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ABSTRACT

Surrogate models are data-driven models used to accurately mimic the complex behavior of a system.
They are often used to approximate computationally expensive simulation code in order to speed up the
exploration of design spaces. A crucial step in the building of surrogate models is finding a good set of
hyperparameters, which determine the behavior of the model. This is especially important when dealing
with sparse data, as the models are in that case more prone to overfitting. Cross-validation is often used to
optimize the hyperparameters of surrogate models, however it is computationally expensive and can still
lead to overfitting or other erratic model behavior. This paper introduces a new auxiliary measure for the
optimization of the hyperparameters of surrogate models which, when used in conjunction with a cheap
accuracy measure, is fast and effective at avoiding unexplained model behavior.

1 INTRODUCTION

In engineering design, many routine tasks such as design space exploration, sensitivity analysis or opti-
mization can quickly become impractical due to the (relative) high cost of computing a single design point.
One way of speeding up the design process is by using surrogate models, also referred to as meta-models
or response surface models. Surrogate models are data-driven black box models, which accurately approx-
imate the input-output behavior of the real simulator over the entire design space, using as little data as
possible. Examples of surrogate models are Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Kriging models and Radial Basis Function (RBF) models. Because they can be evaluated almost
instantaneously, they can replace, in a first design step, the real simulator in order to quickly explore the
design space.

The quality of the surrogate model is in a great deal dependent on the hyperparameters that govern
its behavior. High quality models are not only able to accurately approximate the data samples that were
used to construct it, but also to accurately predict the values of unseen data points. Optimizing these
hyperparameters, however, is a non-trivial problem, since this requires an accurate estimation of the model
quality. Finding a good set of hyperparameters becomes even more difficult when dealing with sparse
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Figure 1: Surrogate models of the input noise current (
√

i2in ) of a Low Noise Amplifier generated with
different model selection criteria. The dots represent a sparse intermediate training during model construction
(7×7 samples).

data, as the models are more prone to overfitting in such cases, especially when high in-sample accuracy
is required. Overfitted models can for example exhibit artificial ripples and bumps while in reality the true
response is smooth and there is no data to support this highly nonlinear behavior. This is illustrated in
Figure 1. Figure 1(a) shows a surrogate model, built with sparse data, with low in-sample error, but which
is unable to capture the true behavior shown in Figure 1(c).

Cross-validation is a common technique to optimize the hyperparameters of surrogate models, especially
when little data is available. It is simple to implement and can be applied to any model type. However it
can be quite time and resource consuming, especially if the cost of building one model is high (e.g. when
working with large ANNs), as each model has to be rebuilt several times for each set of hyperparameters.
Moreover models optimized with cross-validation can still exhibit artificial ripples and bumps when the
approximating models have high complexity (Gorissen et al. 2009). This paper presents a new generic
auxiliary measure model selection measure called the Linear Reference Model (LRM) which is designed
to be fast and to avoid spurious model behavior in such cases. The LRM measure identifies regions where
the model exhibits complex behavior (such as oscillations) but lacks the data to support this and penalizes
the model accordingly. When used in conjunction with a cheap accuracy measure, the LRM measure is
able to achieve competitive results with cross-validation at much reduced computational cost. Figure 1(b)
show the effect of the LRM measure on the earlier example, where optimizing solely using LRM results
in a model with worse in-sample error, but which is able to capture the trend of the true behavior more
accurately.

The paper is organized as follows: Section 2 presents related works relevant to the LRM measure. The
LRM measure itself is discussed in Section 3. Section 4 applies LRM on a mathematical example and a
real-world application. Section 5 concludes with a summary and pointers for future work.

2 RELATED WORK

Several model selection criteria have been discussed in the literature: re-sampling methods such as cross-
validation, bootstrap sampling or hold-out sets (Cherkassky and Mulier 2007, Meckesheimer et al. 2002,
Bengio and Chapados 2003), information theoretic methods such as the Akaike information criterion,
Minimum description length, Bayesian information criterion, etc. (Anderson and Burnham 2003), and
methods from statistical learning theory (Vapnik 1995, Cherkassky and Ma 2003, Bartlett et al. 2002).

