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ABSTRACT

Significant focus has been placed on the development of functionality in simulation software to aid the
development of models. As such simulation is becoming an increasingly pervasive technology across ma-
jor business sectors. This has been of great benefit to the simulation community increasing the number of
projects undertaken that allow organizations to make better business decisions. However, it is also the
case that users are increasingly under time pressure to produce results. In this environment there is pres-
sure on users not to perform the multiple replications and multiple experiments that standard simulation
practice would demand. This paper discusses the innovative solution being developed by Saker Solutions
and the ICT Innovation Group at Brunel University to address this issue using a dedicated Grid Compu-
ting System (SakerGrid) to support the deployment of simulation models across a desktop grid of PCs.

1 INTRODUCTION

In many industries simulation is increasingly becoming an intrinsic part of the decision making process,
so much so that simulation has been identified as one of the top 10 strategic technologies in 2010 (Gartner
2010). One of the key factors responsible for simulation living up to this billing is the speed at which ex-
ecutives can achieve quality answers using simulation as the enabling technology. Generally speaking, a
simulation project can be thought of having three distinct phases, Conceptual Modeling, Model Coding,
and Experimentation, with each typically representing roughly a third of the project timescale. The model
testing and experimentation phase is often the most time pressured element of a project and as a result ex-
perimentation can be restricted and testing not as wide ranging as would be ideal. Therefore benefits can
be significantly reduced and risk could be potentially introduced into the project. In addition a successful
project will often lead to further questions being asked of the simulation which increases the time pressure
further. A major time factor in experimentation is waiting for the completion of model runs.

In the experience of simulation modeling at Saker Solutions, if there is a typical simulation run time,
and the authors are reticent to predict such a thing, one would imagine that a time of 40 mins to 80 mins
per replication would not be untypical (especially in manufacturing, transportation and logistics). A repli-

978-1-4577-2109-0/11/$26.00 ©2011 IEEE 2283



Kite, Wood, Taylor, and Mustafee

cation is a single run of the simulation model using a specific set of random numbers. Therefore, even if
we conservatively assume that a typical scenario will require 10 replications, the scenario will take 7 to14
hours to run. Taking this to the logical conclusion, and again looking at the problem conservatively, we
may want to run at least 10 experimental scenarios which will take in excess of 4 days to complete. The
authors are not however trying to prescribe how many replications are required to support a specific mod-
el but simply identifying the time required to run a model with even a modest number of replications. Of
course, it is not only the experimentation of a model where the speed in which replications and hence sce-
narios can be completed is important. The testing phase of a project will involve many such runs and of
course this naturally occurs in the same time pressured period in the project lifecycle. In a survey of typi-
cal projects at Saker, the average number of replications run as part of the testing phase is in excess of
500. In the era when it would have taken 7 hours to make a simple change to a model then the time it
takes to run a scenario may have been acceptable. Now changes can often be made in minutes and the us-
er needs to be able to receive a quick response to questions. Given that the authors have seen (“commer-
cial” not “academic”) models sometimes take over 14 hours to run a single replication then this “need for
speed” can be extreme.

It is worth understanding the context of a ‘quick response.” This is a comment which many users will
quote as a requirement of a simulation, i.e. “Run Speed.” Indeed it is often quoted as an enhancement re-
quest. However, this needs to be put into context. When running a scenario on a single PC, an instant re-
sponse would be ideal, if not practical. If it takes the time required to get a coffee this would be seen to be
instant. Indeed 30 or 40 minutes would seem to be the longest time that someone is prepared to wait, and
this would still not be ideal. However, conversely if it takes 6-12 hours, then realistically it would be
deemed to be an ‘overnight’ experiment. So, to make an impact on speed the requirement is not to double
a model’s run speed but rather we need to decrease the time taken to run a scenario by a factor of 10 at
least.

