
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

A BINARY PARTITION-BASED MATCHING ALGORITHM
FOR DATA DISTRIBUTION MANAGEMENT

Junghyun Ahn
Changho Sung
Tag Gon Kim

Korea Advanced Institute of Science and Technology (KAIST)
373-1 Kuseong-dong, Yuseong-gu

Daejoen, Korea

ABSTRACT

Data Distribution Management (DDM) is one of the High Level Architecture (HLA) services that reduce
message traffic over the network. The major purpose of the DDM is to filter the exchange of data between
federates during a federation. However, this traffic reduction usually suffers from higher computational
overhead when calculating the intersection between update regions and subscription regions in a matching
process. In order to reduce the computational overhead for the matching process, this paper proposes a binary
partition-based matching algorithm for DDM in the HLA-based distributed simulation. The new matching
algorithm is fundamentally based on a divide-and-conquer approach. The proposed algorithm recursively
performs binary partitioning which divides the regions into two partitions that entirely cover those regions.
This approach promises low computational overhead, since it does not require unnecessary comparisons
within regions in different partitions. The experimental results show that the proposed algorithm performs
better than the existing DDM matching algorithms and improves the scalability of the DDM.

1 INTRODUCTION

Data Distribution Management (DDM) is one of the most important filtering mechanisms regarding large-
scale distributed simulations (Morse and Steinman 1997). The DDM has been successful in reducing the
network traffic in some aspect, but either its capability is limited by the computational overhead for matching
update regions and subscription regions which represent interest of data producers and data consumers
(Petty and Morse 2004). There are already proposed several DDM matching algorithms which will be
described in Section 3. Even though there are several matching algorithms, they do not take into account
how much regions are generated and distributed in the multidimensional space. As the previous matching
algorithms do not consider a characteristic of the region distribution, it is difficult to select a matching
algorithm which is appropriate for some situations of region distribution.

Therefore, in this paper, we propose a binary partition-based matching algorithm in order to reduce
the computational overhead of the matching process in the DDM. The algorithm recursively performs
binary partitioning which divides the regions into two partitions that entirely cover those regions. Our
approach focuses on improving overall performance by the ordered relation of partitions previously not
considered. The proposed algorithm reduces the computational overhead and decreases the execution time
for the matching process, since it easily calculates the intersection between regions on partition boundaries
and does not require unnecessary comparisons within regions in different partitions. We experiment with
different numbers of regions, overlap rates, and distribution of regions for various situations to reflect the
region distribution. Our experimental results show that the proposed algorithm performs better than the
previous DDM matching algorithms across a variety of workloads. The proposed algorithm outperforms
significantly the previous matching algorithms when many regions are highly overlapped. The higher

2728978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Ahn, Sung, and Kim

regions are overlapped, the better performance of the proposed algorithm. In more complex scenarios
where the distribution of regions is clustered, not uniform, the proposed algorithm is much better than the
others. Moreover, the proposed algorithm improves the scalability of DDM implementation for large-scale
simulations.

The remainder of this paper is organized as follows: Section 2 describes an overview of the DDM in
the HLA and Section 3 briefly provides the related work of this paper. In Section 4, we present a binary
partition-based matching algorithm which is based on a divide-and-conquer strategy. Section 5 shows
experimental results across a variety of workloads. Finally, Section 6 includes concluding remarks.

2 OVERVIEW OF DDM IN HLA

DDM services, one category of the High Level Architecture (HLA) management services (IEEE Std 1516.1-
2000 2000), reduce message traffic by sending the data only to those federates who need the data for system
scalability. The DDM performs filtering based on interest expressions of federates in a federation and
allows the federation to control the routing and delivery through user-defined information (i.e., regions). It
then distributes objects and interactions from data producers to data consumers. Also, the DDM allows a
federate to receive the subscribed attributes after the subscription region is intersected with the publishing
federates’ update region.

The DDM services allow a value-based filtering, (Morse and Steinman 1997). This type of filtering
provides the most precise filtering mechanisms which ensure the federates receive the minimal set of data
they interest. In the large-scale federation, it is necessary to filter more elaborate for data exchange during
the federation execution. Therefore the DDM which provides the value-based filtering can be required for
the large-scale simulations with numbers of data exchange.

