (Recall that X = (X1, ...,Xm)). In particular,

f(X)

h(X; p̃)
=

m−1

∏
k=1

(
K

∑
j=0

I (xk ∈ A j (Sk−1))

p̃k, jw j (Sk−1,xk)
+

I (xk ∈ A†(Sk−1))(
1−∑

K
j=0 p̃k, j

)
w† (Sk−1,xk)

)
· (I (Sm−1 < b)P(Xm > (b−Sm−1))+ I (Sm−1 ≥ b)) . (3)

In most cases the expectation in (2) is analytically inaccessible. Rubinstein and Kroese (2004) suggested
a recursive method based on the following stochastic counterpart of (2)

max
p

D̂(p) = max
p

1
N

N

∑
i=1

ϕ (S (X(i)) ;b)
f(X(i))

h(X(i); p̃)
logh(X(i),p) . (4)

Cross Entropy (CE) Algorithm (Rubinstein and Kroese 2004)

1. Choose an initial vector of mixing probabilities p(0). Set T = 1.
2. Generate a random sample X1, ...,XN from the joint density h

(
·;p(T−1)

)
.

3. Solve the stochastic optimization program (4). Denote the solution by p(T ), i.e.,

p(T ) = argmin
p

1
N

N

∑
i=1

ϕ (S (X(i)) ;b)
f(X(i))

h
(
X(i);p(T−1)

) logh(X(i),p) .

4. Stop if convergence is reached; otherwise, set T = T +1, go to Step 2.
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It’s very convenient to embed the CE algorithm in the main SDIS algorithm to further reduce variance.
Let M be the total simulation budget, and τ be the number of recursions in the CE algorithm until
convergence of p. If τN < M, then the SDIS with CE algorithm add-on corresponds to generating τ batches
of independent samples from the mixture based importance sampling density parameterized by p(T ), for
T = 0,1, ...,τ−1, and one batch of size M−τN of independent samples from the importance density with
optimal CE probability vector p∗. Depending on the size of M− τN, the final estimator can be obtained
by averaging either the last batch of M− τN samples, or the entire M samples from different batches. In
either case we are able to achieve variance reduction while maintaining strong efficiency property. Even for
the case where τN ≥M, the improved cross-entropy after each iteration typically will reduce the variance
of the future samples over those from previous iterations, since each iteration gives us a parameterized
density closer to the zero-variance importance density.

4.2 Iterative Equations for the Mixture IS Family

We now proceed to characterize the solution to (4). In the case where we are interested in the tail probability
of the sum P(Sm > b), ϕ (S (X) ;b) = I (Sm > b). Note that D̂ is concave and differentiable with respect to
the components pk, therefore the solution to (4) is directly given by the first order optimality condition:

N

∑
i=1

I (Sm(i)> b)
f(X(i))

h(X(i); p̃)
5p logh(X(i),p) = 0. (5)

The product structure of the likelihood function is particularly useful because the sensitivity of the likelihood
function to the mixing probabilities can be localized. Indeed, a few lines of elementary algebra gives

d logh(X,p)
d pk,l

=(I (Xk ∈ Al (Sk−1))wl (Sk−1,Xk)− I (Xk ∈ A† (Sk−1))w† (Sk−1,Xk))/(
K

∑
j=0

pk, jI (Xk ∈ A j (Sk−1))w j (Sk−1,Xk)+

(
1−

K

∑
j=0

pk, j

)
I (Xk ∈ A†(Sk−1))w† (Sk−1,Xk)

)

=
I (Xk ∈ Al (Sk−1))

pk,l
− I (Xk ∈ A† (Sk−1))

1−∑
K
j=0 pk, j

.

We denote

W (X−l(i);p?, p̃) =
m−1

∏
k=1,k 6=l

h
(

Xk(i); p?
k

)
h
(

Xk(i); p̃
k

) (I (Sm−1 < b)P(Xm(i)> (b−Sm−1(i)))+ I (Sm−1(i)≥ b)) ,

where p?
k
= {p?k,0, ...p

?
k,K}, and p̃

k
= { p̃k,0, ...p̃k,K}. And further let

Θl, j =
∑

N
i=1W (X−l(i);p?, p̃)

(
1−∑

K
j=0 p̃l, j

)
w† (Sl−1,Xl(i))

∑
N
i=1W (X−l(i);p?, p̃) p̃l, jwl (Sl−1,Xl(i))

.