Most of this work has focused on model complexity measures. These measures penalize the complexity
of the model itself, as opposed to the complexity of its behavior. Examples include discrepancy-based
measures, Rademacher complexity measures, and Gaussian complexity measures (Bartlett and Mendelson
2003, Bartlett, Bousquet, and Mendelson 2005). Usually these measures are used to build bounds driving
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Figure 2: Intuitive 1D illustration of the LRM measure. The goal is to minimize the deviation between the
surrogate model and the linear fit. The LRM measure penalizes the models proportionally to the distance
between a number of probe points and the linear fit (these distances are denoted by the arrows).

model selection, and may serve as regularization terms in a structural risk minimization approach. An
overview of these and other regularization related topics is given in (Cherkassky and Mulier 2007, Chen
and Haykin 2002).

Less work has been done on measuring the behavioral of a model directly. In (Girosi et al. 1995) the
function smoothness is estimated, based on techniques from signal analysis. Recently, (Koo and Kil 2008)
proposes a new model selection measure based on the modulus of continuity of a function (Lorentz 1986)
and provide upper bounds for the modulus of continuity for different estimation functions. From Genetic
Programming (GP), a new complexity measure is introduced in (Vladislavleva, Smits, and den Hertog
2009) that measures the order of non-linearity of a given GP tree. It is based on the degree of the best
fitting polynomial of the symbolic equation represented by the tree. Thus it is a kind of hybrid between
structural and observable complexity. However, due to numerical constraints the algorithm does not scale
well beyond two dimensions and is thus applied on each sub-tree independently (univariate case only).

In general, though, there is no universally optimal model selection procedure and much depends on
the model type and on the amount and distribution of data points (Lin 2004).

3 LRM MEASURE FOR RESPONSE NONLINEARITY ESTIMATION

The LRM algorithm scores a model on the basis of its behavioral complexity, as opposed to its structural
complexity. The LRM measure is based on the assumption that, all other factors being equal and if no other
information is available, the model with the most parsimonious behavior between any two neighboring
points should be chosen. In other words, the model whose behavior is the most linear-like. Any complex
behavior (such as oscillations) exhibited by the surrogate model has to be supported by data. Therefore
LRM penalizes a surrogate model by giving it a score proportional to its deviation from a local linear
interpolation (large deviations indicating high behavioral complexity). Note that although the LRM measure
does not penalize the structural complexity explicitly, some correlation might exist.

Optimizing only the LRM measure will usually not result in a good model, since a LRM score of zero
corresponds to a local linear interpolation. The LRM measure is therefore only intended as an auxiliary
measure to be used along side some (cheap) accuracy measure, pushing the hyperparameters optimization
towards models with a more parsimonious behavior. The risk of underfitting due to LRM is usually neglible
as the high accuracy typically required of the surrogate models can only achieved by models with high
complexity, in which case the LRM measure will only reduce their tendency to overfit but never to the
extent that could cause underfitting.

The deviation from the linear interpolation can be quantified in many ways, for example as the
(hyper)volume between the surrogate model and the linear fit. It turns out that a simple estimation of
this deviation is sufficient to drive the optimization in the right direction. Thus, in order to limit the
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computational burden, the deviation is quantified as the average distance between a number of probe points
p j of the candidate model and the interpolating hyperplanes (shown in Figure 2). The LRM score for a
model with d input values and 1 output value is calculated as follows. Denote the k×d matrix X and the
k×1 matrix Y , as the respective input and corresponding output variables used to construct f̃ (x), where
k is the number of samples. Together, using the block matrix notation, they form the data samples matrix
D = (X |Y ), given by:

D =

 x1,1 . . . x1,d y1
...

. . .
...

...
xk,1 . . . xk,d yk

 (1)

The first step is to construct a (d+1)-dimensional local linear interpolation of D. The LRM algorithm
starts by constructing a Delaunay tesselation (Hjelle and Daehlen 2006) of the input values X . A graphical
illustration of the resulting tesselation of the input space for the 2D case is shown in Figure 3.

Let si be a simplex (i = 1..l ≤ kd
d
2e) given by the Delaunay tesselation of X and defined by the input

values of data samples Vi = (vi
1, . . . ,v

i
d+1), where vi

n = (vi
n,1, . . . ,v

i
n,d ,yin) is one of the data samples in

D. The samples Vi are then used to construct a unique interpolating hyperplane for simplex si, Hi with
following equation:

ai1x1 + . . .+aid xd +aid+1y+aid+2 = 0 (2)

Next for each simplex si a number of probe points are chosen to calculate the deviation. For that purpose
the centroid pc

i belonging to simplex si, which is given by:

pc
i =

∑
d+1
j=1 vi

j

d +1
(3)

and d +1 inner points pih
j , which are given by:

pih
j = αvi

j +(1−α)pc
i , j = 1 . . .d +1 (4)

are chosen. There are many ways to choose α , for example as discussed in (Hammer and Stroud 1956),
however in the rest of this paper we keep α = 0.5. The probe points are then placed into a matrix Pi
(corresponding to simplex si) together with their output values given by the surrogate model f̃ (x).