Table 1: Terminology Definitions in the DDM.

Terminology Definition

Dimension An named coordinate axis with non-negative integers
Multidimensional space A coordinate system whose dimension is d (where d is a fixed natural number)
Range A continuous semi-open interval on a dimension (lower bound, upper bound]
Region A set of ranges for any given dimension
Update region A specified set of region instance for which is associated by a publishing federate
Subscription region A specified set of region instance for which is associated by a subscribing federate
Overlap All ranges of dimensions that are contained in the update region and subscription

region put one upon another pairwise
Intersection An existence when the corresponding region sets overlap
Matching process A process to calculate the intersection between update and subscription regions

Table 1 presents the definitions of terms used in this paper. These definitions originate from the HLA
standard (IEEE Std 1516-2000 2000). Although the definitions of terms are provided in Table 1, the terms
usage is illustrated and described in Fig. 1. This figure shows an example of region intersection within
2-dimensional space for the value-based filtering. Because our interest lies in the simple exemplification of
DDM terms, we assume that the multidimensional space is a 2-dimensional space. In the figure, there are
four update regions and four subscription regions. An update region is the defined set of data declared by
a publishing federate, whose information is delivered to subscribing federates. A subscription region is the
area of interest declared by the subscribing federates. To check the overlapping of update and subscription
regions is called intersection. When an intersection exists, data exchange occurs between the publishing
federate and the subscribing federate. In this case, there are 2 intersections between update and subscription
regions. A process to identify these intersections between update and subscription regions is a matching

2729

Ahn, Sung, and Kim

: Update region

Y
-d

im
e
n
si
o
n

X-dimension

: Subscription region

2-dimensional space

Range

Intersection

: Update region

Y
-d

im
e
n
si
o
n

X-dimension

U2

U1

U3 U4

S1

S3

S2

S4

: Subscription region

2-dimensional space

Figure 1: Example of region intersection in the 2-dimensional space.

process. The main role of DDM is to reduce the volume of data exchanged through the matching process
during a federation.

3 RELATED WORKS

3.1 Region-based Algorithm

The region-based algorithm exhaustively compares the intersection of all the pairs of regions. This algorithm
is quite straightforward while computing the intersection, as every update region is directly checked against
every subscription region. If there are N update regions and M subscription regions, there are N×M
pairs to check in the worst case. However, a considerable amount of computational overhead occurs in the
matching process.

3.2 Grid-based Algorithm

The grid-based algorithm involves dividing the multidimensional space into a grid of cells, and update
and subscription regions are allocated into each cell of the grid which is associated with a multicast group
(Boukerche, Roy, and Thomas 2000), (Boukerche and Dzermajko 2004). In this algorithm, as an exact
evaluation of the matching process is not implemented, update and subscription regions are assumed to
overlap if and only if they share at least one common grid cell. Although the grid-based algorithm requires
much less computation than the region-based algorithm, the overlapping information is not exact. This
incorrect matching creates irrelevant data communication and additional receiver-side filtering is required.
Another problem is that it is hard to define the appropriate size of grid cells (Ayani, Moradi, and Tan 2000).

3.3 Hybrid Approach

The hybrid approach improves performance by exploiting the advantages of the two previous approaches
(i.e., region-based algorithm and grid-based algorithm) and minimizing the drawbacks of the grid-based
algorithm (Tan, Zhang, and Ayani 2000). The overhead of the matching process is lower than that of
the region-based algorithm, and the overlapping information is exact. It also produces a lower number of
irrelevant messages than the grid-based algorithm. However, the major issue of this approach is selecting
the optimal size of grid cells which the performance of the hybrid approach depends on.