The notion of “The Grid” offers an integrated infrastructure providing geographically distributed sites
with secure access to computational, data and instrumentation resources (Foster and Kesselman 1998). It
has been suggested as being potentially beneficial to simulation modeling (Robinson 2005; Taylor and
Robinson 2006). Indeed, previous work has investigated how a Grid based on a network of PCs, a desktop
grid, can be successfully used to support different simulation applications (Mustafee and Taylor 2008;
Mustafee and Taylor 2009). The question therefore that this paper seeks to address is how far can “The
Grid” be taken in the world of simulation practice? The paper is structured as follows: Section 2 discuss-
es relevant issues in simulation practice using practical experience from Saker Solutions, Section 3 re-
views Grid computing and desktop grid technology, Section 4 presents the system requirements for a Grid
computing simulation solution, Section 5 outlines the resulting desktop grid system called SakerGrid that
has been developed and has been successfully deployed by Saker Solutions and the ICT Innovation Group
of Brunel University and Section 6 draws the paper to a close with some concluding remarks and future
work.

2 SIMULATION AT SAKER SOLUTIONS

Discrete-event simulation (henceforth referred to as simulation) has been used to analyze production and
logistics problems in many areas such as commerce, defense, health, manufacturing and logistics for
many years. The first discrete-event simulation languages appeared in the late 1950s. These evolved dur-
ing the 1960s and 1970s. With the arrival of the IBM PC, the 1980s saw the rise of visual interactive
modeling environments that allowed simulation modelers to visually create and simulate discrete-event
models (Ellarby and Kite 2006). Today, simulation is practiced using Commercial-Off-The-Shelf (COTS)
Simulation Packages (CSPs). They include packages such as AnyLogic™ (www.xjtek.com), Arena™
(www.arenasimulation.com), Flexsim™ (www.flexsim.com), Simul8™ (www.simul8.com), Simio™
(www.simio.com) and Witness™ (www.lanner.com). Each has a wide range of functionality including
visual model building, simulation run support, animation, optimization and virtual reality. Some allow
model features to be developed in C++ or Java, some have their own dedicated programming language
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and all are able to be linked to other COTS software (such as Microsoft Excel). Nearly all CSPs only run
under Microsoft Windows™ which dictates that a discussion of the integration of simulation products
with other software needs to be focused on a Windows environment.

In any project a certain amount of time is spent on running models for both testing and analysis. Our
experience has been that as simulations tools have become easier to use and more graphically expressive
(Ellarby and Pattison 2008) it has led to requests for ever larger models that result in longer running time.
Experience from talking to Saker Solutions’ clients shows some key pointers to the issues facing simula-
tion practitioners:

e Models are becoming larger in terms of the number of components, event list, physical file size
and data files (associated databases and data sources that are accessed during a run). This leads to
longer run times and end-user frustration.

e Models are longer lived and can exist for the lifetime of the physical system. This allows for a
significantly higher investment in simulation than if a model is developed for a one-time problem.

e To make simulation more accessible to the end-user, sophisticated front-ends have been devel-
oped that “hardwire” good simulation practice. Saker Solutions have developed such frontends
which allow the user to demand scenarios quickly and effectively but the user is then left to wait
for the response as the simulation works through the replications.

The introduction of SakerGrid (Wood et al. 2010) has meant that not only has the overall duration of

a simulation project been reduced, but the effectiveness of the modeler has also been increased because in
the time that it takes to analyze the results from one scenario another scenario can be run.

3 DESKTOP GRIDS

A desktop grid is one that aggregates non-dedicated, de-centralized, commodity PCs connected via a net-
work (Mustafee and Taylor 2009). As “typical” desktop applications do not fully utilize the computing
power available on a machine, desktop grids can harvest spare computing resources of desktop PCs (so-
called cycle scavenging) (Choi et al. 2004). There are several different desktop grid middleware that can
be used to create such an infrastructure. Examples include BOINC (Anderson 2004), Condor (Litzkow,
Livny, and Mutka 1988), Entropia DCGrid (Kondo, Chien, and Casanova 2004) and Digipede Network
(Digipede Technologies 2010). Of these, BOINC (running with Condor) is arguably the most popular as it
has a large deployment base, it is relatively easy to use and is available free of cost. However, it is also
large (it is general purpose), complex (there are many features) and unsupported (the running of the appli-
cation using the middleware is the responsibility of the user). Further, like all distributed computing ap-
plications, grid desktop middleware uses different communication schemes that need to be matched with
local security policies. Some organizations may prefer servers over peer-to-peer processes or vice versa,
or indeed only allow communication via web services or through specific ports (for example sharing port
80 — the port that supports the World Wide Web). This can be problematic if the scheme and policy do
not match as the user cannot control such things easily. Further, there may well be the need for specific
message compression or encoding that the middleware may not support. The fact that many CSPs only
work under Microsoft Windows™ means that some middleware cannot be used because it either does not
run on that operating system or runs with limited functionality.