Pi =


pc

i,1 . . . pc
i,d f̃ (pc

i ) 1
pih

1,1 . . . pih
1,d f̃ (pih

1 ) 1
...

. . .
...

...
...

pih
d+1,1 . . . pih

d+1,d f̃ (pih
d+1) 1

 (5)

The LRM score for simplex si is then equal to the average perpendicular distance between the hyperplane
Hi with coefficients ai = (ai1 , . . . ,aid+2) and P j

i , where P j
i is the jth row of Pi:

Si =
1

d +2

d+2

∑
j=1

|ai ·P j
i |

||ai||2
(6)

The scores Si for each simplex si are then averaged to obtain the overall LRM score for surrogate model
f̃ (x).

LRM( f̃ (x)) =
1
l

l

∑
i=1

Si (7)
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Figure 3: 2D Delaunay tesselation of the input space. The location of the probe points in the input space
are denoted by the circles and crosses. The location of the samples are denoted by the black dots.

Models with a large deviation from the local linear fit will have higher LRM scores.
The dominating cost of computing the LRM score is performing the tesselation of X. The implementation

used in this paper is based on QHull (Barber, Dobkin, and Huhdanpaa 1996), which has a computational
complexity in the order of O( k· fv

v ), where k is the number of points, v is the number of output vertexes
and fv is the maximum number of facets for a convex hull of v vertexes. The latter, fv, is tightly bound to
the dimension of the problem and grows rapidly as the number of dimensions increase.

4 APPLICATIONS

4.1 Configuration

Both examples are modeled using the SUrrogate MOdeling (SUMO) Toolbox (Gorissen et al. 2010).
The models are built with an increasing number of samples, which are selected by an adaptive sampling
algorithm, called LOLA-Voronoi (Crombecq et al. 2009). LOLA-Voronoi determines the non-linear regions
of the true response and samples those more densely. It depends only on the true data and not on the
surrogate model. LOLA-Voronoi starts from a small optimized Latin hypercube design augmented with
the corner points of the domain. Each sampling iteration LOLA-Voronoi selects a small number of new
samples until a pre-determined limit is reached.

ANNs are used as the approximating models. A genetic algorithm (GA) is used to optimize the topology
and the initial weights of the ANNs. The GA is run for 10 generations between each sampling iteration
with a population size of 10. The networks are trained using Levenberg-Marquardt backpropagation in
conjunction with Bayesian regularization (Foresee and Hagan 1997, MacKay 1995) for 300 epochs.

The tests were performed using the LRM measure in conjunction with the in-sample error as the model
selection criterion and using 5-fold cross-validation. In addition, the tests were also performed using only
the in-sample error as model quality measure to show the influence of LRM. The LRM measure is combined
with the in-sample error by taking the average of their output values for these experiments. The total score
T is thus given by:

T =
1
2
(LRM+SampleError) (8)

The cross-validation score and the in-sample error score are calculated using the Root Relative Square
Error (RRSE) which is given by

RRSE(y, ỹ) =

√
∑

n
i=1(yi− ỹi)2

∑
n
i=1(yi− ȳ)2 (9)
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Figure 4: A plot of the bird function.

where yi, ỹi, ȳ are the true, predicted and mean true response values respectively. The tests were repeated
to smooth out random effects. To estimate the generalization ability of the models, a dense independent
grid test set was used.