3.4 Sort-based Algorithm

The sort-based algorithm detailed in (Raczy, Tan, and Yu 2005) and (Pan, Turner, Cai, and Li 2007)
computes the intersection between update and subscription regions using a sorting algorithm. It projects the
regions on each dimension. The end points in each dimension of all regions are sorted for each direction in
order to determine the overlap information. When the sorted lists of end points are scanned, the sort-based

2730

Ahn, Sung, and Kim

algorithm can maintain the set of subscription regions before and after the current position. Therefore, it
is possible to know exactly, for each update region, which subscription regions match on each dimension.
However, the sort-based algorithm’s performance is degraded when the regions are highly overlapped and
it is needed to optimize the sorting data structure for the efficient matching operation.

4 BINARY PARTITION-BASED MATCHING ALGORITHM

In this section, we present the binary partition-based matching algorithm. Our approach takes a divide-
and-conquer approach similar to the one used for the quicksort (Cormen, Leiserson, and Rivest 1990).
This approach consists of two main processes, the repetitive binary partitioning process and the matching
process. First, in the binary partitioning process, the algorithm recursively performs binary partitioning
which divides the regions into two partitions that entirely cover those regions. Second, in the matching
process, the algorithm uses the concept of an ordered relation which represents the relative location of
partition. The region is represent as {i, d, (rd.l, rd.u) } where i is an identifier of region, d is a specified
dimensions, and (rd.l(i), rd.u(i)) is the range of region whose upperbound is rd.u(i) and lowerbound is
rd.l(i) with i region handle on d dimension. The proposed algorithm promises low computational overhead,
since it easily calculates the intersection between regions on partition boundaries and does not require
unnecessary comparisons within regions in different partitions which are located in the ordered relation of
partition.

: Update region

Y
-d

im
e
n
si
o
n

X-dimension

U2

U1

U3 U4

S1

S3

S2

S4

: Subscription region

X-dimension Projection

S2

U3

S1

S3

S4

U1

U2

U4

X-dimension

Figure 2: Dimension projection with the X dimension.

4.1 Dimension Projection

To facilitate a meaningful interpretation of the multidimensional space, our approach uses a well-known
dimension projection algorithm, (Raczy, Tan, and Yu 2005). The dimension projection algorithm is being
used to determine the overlap information in multidimensional space, spatially. The previous works for
the regions in the multidimensional space is not intuitive, so the dimension projection algorithm is being
used. The algorithm first works by projecting all dimensions in the multidimensional space using the above
definition. It reduces the multidimensional problem to a one-dimensional problem and intuitively finds
out the pairs of regions that are potentially overlapped. It then carries out the partition process, as will be
presented in Section 4.2. Fig. 2 shows the dimension projection of eight regions located in 2-dimensional

2731

Ahn, Sung, and Kim

space. In the figure, we project each region to the x-dimension. Next, the x-dimension is recursively
partitioned into a binary partition. After performing one dimension, the algorithm repeats this procedure
for y-dimension. The overall overlap information can be obtained by combining the information of each
dimension: two regions overlap if and only if they overlap for x-y dimensions.

4.2 Proposed Binary Partition-based Matching Algorithm

As our algorithm divides the regions into two partitions, the left and right partitions, it guarantees the
avoidance of checking the intersection between regions in the different partitions. The left and right
partitions are located in the ordered relation which is described in the later section.

Algorithm 1 Binary Partition Algorithm
Input : The projected Regions >Rd , pivot value p
Output : Regions set, Slu, Sru, Spu, Sls, Srs, Sps

1: procedure BinaryPartition(>Rd , p)
2: for Each region Ri ∈ Region >Rd do
3: if Ri = update region then
4: if rd .u(i)≤ p then
5: Slu ← {i} ∪ Slu
6: else if rd .l(i)> p then
7: Sru ← {i} ∪ Sru
8: else
9: Spu ← {i} ∪ Spu;

10: end if
11: else if Ri = subscription region then
12: if rd .u(i)≤ p then
13: Sls ← {i} ∪ Sls
14: else if rd .l(i)> p then
15: Srs ← {i} ∪ Srs
16: else
17: Sps ← {i} ∪ Sps;
18: end if
19: end if
20: end for