The first order optimality condition (5) therefore yields the following solution p∗ to the stochastic
optimization problem (4), we shall call this vector of optimal solution optimal CE mixing probability vector:

p∗l, j =
Θl, j

1+∑
K
k=0 Θk, j

, (6)

for j = 0,1, ...,K and l = 1,2, ...,m. It doesn’t take long to realize that the previous expression has the
following equivalent form

p?l, j =
∑

N
i=1 I (Sm(i)> b)W (X(i);p?, p̃) I (Xl ∈ A j (Sl−1))

∑
N
i=1 I (Sm(i)> b)W (X(i);p?, p̃)

, (7)
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for j = 0,1, ...,K and k = 1,2, ...,m, where W (·;p?, p̃) = h(·;p?)/h(·; p̃) = f(·)/h(·; p̃) is given by (3). It’s
worth pointing out that (7) is computationally advantageous over (6), because it avoids dividing by zero
in computing Θl, j, especially when the number of “pilot” runs is small. (Note that the sampling of the
mth increment ensures Sm(i)> b.) Moreover, the expression (7) entails a nice interpretation: the optimal
mixing probability is the proportion of the contribution to the likelihood function from the jth “band” of
the kth increment.

For completeness we also include the explicit iteration equations for cases where the increments satisfy
Assumption 1 and 2, respectively. We write, for ease of exposition,

Wm(i) = (I (Sm−1(i)< b)P(Xm(i)> (b−Sm−1(i)))+ I (Sm−1(i)> b)) .

For regularly varying increments, the solution for the T th iteration of the recursive algorithm can be written
as

p(T )k =

∑
N
i=1 I (Sm(i)> b;Xk > a(b− sk−1))∏

m−1
k=1

(
P(Xk>a(b−sk−1))

p(T−1)
k I(Xk>a(b−sk−1))

+ P(Xk≤a(b−sk−1))(
1−p(T−1)

k

)
I(Xk≤a(b−sk−1))

)
Wm(i)

∑
N
i=1 I (Sm(i)> b)∏

m−1
k=1

(
P(Xk>a(b−sk−1))

p(T−1)
k I(Xk>a(b−sk−1))

+ P(Xk≤a(b−sk−1))(
1−p(T−1)

k

)
I(Xk≤a(b−sk−1))

)
Wm(i)

.

For increment distributions that satisfy Assumption 2, the likelihood function W
(
·;p?,p(T−1)

)
becomes

W
(

X(T−1);p?,p(T−1)
)
=

f
(
x(T−1)

)
h
(
X(T−1),p(T−1)

)
=

m−1

∏
k=1

 P
(

X (T−1)
k ≤ c0

)
p(T−1)

k,0 I
(

x(T−1)
k ≤ c0

) +
P
(

X (T−1)
k > cK

)
(

1−∑
K
j=0 p(T−1)

k, j

)
I
(

X (T−1)
k > cK

)
+

K−1

∑
j=1

P
(

X (T−1)
k ∈ (c j−1,c j]

)
p(T−1)

k, j I
(

x(T−1)
k ∈ (c j−1,c j]

) +
f (b− s− x(T−1)

k )P
(

X (T−1)
k ∈ (b− s− cK−1,b− s− cK ]

)
p(T−1)

k,K f (x(T−1)
k )I

(
x(T−1)

k ∈ (cK−1,cK ]
)

Wm(i),

where c j’s are the cutoff points of the “bands” and we have explicitly written out the iteration count. Note
that at the beginning of iteration T , the only part that is dependent on the unknown parameters p in the
stochastic program (4) is logh

(
X(i),p(T )

)
and hence 5p logh

(
X(i),p(T )

)
in the optimality condition (5);

the likelihood W
(
·;p?,p(T−1)

