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ABSTRACT 
 
Simulation and optimization have been successfully combined to solve real-world decision making prob-
lems. However, there is no formal structure to define the integration between simulation and optimization. 
This deters the development of simulation-based optimization methods that have a proper balance be-
tween the desired features (i.e. generality, efficiency, high-dimensionality and transparency). This re-
search provides two contributions to the problem above by providing: 1) the design of the framework that 
facilitates the fulfillment of the aforementioned features; 2) the implementation of the framework in Java. 
The proposed framework is developed based on Zeigler’s modeling and simulation framework and the 
phases of an optimization study in operations research. The test and evaluation show that the desired fea-
tures are successfully satisfied. 

1 INTRODUCTION 

Decision making often involves a trade-off between the satisfaction of multiple conflicting objectives. 
This can be seen in problem domains covering both social and technological systems, where a single or 
multiple parties are involved (Ding, Benyoucef, and Xie 2009). Many studies in the field of decision sci-
ences/ operations research have been performed to support decision makers in formulating acceptable so-
lutions to this problem (Hillier and Lieberman 2009). Among those studies, simulation and optimization 
turned out to be prominent approaches that are widely used to assist decision making process (Hillier and 
Lieberman 2009; Daalen et al. 2009). 

In the simulation-based optimization method, optimization typically functions as the search method 
that explores the solution space in such a way that solutions leading to the preferred system perfor-
mance(s), assessed by a simulation model, can be found. Unlike the traditional optimization methods, 
which use a mathematical model, the simulation-based optimization method allows an accurate represen-
tation of the dynamics and stochastic nature of the real system. Furthermore, the best solutions can be 
found without the tedious effort of manually traversing the whole possible decision alternatives. 

There is, however, a knowledge gap in this widely applied method. There has not yet been a formal 
and detailed explanation of the way simulation and optimization techniques should be integrated. Often, 
simple conceptualizations of either the simulation or the optimization components are presented as black 
boxes. This knowledge gap thus, might deter the effective use of optimization techniques by simulation 
practitioners and vice versa. 

Furthermore, other challenges that result from the lack of a structured approach can also be found by 
looking at the conflicts found in the fulfillment of the broader requirements formulated in Fu (2002). The-
se requirements include generality, transparency to user, high dimensionality and efficiency. Among 
those requirements, generality very often conflicts with efficiency (Fu 2002; Fu et al. 2000). This can also 
be seen from the optimization routines that are being developed in this field. Most of them employ evolu-
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tionary-based algorithms, which are designed in tight coupling with the modeled-problem to allow effi-
cient exploitation of the problem structure. This tight coupling sacrifices the generality of the method, 
which would actually allow solving a wide range of problems across different domains (Ding, Benyoucef, 
and Xie 2006, 2009). While usability can often be facilitated with a user friendly user interface, there are 
many shortcomings pertaining to efficiency and high dimensionality in the simulation-based optimization 
commercial packages. A review of two popular optimization routines in commercial simulation software 
(AutoStat and OptQuest) reveals that both packages lack an efficient multi-objective optimization routine 
(Fu 2002). AutoStat approaches the multi-objective optimization problem using the classical method in 
which multiple objectives are aggregated to form a single objective using a weight-vector. The drawback 
of this method is that for different preferences of the decision maker(s), different weight-vectors have to 
be used and the same problem has to be solved repetitively. A similar approach was also employed by 
OptQuest, which only started to provide an efficient multi-objective optimization routine, allowing the 
analysis of the Pareto Frontier, after the release of engine v 6.5 
(http://www.opttek.com/Products/Documentation.html). 

The framework of modeling and simulation proposed in Zeigler, Praehofer, and Kim (2000), due to 
its clear characterization of the relevant concepts, is a valuable starting point for tackling the problems 
mentioned above. In this framework, the principle of separation of concerns is well applied. Firstly, there 
is a separation between the model and the context under which it is experimented with. Furthermore, there 
is a separation between the simulator and the simulation model. This framework is therefore a good basis 
for the detailed formalization of the structural relationships between simulation and optimization tech-
niques. More importantly, the resulting framework can also be used to ensure the proper balance in realiz-
ing the various desired features mentioned above. 