4.2 The Bird Function

The first example is the modeling of the bird function (Ryu et al. 2002) given by the following formula:

bird(x,y) = exp(cos(x− y))sin
(
(x− y)2 + x+ y

1+(x− y)2

)
(10)

with x,y ∈ [−4,4]. A plot of this function is given in Figure 4. The adaptive sampling algorithm starts from
100 samples and stops once the number of samples is greater than 300. The experiments were repeated 20
times on an Intel Xeon CPU E5504@2.00GHz machine with 6GB total memory. The average results of
the different repeat runs are shown in Figure 5. Figure 5(a) shows the error on a dense independent test set
(with 401×401 samples) as function of the samples chosen by the adaptive sample selection algorithm.
This plot shows that the LRM measure in conjunction with the in-sample error (SampleError+LRM)
outperforms cross-validation, especially for smaller number of samples. As the number of samples grows,
the difference in accuracy between cross-validation and SampleError+LRM becomes much smaller because
the cross-validation estimate of the quality of the model becomes more accurate. SampleError+LRM also
achieves lower errors than when using only the in-sample error (SampleError) as a measure for model
quality. As the number of samples increases the test error of SampleError remains worse than that of
cross-validation and SampleError+LRM.

When looking at the running time for the tests shown in Figure 5(b), it is clear that cross-validation
always takes considerably more time to compute, this despite favoring less complex ANNs (Figure 5(c)).
SampleError+LRM is also slightly faster SampleError, because the of the (slightly) higher complexity of
the models favored by SampleError (Figure 5(c)). This also suggests that models chosen using in-sample
error are overfitting, since the models are more complex and have worse test errors. SampleError+LRM
can therefore achieve better accuracy than the two other model measure and in less time.

4.3 Low Noise Amplifier (LNA)

The second example is taken from (Gorissen et al. 2009) where the goal was to accurately model the
non-linear behavior of a Low Noise Amplifier (LNA) while at the same time minimizing the number of
samples used. An LNA is the first stage of a receiver, used to provide the gain needed to suppress the
noise of subsequent stages. The resulting surrogate model can then be used for example to find one or
more sets of device parameters resulting in a circuit which fulfills the specifications, i.e., constraints given
on the performances.
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Figure 5: Comparison between cross-validation and SampleError+LRM on the bird example.

The behavior LNA can be calculated in two different ways: by using an analytical small-signal model
of the device or by directly simulating the device (we refer to Gorissen et al. (2009) for more details
on obtaining the small-signal representations). Subsections 4.3.1 and 4.3.2 will model both approaches
respectively using ANNs trained both with the LRM measure (in conjunction with the in-sample error)
and cross-validation. The results of using only the in-sample error to guide the model selection process
will also be reported. The number of samples is limited to 1500 for the small-signal approach and to 3000
for the direct simulation approach. The experiments for both approaches are repeated 15 times to account
for stochastic effects. All tests were run on CalcUA, the cluster available at the University of Antwerp,
which consists of 256 Sun Fire V20z nodes (dual AMD Opteron with 4 or 8GB RAM), running SUSE
linux, and Matlab 7.7 R2008b.

4.3.1 Small-signal Example

The goal here is to build a surrogate model of the input-noise current response variable
√

i2in using the
4D formulation of the LNA problem in (Gorissen et al. 2009). The input parameters are the MOSFET
width W , the inductances Ls,Lm (we refer to (Gorissen, De Tommasi, Crombecq, and Dhaene 2009) for
further details). Figure 6 summarizes the results of these experiments. Figure 6(a) shows how the true error

2771



Nguyen, Couckuyt, Gorissen, Saeys, Knockaert, and Dhaene

200 400 600 800 1000 1200 1400

0.1

0.2

0.3

0.4

0.5

0.6

Number of samples

Tr
ue

 e
rr

or
 (R

R
S

E
)

 

 

SampleError
SampleError + LRM
CrossValidation (5 folds)

(a) Error on the independent test set as function of the
number of sample.

0 200 400 600 800 1000 1200 1400 1600

101

102

103

104

Number of samples

E
la

ps
ed

 ti
m

e 
(m

in
)

 

 

SampleError
SampleError + LRM
CrossValidation (5 folds)

(b) Modeling run time.

200 400 600 800 1000 1200 1400 1600

102

103

Number of samples

N
et

w
or

k 
co

m
pl

ex
ity

 

 

SampleError
SampleError + LRM
CrossValidation (5 folds)

(c) Complexity of the ANNs measured as the number of
weights used by the network.

Figure 6: Comparison between cross-validation and SampleError+LRM for the LNA small-signal example.

decreases when using the LRM measure in conjunction with the in-sample error (SampleError+LRM),
in-sample error (SampleError) and cross-validation model selection measures as more data points are added.
The true error is calculated as the RRSE (see Eq. 9) on a test set of 114 points.