In the binary partitioning, the projected regions are partitioned in approximately two equal sized sets,
which are assigned to the left and right partitions, Pl and Pr. Regions are assigned to the left partition if
the coordinate is smaller than the pivot value, otherwise to the right partition. Additionally, if regions fall
inside the boundaries of these partitions, the region are assigned to the pivot partition, Pl . The detailed
binary partition algorithm is presented as Algorithm 1. Those regions which the coordinate are greater than
the pivot value are put in Pr, otherwise they are put in Pl . The Pl consists of two subsets of regions
Slu and Sls, i.e. update and subscription regions for the left partition, respectively. Also, Pr consists of
two subsets of regions Sru and Srs, respectively. A conceptual description shown in Fig. 3 demonstrates
the binary partition. After the dimension projection, the algorithm uses the binary partitioning the regions
around a pivot value and then dealing with the 2 smaller partitions, separately. As a result, the x-dimension
is partitioned into two partitions by the pivot value and a pivot partition. They are the left partition of the
pivot value, the right partition of the pivot value, and the partition with the pivot value (i.e., pivot partition).
In this figure, from the left partition Pl , we find that Slu is {U1, U3} and Sls is {S2}, respectively. In this
way, the other set in each partition is also arranged by the binary partition.

Through the binary partition, if two regions are different partitions, they do not overlap through the
ordered relation of partition. As can be seen the above definition, the ordered relation between different
partitions plays an important role in deciding the overall overlap information of regions. The algorithm

2732

Ahn, Sung, and Kim

pivot value

Pl

≤ pivot value > pivot value
region’s
upperbound

region’s
lowerbound

S2

U3

S1

S3

S4

U1

U2

U4

X-dimension

Pr

Pp

region’s
upperbound

≤ pivot value <
region’s
lowerbound

Binary Partition

Figure 3: Binary partition into three partitions, Pl , Pr, and Pp.

constructs partitions of regions. As there is no need to determine the overlap information between the left
and right partition’s region, the algorithm does the matching operation the left and right partition with the
pivot partition. In other words, it is not necessary to compare and match in the left and right partitions
through the ordered relation in the binary partition, but it is necessary to compare and match the pivot
partition with the left and right partitions.

Algorithm 2 IntersectionCalculation Algorithm
Input : Regions set, Sl , Sr
Output : n-by-n matrix, OM = (omi j), where i, j ∈ n

1: procedure IntersectionCalculation(Sl , Sr)
2: for Each region Ri ∈ Sl do
3: for Each region R j ∈ Sr do
4: if rd .u(i)> rd .l(j) then
5: omi j++;
6: end if
7: end for
8: end for

From the binary partition, we can extract regions which fall inside the boundaries of partitions by
using BinaryPartition(). These regions are collected into a pivot partition, Pp. Also, the pivot partition
consists of two subsets of regions Spu and Sps, respectively. This partition is used for the matching process
to compare the intersection between regions in the pivot partition, Pp, and regions in the left and right
partition, Pl and Pr.

For the matching process, it is checked by the IntersectionCalculation() algorithm which is presented
in Algorithm 2. As the left and right partitions are the ordered relation in the binary partition, there is no
need to determine the overlap information between the left and right partitions. Therefore, the algorithm
does one matching operation when comparing the left and right partition with the pivot partition.

The IntersectionCalculation() algorithm determines whether subscription regions in Sps overlap with
update regions in Slu and Sru or update regions in Spu overlap with the subscription regions in Sls and

2733

Ahn, Sung, and Kim

Srs because of the ordered relation. Additionally, all update regions and subscription regions in the pivot
partition are overlapped, since their range includes the pivot value. As the regions in the boundary of the
pivot partition will be all overlapped, the proposed algorithm finds the calculation of intersection in the
matching process. If there is with a high overlapped region’s distribution, the calculation of intersection is
easily obtained. Therefore, this approach is more efficient to compute the high overlapping regions on each
partition. This matching process results in a matrix with overlap information, OM. The overlap matrix is
the n×n matrix (i.e., n = the number of regions). If two regions whose handle are (i, j) have overlapped
on each dimension, omi j is added (+1). After the whole matching process, if omi j is same as the number
of dimension, d, two regions Ri and R j is exactly overlapped. In the example explained in Fig. 3, we
obtain OM = {ou1,s2,ou2,s1,ou2,s4,ou3,s2,ou4,s3}.