The proposed framework will make two contributions. The first is to provide a transparent structure 
and the formal definitions of the simulation-based optimization method. These structure and definitions 
will contribute to the development of a generic simulation-based optimization methodology. The second 
contribution is to provide a detailed design and a Java implementation of simulation-based optimization 
method which is able to fulfill the desired features mentioned in Fu (2002). 

The rest of the paper is organized as follows. Section 2 delineates the relevant theories for the devel-
opment of a simulation-based multi-objective optimization framework. This is followed by the detailed 
requirements and conceptualization of the proposed framework in Section 3. Next, Section 4 presents the 
translation of the conceptualization into the system architecture and the detailed designs of the frame-
work. In Section 5, the results of the tests conducted to the framework are presented. Finally, Section 6 
presents the conclusion and the recommendation for the future work. 

2 SIMULATION-BASED OPTIMIZATION METHODOLOGY 

In this section the relevant work both from simulation and optimization fields are presented to provide the 
theoretical foundations with which a simulation-based multi-objective optimization framework can be 
achieved. We first present the detailed component of modeling and simulation framework presented by 
Zeigler in Section 2.1. Subsequently, the description of multi-objective optimization problem and algo-
rithm is presented in Section 2.2. 

2.1 Experimental Frame (EF) in Zeigler’s Modeling and Simulation Framework 

A relevant concept in Zeigler’s framework is the experimental frame which realizes the separation of 
concerns between the model and any data gathering (e.g., statistical measurements), and any control ef-
forts (e.g., starting and stopping of the simulation) that are not performed in the real system. To serve the-
se functions, the concept of experimental frame is formalized with three components which govern the 
experimentation on a model: the generator, transducer and acceptor (Traoré and Muzy 2006; Zeigler, 
Praehofer, and Kim 2000). The generator component produces the input segments to the simulation mod-
el. Those input segments are then processed by the model using certain state-transition functions to calcu-
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late all the resulting state changes. Next, the transducer maps the output variables into outcome measures 
of interest. Finally the acceptor component monitors the validity of the experiments by checking whether 
the values of the outcome measures of interest violate the pre-defined constraints of the experimentation. 

Furthermore, in a simulation-based optimization method, experimentations can be performed to eval-
uate the effect of certain alternatives defined by the model builder in respect to certain pre-defined goals. 
In this case, the simulation model is conditioned to a certain set of circumstances that is defined in a so-
called treatment (Daalen et al. 2009). Thus, in an experiment, a specific treatment is given to the simula-
tion model, and the model is run to produce the outcome measures of interest through the acceptor (Figure 
1). In the effort of optimizing the system performances, normally a number of treatments that involve dif-
ferent collections of input data are specified and executed in the experiments. However, this can be very 
challenging and sometimes impossible to do manually if the model is too complex or the relationship be-
tween the input data (or often called decision variables in optimization study) and the outcomes measure 
of interest is not understandable. Therefore, we can see that a computer-based approach that implements 
an optimization technique is needed to perform the search of the optimal values of the decision variables 
in respect to the pre-defined goals.  
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Figure 1: Experimentation process 

2.2 Multi-Objective Optimization Methodology 

One of the desired features for a simulation-based optimization method is high-dimensionality. This fea-
ture mainly comes from the need to solve multi-objective optimization problem. Following section de-
scribes the formal structure of such problem and state-of the art algorithm to solve such problem. 

2.2.1 Multi Objective Optimization Problem (MOOP) 

Following is the formulation of a multi-objective optimization problem: 
 

Minimize [z1 = f1(x), z2 = f2(x), …, zq= fq(x)]          (1)  
Subject to gi(x)≤ 0, i = 1,2, . . . ,m            (2) 
x≥ 0                (3)  
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f(x) is the objective function, where x  Rn is a vector of n decision variables, and gi(x) are inequality 
constraint  that consists of m functions that shape the feasible area.  