Like in Section 4.2 it can be seen that using SampleError+LRM yields better results than using 5-fold
cross-validation for all number of samples and in-sample error (SampleError). The difference between
in-sample error and SampleError+LRM however is more pronounced as more samples are added. Figure
6(c) shows the complexity of the ANN models chosen by each model measure. Using SampleError results
in more complex models than when using SampleError+LRM and cross-validation, which is likely an
indication that those models are overfitting. Figure 6(b) shows that also in this example SampleError+LRM
runs faster than the other measures.

4.3.2 Direct Modeling of the LNA

An alternative approach to using a small-signal formulation is to model the performance parameters directly.
Note that this is a completely different modeling problem with completely different response behaviors.

The relevant input parameters here are the transistor width W , the transistor length L, the source
inductance Ls, the load resistance RL, the voltage bias of the transistor VGS, and the resistance in series
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Figure 7: Evolution of the true error when modeling the second order nonlinearity (IIP2) of the LNA
performance parameters. The LRM measure and the in-sample error are used as the model selection
criterion.

with the generator RS (the generator series resistance). The second order nonlinearity IIP2 is taken as the
output parameter. The dimensionality is varied from two to six. A comparison of the three model selection
criteria (as in the previous section) is not done for computational cost reasons. The goal here is to see if
applying the LRM measure can lead to satisfactory ANN models within the sample budget for an increasing
number of input variables. Reference test sets of size 512,153,114,75,56 are available for this purpose.

Figure 7 shows the curve for each number of inputs. The curves again depict how good the SampleEr-
ror+LRM combination is at minimizing the error on the reference grid. Ideally, the graph should display a
smooth, monotonic decrease of the error in function of the number of data points. The steeper the descent
the better. Erratic jumps should be avoided but temporary increases in error are acceptable, as long as the
error continues to decrease globablly. The error can temporarily increase if adding new data points reveals
new features in the data or a new interpretation, allowing for a more accurate estimation of the model
quality.

Satisfactory accuracy can be reached for all number of input dimensions, with particularly fast con-
vergence in the 2D and 3D case. The curves for 5D and 6D much more erratic than the 2D-4D curves.
This is confirmed by preliminary results on the other performance parameters (Gorissen, Couckuyt, and
Dhaene 2009). The most likely reason for this lies in the fact that for more than 4 dimensions the number
of LRM probe points chosen per simplex is too small to allow for an accurate estimation of the deviation.
The average simplex volume grows exponentially with the number of dimensions while the number of
probe points only grows linearly. Thus these results seem to imply that a different test point distribution is
needed in more than four dimensions in order to more accurately guide the hyperparameter optimization.

4.4 Summary

The motivation for the LRM measure stemmed from the need for a fast auxiliary parsimony promoting
measure that was just as generic and easy to apply as cross-validation, and that was faster and better
at suppressing erratic model behavior in a sparse sample, high accuracy requirement context. The two
examples show that the LRM measure is able to achieve this, at least for the ANN models employed. The
accuracy curve is comparable or better than that of 5-fold cross-validation with a lower computational cost.

5 CONCLUSION

Surrogate models are commonly used to speed up many routine engineering tasks such as optimization,
design space exploration or sensitivity analysis. The hyperparameters of the surrogate model have to be
optimized however, if a high quality model is to be obtained.
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This work presented a new model selection criterion (LRM) that, when combined with some cheap
accuracy criterion, can be used to quickly find accurate surrogate models while at the same time avoiding
erratic model behavior. The LRM measure penalizes the surrogate model if there are regions in the design
space where it exhibits complex behavior (oscillations) although there is no data to support this. When
used in an applications with high risk of overfitting, using the LRM measure leads to equal or better models
as when using cross-validation, but at much reduced computational cost.

Various extensions to the basic LRM idea are also possible. For example one could also include the
volume of the simplex in the LRM equation and thus give more (or less) weight to certain areas of the
model. The same applies to the prediction uncertainty. Also instead of aggregating the LRM measure with
some other accuracy measure using a simple average, weighted averages can also be used. Pareto-based
optimization can also be used to create a Pareto-optimal front with LRM and the accuracy measure.

The full LRM algorithm is implemented as a plugin in the SUMO Toolbox (Gorissen et al. 2010)
which is available for download from http://www.sumo.intec.ugent.be.
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