Start

Project d dimension
of the region list

Perform the matching
process to fill the OM

Select a pivot value, p
in the projected region list

Stop

All d dimension are
projected?

Divide the projected
region list into Pl , Pp, Pr

Input regions,
 with d dimension

Output the overlap
matrix, OM

No

Yes

Yes
Pl = ∅ or Pr = ∅?

No

Figure 4: Flowchart of the proposed algorithm.

The proposed algorithm decomposes the multidimensional space into a number of partitions through
the binary partition. The algorithm is adopted the divide-and-conquer strategy based on the ordered relation.
The flowchart of the proposed algorithm is presented in Fig. 4. The process of the flowchart is executed
in the following steps.

1. Project all dimensions of regions with the multidimensional space into one-dimension through the
dimension projection.

2. Set a midpoint as the pivot value in the projected regions.
3. Divide the projected regions into twp partitions, Pl and Pr, and the pivot partition, Pp, with six

sets, Slu, Sls, Sru, Srs, Spu, and Sps, through the binary partition.
4. Perform the matching process in the pivot partition. Also, perform the matching process in the left

and right partitions to compare update regions in Slu and Sru with subscription regions in Sps and
subscription regions in Sls and Srs with update regions in Spu. From this matching process, our
algorithm determines OM which stores the overlap information into n-by-n matrix (where n is the
number of regions).

5. Iterate the pivot selection and matching process in the Pl and Pr until the remain is never partitioned.

2734

Ahn, Sung, and Kim

The binary partition-based matching algorithm is shown Algorithm 3. It uses two procedures, Binary-
Partition() and IntersectionCalculation(), for the partition process and the matching process.

Algorithm 3 Binary Partition-based Matching Algorithm
Input : Regions R
Output : n-by-n matrix, OM = (omi j), where i, j ∈ n

1: procedure BinaryPartitionbasedMatchingAlgorithm(Region R)
2: for Each dimension, d do
3: g1 ← the minimum lower bound of d dimension;
4: g2 ← the maximum upper bound of d dimension;
5: Set a pivot value, p← (g1+g2)/2;
6: Use the BinaryPartition(>Rd , p) to find six sets Slu, Sru, Spu, Sls, Srs, Sps;

{For the pivot partition}
7: for Each region Ri ∈ Spu do
8: for Each region R j ∈ Sps do
9: omi j++;

10: end for
11: end for

{For the left and right partition}
12: IntersectionCalculation(Sls, Spu);
13: IntersectionCalculation(Spu, Srs);
14: IntersectionCalculation(Slu, Sps);
15: IntersectionCalculation(Sps, Sru);
16: Sl ← Slu ∪ Sls;
17: Sr ← Sru ∪ Srs;
18: BinaryPartitionbasedMatchingAlgorithm(Region Sl);
19: BinaryPartitionbasedMatchingAlgorithm(Region Sr);
20: end for

4.3 Theoretical Analysis on Computational Complexity

To analyze the computational complexity of the proposed algorithm, we suppose that there are N regions. For
the simple analysis provided here, we assume that the number of dimensions, d is 2 in the multidimensional
space. The process of the binary partitioning divides regions into the two partitions. Steps 24-43 in the
BinaryPartition() procedure require O(N) computation using the binary partitioning, because d is a constant.
To find the exact position of a region in the partitions, Steps 12-13 require N×O(log N) computation.

Moreover, the matching process of comparing the intersection of regions between partitions requires
O(n2) computation (where n is the number of regions in each partition). The complexity of the Intersec-
tionCalculation() procedure is proportional to n. It seems that the most important points are the binary
partitioning. It is obvious that the number of regions, n, is a determinant factor. Because the overlap
information of all regions is obtained by the pivot partition, it is not necessary to compare their overlap
information in the left and right partitions. In cases where there is no overlapping at all in these partitions,
the binary partitioning with the pivot partition and the left and right partitions is the most time-consuming
operation which requires n2 computation. So the computational complexity of the proposed algorithm is
n2 × O(log N) computation. If the number of regions, n, is normally very small in a large-scale spatial
environment, so the proposed algorithm should be very efficient. Therefore, the actual computational
complexity depends on how the binary partition is well achieved.