In single objective optimization, the search process is focused on finding one best solution that is su-
perior to all other solutions.  In the case where there are multiple objectives to optimize, it is not always 
the case that there exists a solution that is optimal in terms of all the objectives due to incommensurability 
and conflict among the objectives (Gen, Cheng, and Lin 2008). In case there is conflict among the objec-
tives, a solution that is optimum in one objective may be the worst for the other objectives. In this condi-
tion, there is normally a set of solutions that cannot be compared with each other without adding addition-
al information (such as preference structure upon the objectives). These kinds of solutions are normally 
regarded as non-dominated solutions or Pareto optimal solutions. Non-dominated solutions have the 
characteristic that their optimality cannot be improved further without sacrificing at least one of the other 
objective functions.  

2.2.2 Multi-Objective Evolutionary Optimization Algorithm 

Since Evolutionary Algorithms (EAs) were introduced to solve MOOP, its use and popularity has in-
creased over the past decade opening the growing research field of Multi-Objective Evolutionary Algo-
rithms (MOEA) (Deb 2008). The main advantage of this method in comparison with the classical meth-
ods is that it uses a population based approach in which multiple solutions are simultaneously generated 
in each of its iteration. This gives MOEA better capability to explore a larger criterion space in shorter 
computational time. Some of the well-known properties of MOEA are: 

 
 MOEAs have the flexibility to adapt to different problem structures and thus have wide applica-

tion fields 
 MOEAs do not require gradient or derivative values such as what is needed by gradient-based al-

gorithms 
 The decision maker(s) does not need to have an a-priori articulation of preferences regarding the 

accomplishment of all the objectives before the solutions/alternatives are presented 
  

Among, many MOEAs, the proposed framework will use Non-Dominated Sorting Genetic Algorithm 
II as its optimization engine. It is one of the state-of-the-art methods to solve MOOP (Deb et al. 2002).  
Like any other EAs, this algorithm also finds its root in evolutionary theory and is built on top of classic 
Genetic Algorithm. Despite many improvements and additional features that NSGAII has, the fundamen-
tal theory that underlies the adaptive capability of this algorithm is the same as that used in standard ge-
netic algorithms. However, there are some features that distinguish NSGA-II from other EAs: 

 
 It employs the elitism principle 
 It has an explicit diversity preserving mechanism  
 It focuses on finding the non-dominated solutions 

 
We henceforth refer to the proposed framework as the SImulation-based Multi-objective Evolutionary 
OptimizatioN (SIMEON) framework. 

3 SIMEON DEFINITION 

To ensure that the conceptualization of SIMEON takes into account all the desired features formulated by 
Fu (2002), we firstly present the technical requirements elicited based on the real-world needs for the 
framework in section 3.1. Next, in section 3.2 the conceptualization of SIMEON will be presented based 
on these requirements. 
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3.1 SIMEON Requirements 

Fu (2002) has formulated four high level features that are desirable in a simulation-based optimization 
method. In this section we further detail those requirements based on the interviews of the potential users 
of SIMEON in the real-world.  

3.1.1 Generality 

Among all the desired features mentioned in Fu (2002), generality is normally of the highest value for 
both scientific and business worlds as it enables practical implementation of the optimization methods to 
different simulation problems (Fu 2002; Fu et al. 2000). Consequently, this makes a framework that em-
ploys problem-dependent optimization techniques less desirable.  Since SIMEON is going to be applied 
to different problem domains, the optimizer used should be problem-structure independent.  

3.1.2 Efficiency 

It is important to guarantee the convergence of the optimizer in a reasonable amount of computational 
time. This is because the framework will be implemented and used in a common office notebook. How-
ever, the requirement on efficiency is inevitably affected adversely by the requirement of generality. One 
consequence of treating the simulation model as a black box (as what is done by metaheuristic) is that the 
optimizer does not make use of the information regarding the problem structure (e.g.,  gradient infor-
mation) to solve the optimization problems (Fu 2002). This leads to a relatively slow performance in 
comparison to the optimizers that use such information to solve the same problem. However, this condi-
tion also can be mitigated by ensuring the extendibility of SIMEON with algorithms that could make use 
the information regarding the structure of the simulation model such as the perturbation analysis (Fu and 
Hu 1997), weak derivatives (Pflug 1996), etc. 