Most desktop grid middleware work on the Manager-Worker principle. The Manager is a job dis-
patcher that receives and sends jobs out to Workers. Workers work on these jobs and return results. Most
middleware also assumes that a “job” consists of the application program and its data. Over and above
operating system constraints, the use of a grid to support simulation is more complex and follow different
design principles. These design principles (Mustafee and Taylor 2008) are summarized below.

3.1 Middleware Integration Approach

To expand the issue introduced above, jobs sent from the Manager to a Worker typically run in a “sand-
box” that is implemented by the middleware. This provides a logically separate and secure execution en-
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vironment to prevent unauthorized access to a computer. However, to do this, the application software
(the CSP) must be integrated with the middleware. A “job” would therefore be the model plus the data
needed for a simulation run. This approach is more common for applications such as the Java Virtual Ma-
chine, i.e., the application needed to run Java programs. To be successful, this approach would require the
CSP vendor and the middleware supplier to agree to either produce a specific version of the middleware
supporting the CSP or to bundle the CSP as part of the middleware. Neither approach is particularly at-
tractive.

3.2 CSP-Runtime Installation Approach

This approach involves the installation of a CSP package at runtime, i.¢., just before the simulation exper-
iment is conducted. In this case the CSP is sent to the Workers along with the model and data. This ap-
proach allows for flexibility to send jobs to machines which are free irrespective of the configuration of
that machine. However this approach may not be feasible for a number of reasons. (1) the size of CSPs
frequently exceed 100s of MBs and it may not be feasible to transfer such large amounts of data to multi-
ple Clients over the network, (2) the CSP will first need to be installed on the desktop grid node before
the simulation can start, (3) such an installation is normally an interactive process and requires human in-
tervention, (4) an installation normally requires administrative privileges on the Client computers, (5)
transferring CSPs may lead to a violation of the software license agreement that may be in place between
the CSP vendor and the organization (if the number of desktop grid nodes executing simulations exceed
the number of licenses purchased) and (6) time becomes an issue here where the replications are relatively
short the time to load the software could be prohibitive.

33 CSP-Preinstalled Approach

This involves installing the CSP at the Worker as a normal installation. The jobs sent to the Workers are
therefore the model and the data, removing the issues described above. As simulations are created by
trusted employees running trusted software within the bounds of a fire-walled network, security in this
open access scheme could be argued as being irrelevant. In this environment the sandbox security mecha-
nism described above may be forfeited. This methodology allows for flexibility in allowing jobs to be
packaged and sent to machines with the right configuration.

4 SIMULATION REQUIREMENTS

Section 2 outlined relevant issues to simulation practice and Section 3 has outlined desktop grid middle-
ware and CSP support strategies. Let us now discuss this in detail with respect to SakerGrid.

SakerGrid has been configured to support a range of simulation tools. The current implementation is
focused on the Flexsim™ simulation software. Flexsim™ is a PC-based, object-oriented simulation tool
used to model, simulate, and visualize any manufacturing, material handling, logistics or business pro-
cess. Flexsim™ has been developed to allow users to build models directly in a 3D environment with the
ease of conventional 2D models whilst still allowing more advanced modelers the flexibility to design
new objects and if required even embed their own C++ code into the tool, thus allowing Flexsim's model-
ing objects to be customized to exactly match the processes being studied.

Until recently Flexsim™ in common with most simulation software required a hardware dongle, the
two most common configurations of which are ‘local’ and ‘network’. Flexsim Software Inc have now re-
leased a version of its software which utilizes a soft license so that dongles do not need to be present. A
local license allows one instance of Flexsim™ to run on the machine that it is connected to. A network li-
cense allows multiple machines to use a pool of licenses that are available from the license server. Using
a network license means that any number of machines can have Flexsim™ installed, but the number of
instances that can be run simultaneously is limited by the number of licenses in the pool. This means that
the Grid Manager not only has to limit jobs to the machines that have Flexsim™ installed but also has to
monitor the number of licenses available in the pool. The input and output data for a Flexsim model is
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typically stored using one (or more) of three different mechanisms: an internal Flexsim™ tables, an Excel
spreadsheet (either directly, via a DSN, or via an intermediate flat text file, such as a CSV) or a database
(via a DSN).