2735

Ahn, Sung, and Kim

5 EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the proposed method. We compare the proposed
algorithm with the previous DDM matching algorithms in the literature, the region-based algorithm, hybrid
approach (Ayani, Moradi, and Tan 2000), Raczy’s sort-based algorithm (Raczy, Tan, and Yu 2005). We
implemented these algorithms with C++ language and processed in the HLA-based distributed simulations.
We assume that our experimental environment has a 2-dimensional space for the sake of clarity as described
in Section 4. Since the performance of the hybrid approach depends on the number of grid cells, we
used configurations of both 10 × 10 and 100 × 100 grid cells which are used in (Raczy, Tan, and Yu
2005) and (Ayani, Moradi, and Tan 2000). As stated before, our goal is to show the practicability of the
binary partition-based matching algorithm in the DDM. As the performance of the DDM execution time
for the matching process is measured, our experiments were conducted using Microsoft Windows 7 with
a 2.80GHz Intel(R) Core(TM) i7 CPU and 8GB memory.

One of the important experimental parameter is the number of regions. This parameter is capable of
characterizing the entire situation of regions for the matching process. It represents the scalability of the
system. We also used two different methods to generate the location of each region in the space. These
methods have a uniform distribution and clustered distribution. As these synthetic regions can be useful in
a variety of situations, our experiment provides realistic - but not real - regions distribution to third parties
for testing the DDM matching algorithms. Therefore, the experiment uses the uniform distribution and
clustered distribution as the synthetic region distribution which can achieve simple forms of the realistic
data set. In the uniform, the regions are distributed randomly across the space, whereas the clustered
distribution has regions around k ≥ 1 clusters. Finally, the overlap rate is defined as the proportion of the
scene volume occupied by the regions.

Overlap rate =
∑area o f region

area o f space
(1)

If the space is 100 × 100 and one region is 1 × 1, where the number of region is fixed at 100, the overlap
rate is 0.01 = 100×(1×1)

100×100 . Note that higher overlap rate implies greater probability of region overlap. For
enhanced accuracy and reliability, we repeated the experiment more than 30 times. A 95 percent confidence
interval was estimated for all experimental results. For enhanced accuracy and reliability, we repeat the
experiment more than 30 times. A 95 percent confidence interval was estimated for all experimental results.

5.1 Uniform Distribution

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

125

250

375

500

625

750

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

125

250

375

500

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

150

300

450

600

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

of Region

(a) (b) (c)

(a) (b) (c)

Figure 5: Performance Comparisons (a) Overlap rate = 0.01, (b) Overlap rate = 0.1, and (c) Overlap rate
= 1 under uniform distribution.

2736

Ahn, Sung, and Kim

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

Proposed Hybrid 10*10 Hybrid 100*100

Sort
Region

Χ 103

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

125

250

375

500

625

750

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

125

250

375

500

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

Proposed Hybrid 10*10

Hybrid 100*100 Sort
Region

Χ 103

0

150

300

450

600

1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
io

n
T
im

e
(s

e
c
)

of Region

(a) (b) (c)

(a) (b) (c)

Figure 6: Performance Comparisons (a) Overlap rate = 0.01, (b) Overlap rate = 0.1, and (c) Overlap rate
= 1 under clustered distribution.

Fig. 5(a) shows the execution time for the matching process in four algorithms when the overlap rate
is 0.01. It seems that the hybrid approach with 100 × 100 grid cells always has the best performance
because the regions in one cell are small in the overlap rate = 0.01. However, the hybrid approach did
not perform well in situations where the size of the grid cells changed (i.e., the performance at 10 × 10
grid cells of the hybrid approach is degraded). The proposed binary partition-based matching algorithm
outperforms the other matching algorithms when the overlap rate is 0.01 under the uniform distribution
(except the hybrid approach which the overlap rate is low and the optimal 10 × 10 grid cells are used).