3.1.3 High-Dimensionality  

It is a requirement that gives SIMEON a distinction in comparison to the other simulation-based optimi-
zation framework. This requirement mainly comes from the need to optimize multi-objective optimization 
problems which are ubiquitous in the real world problems. Furthermore, there are also needs that come 
from the modeling perspective, they are: 

 
 The need to optimize quantitative or continuous or real-valued variables as this need still domi-

nates big number of optimization problems (Ding, Benyoucef, and Xie 2009). 
 The need to optimize qualitative or discrete or integer variables which can be used to represent 

non-quantitative variables including structural alternatives for a simulation model (Azadivar and 
Tompkins 1999). 

 The need to optimize both qualitative and quantitative variables simultaneously (Ding, 
Benyoucef, and Xie 2006). 

3.1.4 Usability 

It is important to distinguish and define the users of SIMEON. The first type of user is defined as non-
expert users, i.e., those who have at least the basic knowledge of modeling and simulation techniques. 
These non-expert users are expected to be able to develop simulation models in various simulation pack-
ages and use them to carry out an analysis by setting up experiments. On the other hand, the expert users 
are expected to be the simulation experts who have knowledge level and skills that enable them to devel-
op object-oriented simulation models and use them to solve different kinds of problems. 
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Another additional requirement would be that both the expert and non-expert users should have the 

basic knowledge of optimization which enables them to apply optimization techniques appropriately to 
solve different decision problems. 

3.2 SIMEON conceptual design 

To systematically perform the integration of NSGAII into the Zeigler’s framework, we propose to use the 
steps of operations research as below.  

 
Step 1. Define the problem of interest and gather relevant data 
The modeler has to identify the goals/objectives, the constraints and the relations between all relevant el-
ements of the system. A distinction is made between the controllable variables and the environmental var-
iables. 
 
Step 2. Development of the simulation model 
A standard modeling approach as suggested in Daalen et al. (2009) can be used with the following re-
quirements.  

 The models should be amenable to coupling with an external device which can modify inputs and 
measure outputs.  

 There has to be a separation of concerns between the problem to solve and the algorithm to use, 
as a consequence of generality feature. 

We adopted the following definitions for the entities related with the model. 
 Treatment. A treatment is as set of conditions imposed on the model to perform the simulation 

(Daalen et al. 2009). Such conditions can include input data, initializations, run control condi-
tions, warm-up time, etc. 

 Experimental frame. The experimental frame is understood as in Traoré and Muzy (2006), with 
a generator, an acceptor and transducer. 

 Simulation-based optimization experiment. A simulation-based optimization experiment is an 
execution of the simulation model with a specific treatment and environmental conditions to pro-
duce the outcome measures of interest. Therefore, this type of experiment includes the specifica-
tion of Zeigler’s experimental frame. 

 Simulation-based optimization problem. A simulation-based optimization problem is a form of 
optimization problem in which simulation experiments are used to find the optimal values for the 
decision variables. Thus, simulation-based experiments should be defined within such a problem. 
Moreover, the specification of this problem should distinguish the decision variables and the oth-
er variables (environmental variables) within the simulation model. 

 
Step 3. Develop a computer-based procedure for deriving solutions to the problem from the model. 
The jMetal library (Durillo et al. 2006) is used  on the optimization side. On the other hand, the DSOL li-
brary (Jacobs, Lang, and Verbraeck 2002) is used on the simulation side. Using the routines of NSGAII, 
SIMEON provides an automatic and iterative specification of the values of the decision variables in such 
a way they are optimized according to the pre-defined objective functions.  Figure 2 depicts the conceptu-
al diagram of the SIMEON framework. 

4 SIMEON DESIGN AND DEVELOPMENT 

4.1 SIMEON system architecture 

SIMEON’s architecture is coherent with that of a standard decision support system as proposed in 
(Burstein and Holsapple 2008).  As can be seen later in Figure 3, three layers can be distinguished. 
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1. The presentation layer: This layer serves mainly as the user interface though which the user inter-

acts with SIMEON. There are several interfaces that take the messages from the user into 
SIMEON, serving as the language systems. On the other hand, there are also interfaces that emit 
messages to the user, serving as the presentation systems. 