Handling unforeseen problems that occur whilst a scenario is being run in a distributed environment
is one of the key issues of implementing a desktop grid. Individual machines may crash or be interrupted
by a user returning to their machine and network connectivity issues can also cause a machine to “become
unavailable” in the grid. In all of these situations it is possible that a job will have been sent to run on a
machine, but no results are returned. Replications which are not completed because of a failure outside of
the simulation need to be automatically re-run without further input from the user. Equally, if the failure
is related to the simulation then this needs to be logged and reported to the user.

Whilst models are in development it is possible that a bug will be encountered that prevents a scenar-
io from completing. In this event the grid must ensure that the job is halted allowing other jobs to use the
computing resources and communicate as much information as possible to the modeler that submitted the
suspended job to aid them in eliminating the cause of the problem. Of course, it is a fundamental require-
ment that the individual replication can be reproduced in isolation so that the exact situation identified
from a replication running on the grid can be reproduced on a standalone machine.

Given that even when using a desktop grid it may take a considerable amount of time to run a large
number of scenarios of a particular model, it is important that an appropriate prioritization strategy is em-
ployed by the Grid Manager to allow more urgent jobs to supersede presently queued jobs if the need
arises. Indeed, the authors note that ultimately this is the key to a successful grid application. Scheduling
is a complex topic in any paradigm and in the case of distributing simulation experimentation this is no
less the case. Machines (resources) have different speeds and capabilities, models (jobs) require different
amounts of time from the resources and users (customers) have different priorities.

Given the above, of the three CSP-grid integration approaches discussed in section 3, the CSP-
preinstalled approach is considered the most appropriate because (1) it does not require any modification
to the CSPs, thus CSPs that expose package functionality can be grid-enabled, (2) it does not require any
modification to the grid middleware, (3) CSPs that are usually installed on the PCs of the simulation prac-
titioners can be utilized for running simulation experiments from other users in the background and (4) it
supports the restrictions imposed by the license requiring the presence of a hardware dongle. Thus, In Sa-
kerGrid, the Worker has been designed to integrate with CSPs by using this approach. When the Worker
is started it scans the machines of the desktop grid for all of the available simulation packages including
various versions of the same package and where appropriate, libraries, and registers these with the Grid
Manager. In this way SakerGrid supports different products and versions of products transparently to the
user. When the Grid Manager is ready to distribute a block of work it will use this information to deter-
mine which of the Workers are capable of handling it.

As we have discussed, the key elements to creating a grid based solution is really in the integration
and support of the user interface and the CSP. One might therefore take the view that it does not matter
which middleware is used. However, our justification for developing our own system is that we wish to
supply a supported grid solution in an unknown, possibly highly restricted, security environment that is
optimized for simulation and provides for future expansion to allow for distributed simulation (Fujimoto
1999) and optimization. We now discuss our solution to this, SakerGrid.

5 SAKERGRID

There are three components to SakerGrid; the Manager, the Worker and the Client. Each grid consists of
one Manager that handles the job queue and dispatches the jobs to Workers in packages of work referred
to as ‘blocks’. When the block completes on the Worker the results are returned to the Manager where
they are combined with the results from the other Workers. At this point the Worker is available to re-
ceive the next block of work from the Manager. The Client is used by the analyst to submit jobs to the
Manager, monitor the progress of their execution and to download the results when they are complete.
Figure 1 shows how the SakerGrid middleware isolates the CSP from the network and other implementa-
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tion details of the Grid. This means that the CSP can be used unmodified out of the box. All non-sensitive
models and datasets are cached by the Workers to reduce the amount of network traffic and to reduce the
start-up time of the Worker when it is issued a job. The modular architecture of the Manager allows the
models and data to be stored either locally or on a central server, whilst the jobs are pending in the queue
before they are dispatched to the appropriate Worker when required.