Fig. 5(b) shows the execution time for the matching process in the overlap rate = 0.1. According to
this figure, well in this situation where the overlap rate is 0.1. The performance of the other algorithms are
similar in the overlap rate = 0.01. As the hybrid approach has the computational overhead in the matching
process with more regions, the performance is significantly degraded.

With the overlap rate = 1, according to Fig. 5(c), the proposed algorithm performs well. The proposed
algorithm is not the best choice when the overlap is relatively low, but it has the advantage when the
overlap rate is high. The more regions that are overlapped with the pivot partition, the less matching
overhead is incurred in the whole matching process. It means that the higher regions are overlapped, the
better performance of the proposed algorithm. On the other hand, the sort-based algorithm performs better,
except our proposed algorithm in the overlap rate = 1. When the number of regions increases and the
overlap rate is high, the performance of the region-based algorithm becomes increasingly better than the
other overlap rate. The hybrid approach has a higher computational overhead, particularly with 100 × 100
grid cells. This approach degrades performance when the overlap rate is high. From all of the figures, we
know that the hybrid approach with 100 × 100 grid cells has an extremely big computational overhead
for the matching process.

5.2 Clustered Distribution

We next varied the overlap rate under the clustered regions distribution. The second set of experiments
compared the execution time for the matching process under the clustered distribution. When the regions
were distributed under the clustered distribution, there was a greater probability of region overlap than
the uniform distribution in the fixed number of regions. Fig. 6(a) shows the performance comparison of
the four algorithms. When the number of regions was more than 9000, the proposed algorithm performed
better than the hybrid approach with 100 × 100. This finding suggests that the proposed algorithm is
scalable with a large-scale spatial environment.

As described in the Fig. 6(b), the hybrid approach is not much more scalable. Even worse, they will not
perform well in the clustered distribution, since most regions are collected in some points. The region-based

2737

Ahn, Sung, and Kim

algorithm and the sort-based algorithm perform well when there is a high probability of finding a pair
of regions that intersect. The proposed algorithm is the best choice in the clustered distribution, since it
separates the clustered regions into several partitions for the matching process.

Fig. 6(c) shows the execution time for the matching process. All experimental results are similar
performances when the overlap rate is 0.1. The proposed algorithm shows the best performance compared
with the other algorithms, as expected. This shows that the proposed algorithm is scalable and performs
well in the clustered region distribution.

5.3 Discussions

With complicated overlap situations, the proposed algorithm has worked more robustly than the other
matching algorithms. As the proposed algorithm avoids checking any regions between different partitions,
it is the best choice (except the hybrid approach which the overlap rate is low and the optimal grid size is
used). Furthermore, it has additional advantages compared with the other algorithms. First, the proposed
algorithm is practical and efficient because it reduces the computational overhead and improves overall
performance for the matching process. Since the proposed algorithm reflects the region distribution by
using the concept of the ordered relation, it easily calculates the intersection between regions on partition
boundaries and does not require unnecessary comparisons within regions in different partitions. Second, it
is less affected by the overlap rate. The algorithm recursively performs binary partitioning which divides the
regions into two partitions that entirely cover those regions. This means there is no need to determine the
overlap information between partitions, because they already consider whether the regions are intersected
through the ordered relation. This requires minimal computational overhead in some partitions, especially
at high overlapping regions. This is attributed to the same reason as the case of the clustered distribution.
Overall, from the experimental results, we found that our algorithm performs better than the others in a
given set of scenarios, especially at the high overlap rate and in the clustered distribution. And it improves
the scalability of DDM implementation for large-scale simulations. Furthermore, to complete the study,
we tested all the algorithms in more complex situations, for instance, scenarios where the distribution of
regions is not uniform (i.e., clustered distribution).