2. The Problem Processing layer: This layer provides the problem solving services. The optimiza-
tion engine consists of multi-objective evolutionary algorithm and simulation-based optimization 
problem objects. Next, the simulation engine consists of the simulation model, the treatment that 
contains the decision variables for the model, and the simulation-based optimization experiment 
objects. There can be multiple treatments and simulation-based optimization experiments. 

3. Knowledge/data layer: a layer where the knowledge system is positioned. This is the layer where 
all relevant knowledge and information needed by SIMEON are stored. An example of a 
knowledge system can be independent database systems (e.g. Microsoft Excel, Access, ERP, 
MySQL, etc) that contain data needed for the simulation or a configuration file for SIMEON.  
 

 

Figure 2: Conceptual design of the SIMEON framework 

4.2 SIMEON detailed design 

In this section the detailed designs of the SIMEON sub-systems are presented. We first present the im-
plementation structure of the framework in an object oriented language. Next, the design of genetic repre-
sentations and operators used within SIMEON are shown. Last but not least, the features of the user inter-
face are also presented. 
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4.2.1 Design of the SIMEON framework 

As shown in the system architecture diagram (Figure 3), there are six main components of the simulation 
and optimization engines.  We implement these components as Java based objects. 

 

Figure 3: System architecture of SIMEON 

The SimOptNSGAII implements the main optimization routine, which solves a Simulation-
BasedProblem. The latter defines the SimBasedOptExperiment, which uses the Simulator, Treatment and 
SimulationOptimizationModel to run unique experiments based on the specifications given to these three 
objects. Recall that in an execution of the algorithm, one objective function evaluation requires the execu-
tion of one simulation experiment. This way, the number of the SimBasedOptExperiment instances creat-
ed is going to be equal to the maximum number of evaluations that the algorithm is to execute, while 
there is only one SimulationBasedProblem object.  Figure 4 provides an overview of the framework. 

4.2.2 Design of genetic representation and operators 

Based on the high-dimensionality requirement, two types of decision variables have been identified: 
quantitative and qualitative decision variables. A simulation-based problem/model might contain quanti-
tative, qualitative or both types of decision variables. To enable SIMEON to have the desired generality 
and yet also have the ability to solve the problems efficiently, different genetic representations and opera-
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tors are implemented. The central idea here is to enable SIMEON users to select the most efficient repre-
sentations and operators based on the types of the decision problems that are encountered. SIMEON im-
plements different representations including the binary representation, real representation, integer repre-
sentation, and integer-real representation. The latter form of solution encoding makes use of integer and 
real representations simultaneously. It is particularly useful to solve simulation-based or mathematical 
model-based problems that contain both quantitative and qualitative decision variables. To perform cross-
over and mutation for this representation, two operators are specially implemented: Integer-Real crosso-
ver and Integer-Real mutation. These operators perform different genetic operations on different segments 
of the chromosome depending on the types of the decision variables. The crossover operator combines 
single point crossover and simulated binary crossover while the mutation operator combines bit flip muta-
tion and polynomial mutation. Figure 5 illustrates this representation. 
 

P
resentation L

ayer
P

roblem
 p

rocessing layer

User Interface

Simulation 
Application

Optimization 
Application

 

Figure 4: High level UML class diagram of SIMEON framework 

 

Figure 5: Integer-real representation 
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4.2.3 Design of the SIMEON User Interface (SIMEON UI) 

User interface of SIMEON is the main constituent of the presentation layer. Its design is vital for the usa-
bility of SIMEON for both expert and non-expert users. The UI implements two features, a control panel 
and a modeling interface. For space reasons, we’ll only describe the control panel. 

Control panel has two main functions: 
 Allowing the user to configure the algorithm and the problem. 
 Visualizing the non-dominated solutions for either 2 objective functions (on the 2 objective func-

tions plot) or multiple objective functions (on the spiderchart plot). 
 

 

Figure 6: SIMEON control panel 

On the top-left panel, the user gets to configure the algorithm to use and its parameters. Next, on the 
bottom-left panel, the simulation-based problem to solve can be selected from a dropdown menu. The 
run-control conditions can be specified in the same panel. The right panel is used to show the non-
dominated solutions for two objective functions.  