Client Manager Worker
Grid Client Application Work Queue Data Storage Unmodified CSP
Suppliesl +Returns T l T l Supplies+ I Returns
Data * I Results ‘ | Data I *Results
Grid Middleware Grid Middleware Grid Middleware

! ! !

Corporate Network

Figure 1: SakerGrid architecture

The reduction in running time that has been achieved can be clearly seen in Figure 2. It gives a com-
parison of the overall running time of 1, 5, 10, 20, and 40 replication scenarios with a model that runs for
approximately 7.5 minutes per replication The model used was a finished client model which although a
relatively small project, was a ‘real” model and typical for a small simulation projects. This model had the
advantage of allowing us to experiment with significant numbers of replications. Whereas previously a 40
replication scenario would have been termed an ‘overnight’ experiment it can now be completed in less
than 30 minutes giving almost instant results. Similar reductions in overall running time have also been
observed on larger models with some taking up to 14 hours per replication.

Our experience of using SakerGrid to test models during development has been that the overall pro-
ject duration is reduced by approximately 10%. However, the amount of testing that can now be accom-
plished in this time is far greater than if the test packs were run sequentially. This enables the modeler to
not only test the specific area of the model that has been modified during that phase of the development,
but also to run a comprehensive regression test without increasing the duration of the project. This in turn
has led to higher quality, more robust models.

Figure 3 is a screenshot of the Client application showing a number of jobs queued on the Manager.
The list at the top shows the progress and state of the jobs and statistics about their running time. It is pos-
sible to drill-down into each of the jobs by clicking the plus symbol to see detailed statistics about the in-
dividual replications and the Workers that have run them. The chart at the bottom is currently displaying
the average running time by Worker of the replications that have completed in the highlighted scenario.

In addition to running a scenario with n replications it is also possible to run a scenario with specific
replications so that for instance if we wanted to re-run replications 8 and 15 then this would be possible
without re-running all 15 replications.

Scheduling is a fundamental piece of the SakerGrid functionality. The variation in run time for repli-
cations of different models and scenarios means that the scheduling of jobs across the network becomes
imperative. Already Sakergrid has some basic but key scheduling capability:
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Figure
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2: Overall scenario time for a model with a running time of approximately

7.5 minutes per replication

Priority Scheduling: Jobs will be launched into the grid by the dispatcher based on their priority.
Where jobs are of equal priority the job will be dispatched based upon its arrival time at the dis-
patcher.

Intelligent Routing: SakerGrid allows the user to decide whether to leave a model installed on
the Worker machine until the scenario is complete or, in the case of high security jobs, remove
the model after each replication is complete. In the former case SakerGrid has the capability to
target subsequent replications at machines where the model is already installed. This has the ef-
fect of saving transfer bandwidth and the time taken to load/install the model. This is less im-
portant on models with a long replication run time but can become significant on fast replications
where the scenario requires a high number of replications to be completed.

Priority Access: Users are able to utilize functionality in SakerGrid to ‘hold’ a certain proportion
of the SakerGrid enabled network for priority jobs. This still allows jobs to be launched onto the-
se machines. However, if a priority job arrives and no machines are available it will ‘bump’ off a
non-priority job from one of the priority machines. The pre-empted job will be returned to the
dispatcher and rescheduled. This means that if the network is clogged with jobs with long run
times then short jobs which are high priority can still be turned around quickly.

Grouped Replications: This gives the user the ability to group replications together into work
blocks to minimize the overhead in moving and loading models. This will ensure that the group
of replications will all complete on the same machine, a feature that is again significant where the
time taken to run the replication is low.