)
is a function of the probability vector passed from the (T −1)st iteration

as well as the samples generated from IS density specified by that probability vector. In that regard at
the beginning of the T th iteration, all the ingredients in the expression above are available. The iteration
equation for the probability vector at iteration T is therefore given by

p(T )k, j =
∑

N
i=1 I

(
S(T−1)

m (i)> b
)

W
(
XT−1(i);p?,p(T−1)

)
I
(

x(T−1)
k ∈ (c j−1, jk]

)
∑

N
i=1 I

(
S(T−1)

m (i)> b
)

W
(
X(i)(T−1);p?,p(T−1)

) ,

where c−1 =−∞ with a slight abuse of notations.
Note that the iterative equations given so far reveal the ease of implementation of the CE subroutine:

one only needs to keep K + 2 buckets, indicating whether the kth increment falls into the jth band,
j = 1,2, ...,K +2, and aggregate the likelihood function for each bucket. The computational cost is of the
same order as a vanilla SDIS iteration without the CE routine.
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Remark 1 One might consider further guiding the parametric family of samplers using large deviations
ideas. For example, in the regularly varying case, one can force the probabilities to have the following
structure,

pk =
m− k+1

m− k
pk−1,

for k = 2, ...,M− 1, which is equivalent to pk =
m−1
m−k p, for k = 1,2, ...,m− 1. This choice reflects the

intuition that the chance for the k-th increment to be a large one is roughly proportional to the inverse of
the remaining steps to go. Note that this particular structure is very close to the optimal mixture found
by Dupuis, Leder, and Wang (2006) using a dynamic programming argument. However, due to the global
dependence on the first probability parameter p. It is not difficult to see that the CE iteration equations
will involve a root finding procedure, which could increase the computational cost significantly.

5 NUMERICAL EXAMPLES

5.1 Example 1: Regularly Varying Increments

We illustrate the empirical performance of the SDIS with CE routine (SDIS-CE) by considering two
examples. In the first example, the increments are regularly varying with index α = 1/2, in particular, Xn’s
have tail distribution

P(Xi > b) = (1+b)−1/2 .

Following Dupuis, Leder, and Wang (2006), given the parameters of the model, a given number of increments
m and a tail parameter b, we estimate P(Sm > b) and the standard deviation of the estimator as follows.
We simulate 20000 replications of our estimator. The estimates are obtained based on averages of the
replications. This is the output of a single run. Then we produce 500 independent runs. The results
displayed are the averages of the outputs of these runs. We run the experiments with two different sets
of input mixing probabilities. In the first case, which we shall later refer to as the “standard choice”, we
consider the heuristic choice pk = θ/(m− k) where θ = 0.9. And for the second set of input we use the
optimal choice of the probabilities obtained by Dupuis, Leder, and Wang (2006), i.e.,

p∗k =
a−α/2

(m− k)a−α/2 +1
,

which we call the “DLW” selection. In both cases we select a = 0.9. The results of the experiment are
reported in the Table 1 and Table 2.

From the results of Table 1 we observe that even for a reasonable choice of mixing probabilities based
on large deviations intuition, the CE algorithm produces a smaller relative error. On the other hand, it is
outperformed by the optimal choice of the probabilities obtained in (Dupuis, Leder, and Wang 2006), as
can be seen in Table 2, one shall keep in mind, however, that in many applications, the structure of the
problem doesn’t allow for such analytical solutions easily. We also point out that the optimal solution from
Dupuis, Leder, and Wang (2006) hinges on the assumption that b is sufficiently large for large deviations
asymptotics to be valid. For smaller exceedance level b, we might expect a better performance using the
CE routine, which is underpinned by the results shown in Table 3.