5 SIMEON OPERATIONAL TEST AND ASSESSMENT 

For the test case, we use a population size of 100; 10,000 evaluations; a 0.9 crossover rate, 1/number of 
variables mutation rate, and 20 distribution index (for the polynomial mutation and simulated binary 
crossover) to perform the optimization. Furthermore, to deal with the randomness within the model, each 
of the solutions generated by the algorithm is simulated for 5 times and the average values of the objec-
tive functions are used for further iterations. 

5.1 Supply Chain Optimization Problem 

The supply chain optimization problem is characterized by the presence of multiple actors /companies and 
the dynamic interactions that take place during the distribution of products, money and information be-
tween those actors. In the simulation model used as a test case, there are two suppliers, one manufacturer, 
three distributors and four market spots/retailers. Figure 7 illustrates this description.  
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Figure 7: Supply chain network with multiple actors 

The supply chain process is started when the four customers (Coca Cola, Sisi, Hero and PepsiCo) 
generate demands that follow certain statistical distribution. These customers are served by two distribu-
tors (DistriCan and ShipACan) as in Figure 8. Various transport modes result in different delivery speeds 
between those actors. Products are produced by a manufacturer (can company) by using materials sup-
plied by two suppliers (Hoogovens and Akzo). The products are first accumulated in a consolidated cen-
tral warehouse in Brisbane before they are transported to the distributors. 

The objectives are to maximize inventory unit fill rate and to minimize the supply chain cost of a dis-
tributor (DistriCan) for a 100 days period. Figure 8 shows the non-dominated solutions of the problem. 

We can see that there are two non-dominated solutions that can be selected for a decision. The first 
solution suggests setting the service level rather high (96%) while the second solution suggests a lower 
service level (87%). The first solution, however, indicates a good performance on the inventory unit fill 
rate (93%) with relatively higher cost (28 cost unit) while the second solution gives lower cost of the sup-
ply chain  (22 cost unit) with relatively lower  inventory unit fill rate (89%). Given this information, the 
decision maker(s), can have the assurance of picking a solution out of the best alternatives possible. Fur-
ther process of decision making may use additional preferences of the decision maker(s) depending on 
their specific target or circumstances. 

6 CONCLUSIONS AND FUTURE RESEARCH 

In this research we have identified the knowledge gap in the integration of simulation and optimization 
techniques. Furthermore, we also presented the challenges in developing a simulation-based optimization 
method that fulfills generality, efficiency, high-dimensionality, and usability features. 

To address those problems, we design and implement SIMEON, a framework designed based on the 
aforementioned features. The conceptual design of the SIMEON framework has successfully provided the 
answer for the knowledge gap. We presented the definitions and the structure that make clear the way op-
timization and simulation techniques can be integrated in a theoretically sound framework.  
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Figure 8: Pareto front for supply chain optimization problem 

Next, based on the conceptual design, we presented the system architecture and the detailed design of 
SIMEON. Two cases are used to test the performance of SIMEON. The results show that the SIMEON 
framework is able to realize the desired features. 

As for the future research, we plan to further develop SIMEON with different evolutionary-based al-
gorithms and perform further testing with real-world and benchmark problems. 

REFERENCES 

Azadivar, F., and G. Tompkins. 1999. "Simulation Optimization with Qualitative Variables and Structural 
Model Changes: A Genetic Algorithm Approach. European Journal of Operational Research 
113(1):169-182. 

Burstein, F., and C. Holsapple. 2008. "DSS Architecture and Types." In Handbook on Decision Support 
Systems 1, edited by F. Burstein and C. Holsapple. Berlin, Heidelberg: Springer.  

Daalen, C. van, A. Verbraeck, W. Thissen, and P. Bots. 2009. "Methods for the Modeling and Analysis of 
Alternatives." In Handbook of Systems Engineering and Management, 2nd edition, edited by A. P. 
Sage and W. B. Rouse, 1127-1169. New York: John Wiley and Sons. 