Equally, SakerGrid supports functionality to support clusters and desktop networks and allows

this to be configured to make the desktop network available only during set time periods if required (Fig-

ure 4).
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Scenario Manager 1.2.0.13

File  Help
‘Seenario Manager || 40b Manager | workers
Drag a column here to group by this column.
Rank «  Timeout Name State  Application  Priority  FirstRep Complete... Time Crea.. Running T... *
+ 1 Test Plan 1 Finished Flexsim 452 0 1 30 01/02/201... 01:39:01 |
P+ 2 Test Plan 2 Running Flexsim 4,52 0 1 27 01/02/201... 03:05:33
+ 3 Test Plan 3 Waiting Flexsim 452 0 1 o 01/02/201... 03:05:25
+ 4 Test Plan 5 Waiting Flexsim 452 0 1 0 01/02/201... 03:05:08
+ 5 Test Plan 6 Waiting Flexsim 452 0 1 o 01/02/201... 03:05:00
+ 6 Test Plan 7 Waiting Flexsim 452 0 1 0 01/02/201... 03:04:54
+ 7 Test Plan & Waiting Flexsim 452 0 1 o 01/02/201... 03:04:47
+ 8 Test Plan 9 Waiting Flexsim 452 0 1 0 01/02/201... 03:04:39
+ 9 Test Plan 10 Waiting Flexsim 452 0 1 o 01/02/201... 03:04:32
+ 10 Test Plan 11 Waiting Flexsim 452 0 1 0 01/02/201... 03:04:26
+ 11 Test Plan 12 Waiting Flexsim 452 0 1 o f: . 03:04:18

Average Replication Time

Test Plan 2

Connected

Figure 3: SakerGrid Client User Interface

6 CONCLUSIONS AND FUTURE WORK

This paper has reported a successful industrial-academic collaboration between Saker Solutions and the
ICT Innovation Group of Brunel University that has resulted in SakerGrid. This novel system enables us-
ers to obtain a step change in performance. An important advantage is that while other incarnations of
Grid-enabled simulation have required users to be expert in computational technology, SakerGrid is a
packaged solution that allows users to focus on building models, experimenting and analyzing the results
- where ultimately the true benefit of simulation lies. For example, Brunel University has developed
Grid-based simulations with several CSPs and grid technologies. However, our experiences suggest that
if in-house expertise exists it may be better to develop bespoke grid technology rather than trying to ‘se-
cond guess’ how grid technology actually works. Integrating our own grid technology with Flexsim
means that we have a well understood solution that, when problems arise, can be debugged quickly. Ad-
ditionally, security deployment issues in client’s IT environment can be addressed more easily than ‘un-
packing’ other grid technologies and adding functionality. SakerGrid, whilst taking significant develop-
ment effort, has already reaped benefits and has now been in constant use for many months. Saker
Solutions are now in the process of launching the software into the market. Saker Solutions are already
working with the first commercial user of the software, Sellafield Ltd., which is helping to further devel-
op the future development plan of the software.

SakerGrid has some limitations. In order to achieve this step change in performance it requires a sig-
nificant expenditure in licenses to support multiple running of replications. One solution may be for ven-
dors to grant temporary ‘Grid run time licenses,’ thereby significantly reducing the investment cost and
allowing the users to define for any scenario the balance between response time and cost. The authors are
pleased to note the progress made by Flexsim Software Inc. in this regard with the release of version 5.0
of their Flexsim™ simulation software which now has the option to operate with the Flexnet licensing
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Saker Grid Schematic

/ Access allowed by User
Always opefy conection Night tine Gateway R

v <
o)

In this example we have a 10* experimentation capacity during the day and 20* at night
Figure 4: SakerGrid Network Structure

system which removes the need for physical licensing. There is of course more work to be done in this re-
gard. Reducing the footprint of not only the model but also the simulation software will allow the soft-
ware to be distributed along with the model. Together with new licensing formats this will significantly
open up the flexibility of grid computing for M&S.

Additionally, the authors perceive that as the use of SakerGrid grows so will the need for advanced
scheduling options. Future development is therefore being targeted to increase the functionality of the
product particularly in enabling more sophisticated scheduling rules to facilitate multiple users with di-
verse model run times and resource requirements. In conjunction with this the authors are keen to re-
search various parallel optimization techniques to better understand the potential to develop an optimiza-
tion capability within SakerGrid and therefore bring optimization to the forefront of simulation projects.
In addition SakerGrid will shortly be enabled to support other simulation software with Witness and
AnyLogic already under development and more will then follow. It is anticipated that experiences of
Grid-enabling Flexsim will significantly reduce the time to do this. For a discussion of general implemen-
tation issues with other simulation packages see Taylor et al. (2011).
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