6 CONCLUSIONS

This paper proposes a binary partition-based matching algorithm which is based on the divide-and-conquer
approach. The algorithm recursively performs binary partitioning which divides the regions into two
partitions that entirely cover those regions. The proposed algorithm is, to the best of our knowledge, the
first attempt to facilitate the binary partitioning and obtain the overlap information by using the concept
of an ordered relation previously not considered. The algorithm reduces the computational overhead for
the matching process, since it easily calculates the intersection between regions on partition boundaries
and does not require unnecessary comparisons within regions in different partitions. According to the
theoretical analysis, the proposed algorithm has the advantage in the scalability. We have developed the
binary partition-based matching algorithm in the DDM and compared its performance with the previous
matching algorithms in different situations of region distribution. Our experimental results show that the
proposed algorithm performs better than the previous matching algorithms across a variety of workloads.
Especially, the proposed algorithm significantly outperforms in a given set of scenarios of the high overlap
rate. In more complex scenarios where the distribution of regions is clustered, not uniform, the proposed
algorithm is much better than the others.

REFERENCES

Ayani, R., F. Moradi, and G. S. H. Tan. 2000. “Optimizing cell-size in grid-based DDM”. In 14st International
Workshop on Principles of Advanced and Distributed Simulation (PADS 2000), 93–100.

2738

Ahn, Sung, and Kim

Boukerche, A., and C. Dzermajko. 2004. “Performance evaluation of Data Distribution Management
strategies”. Concurrency - Practice and Experience 16 (15): 1545–1573.

Boukerche, A., A. Roy, and N. Thomas. 2000. “Dynamic Grid-Based Multicast Group Assignment in Data
Distribution Management”. In 4th International Workshop on Distributed Simulation and Real-Time
Applications (DS-RT 2000), 47–54.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest. 1990. Introduction to Algorithms. MIT Press.
Morse, K., and J. S. Steinman. 1997. “Data Distribution Management in HLA: Multidimensional Regions and

Physically Correct Filtering”. In Proc. Spring Simulation Interoperability Workshop, no. 97S-SIW-053.
Pan, K., S. J. Turner, W. Cai, and Z. Li. 2007. “An Efficient Sort-Based DDM Matching Algorithm for

HLA Applications with a Large Spatial Environment”. In 21st International Workshop on Principles
of Advanced and Distributed Simulation (PADS 2007), 70–82.

Petty, M. D., and K. L. Morse. 2004. “The computational complexity of the high level architecture data
distribution management matching and connecting processes”. Simulation Modelling Practice and
Theory 12 (3-4): 217–237.

Raczy, C., G. S. H. Tan, and J. Yu. 2005. “A sort-based DDM matching algorithm for HLA”. ACM Trans.
Model. Comput. Simul. 15 (1): 14–38.

Tan, G. S. H., Y. Zhang, and R. Ayani. 2000. “A Hybrid Approach to Data Distribution Management”.
In 4th International Workshop on Distributed Simulation and Real-Time Applications (DS-RT 2000),
55–61.

IEEE Std 1516-2000 2000. IEEE standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) - Framework and Rules.

IEEE Std 1516.1-2000 2000. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) - Federate Interface Specification.

AUTHOR BIOGRAPHIES

JUNGHYUN AHN is a Ph D. candidate at the Department of Electrical Engineering, Korea Advanced
Institute of Science and Technology (KAIST). His research interests include methodology for M&S of
discrete event systems (DEVS) and DDM in HLA/RTI. His email address is jhahn@smslab.kaist.ac.kr.

CHANGHO SUNG is a Ph D. candidate at the Department of Electrical Engineering, Korea Ad-
vanced Institute of Science and Technology (KAIST). His research interests include discrete event sys-
tems modeling, collaborative M&S, distributed simulation, and hybrid simulation. His email address is
chsung@smslab.kaist.ac.kr.

TAG GON KIM is a Professor at the Department of Electrical Engineering Korea Advanced Institute of
Science and Technology (KAIST). He was the Editor-In-Chief for Simulation: Transactions for Society
for Computer Modeling and Simulation International(SCS). He is a co-author of the text book, Theory
of Modeling and Simulation, Academic Press, 2000. He published about 200 papers in M&S theory and
practice in international journals and conference proceedings. He is very active in defense modeling and
simulation in Korea. His e-mail address is tkim@ee.kaist.ac.kr.

2739