Deb, K. 2008. "Introduction to Evolutionary Multiobjective Optimization." In Multiobjective 
Optimization, edited by J. Branke, K. Deb, K. Miettinen and R. Slowinski, 59-96. Berlin, Heidelberg: 
Springer  

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. "A Fast and Elitist Multiobjective Genetic 
Algorithm: NSGA-II." IEEE Transactions on Evolutionary Computation 6(2):182-197. 

Ding, H., L. Benyoucef, and X. Xie. 2006. "A Simulation-Based Multi-Objective Genetic Algorithm 
Approach for Networked Enterprises Optimization." Engineering Applications of Artificial 
Intelligence 19(6):609-623. 

2850



Halim and Seck  
 

Ding, H., L. Benyoucef, and X. Xie. 2009. "Stochastic Multi-Objective Production-Distribution Network 
Design Using Simulation-Based Optimization." International Journal of Production Research 
47(2):479 - 505. 

Durillo, J. J., A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. 2006. "jMetal: A Java Framework for 
Developing Multi-Objective Optimization Metaheuristics." Departamento de Lenguajes y Ciencias de 
la Computacion, University of Malaga. 

Fu, M. C. 2002. "Feature Article: Optimization for simulation: Theory vs. Practice." INFORMS J. on 
Computing 14(3):192-215. 

Fu, M. C., S. Andradottir, J. S. Carson, F. Glover, C. R. Harrell, Y.-C. Ho, J. P. Kelly, and S. M. 
Robinson. 2000. "Integrating Optimization and Simulation: Research and Practice." In Proceedings of 
the 2000 Winter Simulation Conference, edited by J. A. Joines, R. R. Barton, K. Kang, and P. A. 
Fishwick, 610-616. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Fu, M. C., and J. Q. Hu. 1997. Conditional Monte Carlo: Gradient Estimation and Optimization 
Applications. New York: Springer-Verlag. 

Gen, M., R. Cheng, and L. Lin. 2008. Network Models and Optimization - Multiobjective Genetic 
Algorithm Approach. London: Springer-Verlag. 

Hillier, F. S., and G. J. Lieberman. 2009. Introduction to Operations Research. 9th edition. New York: 
McGraw-Hill. 

Jacobs, P. H. M, N. A. Lang, and A. Verbraeck. 2002. "D-SOL: A Distributed Java Based Discrete Event 
Simulation Architecture." In Proceedings of the 2002 Winter Simulation Conference, edited by E. 
Yücesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, 793-800. Piscataway, New Jersey: Institute 
of Electrical and Electronics Engineers, Inc. 

Pflug, G. C. 1996. Optimization of Stochastic Models. Dordrecht, the Netherlands: Kluwer Academic 
Publisher. 

Traoré, M. K., and A. Muzy. 2006. "Capturing the Dual Relationship Between Simulation Models and 
their Context." Simulation Modelling Practice and Theory 14(2):126-142. 

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. San 
Diego: Academic Press. 

AUTHOR BIOGRAPHIES 

RONALD APRILIYANTO HALIM is a PhD candidate in the Transport, Logistic section at Delft Uni-
versity of Technology, in faculty of Technology, Policy and Management. His research is focused on the 
development of a global freight logistics simulation model which will be used to support decision/policy 
makers to deal with uncertainties in the future. Ronald holds MSc. in Systems Engineering, Policy Analy-
sis, and Management (SEPAM) from Delft University of Technology. During his graduate study, Ronald 
is specializing in two areas: (TIL) transport, infrastructure, and logistics and (MSO) modeling, simulation 
and optimization.  His research interests include evolutionary computation, simulation of freight logistics 
system, adaptive policy making, and simulation-based optimization.  His e-mail address is 
R.A.Halim@tudelft.nl. 
 
MAMADOU D. SECK received his PhD degree from the Paul Cezanne University of Marseille and his 
MS and M.Eng Degrees from Polytech’ Marseille, France. He is currently an Assistant Professor in the 
Systems Engineering section in the Technology, Policy, and Management department of Delft University 
of Technology. His research interests include modeling and simulation formalisms, dynamic data driven 
simulation, human behavior representation and social simulation, and agent directed simulation.  His e-
mail address is M.D.Seck@tudelft.nl. 

2851