We have mentioned in the previous section that since the recursive CE algorithm is carried out on the
pilot sample, it neglects the fact that the increments are simulated in a sequential manner, but rather treats
them in an independent way. We averaged the output CE optimal probability vector over the experiments,
the near identical mixing probabilities in Table 4 is in line with the expected behavior of the method that
each increment has probability at roughly 1/4 of causing the rare event.
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Table 1: Performance of the SDIS-CE estimator compared to the SDIS algorithm without CE procedure
where the input mixing probabilities are set to be pk = 0.9/(m− k) for k = 1,2, ...,m−1.

m b Standard CE Method
4 1e + 06 3.999E-03 4.000E-03 Average Estimate

3.148E-05 1.395E-05 Average Std. Error
0.787% 0.349% Avg.SE/Avg.Est (%)

1e + 12 3.999E-06 4.000E-06
3.151E-08 1.403E-08

0.788% 0.351%
1e + 18 4.000E-09 4.000E-09

3.153E-11 1.393E-11
0.788% 0.348%

25 1e + 06 2.503E-02 2.498E-02
1.525E-03 3.404E-04

6.094% 1.363%
1e + 12 2.496E-05 2.499E-05

1.518E-06 3.458E-07
6.082% 1.384%

1e + 18 2.496E-08 2.502E-08
1.524E-09 3.409E-10

6.103% 1.363%

Table 2: Performance of the SDIS-CE estimator compared to the SDIS without CE procedure where the
input mixing probabilities are set to be the optimal choice obtained in Dupuis, Leder and Wang (2006).

m b DLW CE Method
4 1e + 06 4.000E-03 4.000E-03 Average Estimate

5.660E-06 1.374E-05 Average Std. Error
0.141% 0.344% Avg.SE/Avg.Est (%)

1e + 12 4.000E-06 4.000E-06
5.683E-09 1.382E-08

0.142% 0.346%
1e + 18 4.000E-09 4.001E-09

5.691E-12 1.373E-11
0.142% 0.343%

25 1e + 06 2.499E-02 2.500E-02
3.925E-05 1.555E-04

0.157% 0.622%
1e + 12 2.500E-05 2.500E-05

4.032E-08 1.567E-07
0.161% 0.627%

1e + 18 2.500E-08 2.500E-08
4.027E-11 1.568E-10

0.161% 0.627%
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Table 3: Comparison of performance between 1) SDIS using CE optimal mixing probabilities and 2)
Analytical optimal mixing probabilities from Dupuis, Leder and Wang (2006), m = 2.

b DLW CE Method
5 6.999E-01 6.999E-01 Average Estimate

1.110E-03 5.742E-04 Average Std. Error
0.159% 0.082% Avg.SE/Avg.Est (%)

20 4.166E-01 4.166E-01
4.727E-04 4.410E-04

0.113% 0.106%

Table 4: Average optimal CE .mixing probabilities, m = 4, b = 106.

k 1 2 3
pk 0.248 0.253 0.251

5.2 Example 2: Weibull Increments

We now proceed to the second example where the increments are assumed to have the following Weibull-type
of distribution,

P(X > b) = e−2
√

b+1,

for t ≥−1. This corresponds to the case considered by Blanchet and Liu (2011), where the authors use a 5-
point mixtures specified by the cut-off points c0 = 0.1

√
b− s,c1 = 0.1(b−s),c2 = 0.5(b−s),c3 = 0.9(b−s)

and c4 = b−s−0.1
√

b− s. Since the number of cut-off points increases from the previous mixture sampler,
we increase the pilot sample number to 5000; all the other algorithmic parameters (number of runs and
number of replications per run) remain the same. The results of the experiments are summarized in Table
5.

Table 5: Performance of the SDIS-CE estimator compared to SDIS without CE procedurein the case of
Weibull-type of increments, m= 4. We used pk, j = 1/(K +2)(m− k), for j = 0,1, ...K and k = 1,2, ...,m−1
as the “standard” choice of the mixing probabilities.

b Standard CE Method
150 7.977E-11 7.966E-11 Avg. Est.

2.580E-12 7.642E-13 Avg. Std. Err.
3.235% 0.959% Avg. SE/Avg. Est. (%)

450 1.371E-18 1.372E-18
4.835E-20 1.071E-20

3.526% 0.781%
750 6.086E-24 6.069E-24

2.209E-25 3.185E-26
3.630% 0.525%
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