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ABSTRACT

Designed experiments are powerful ways to gain insights into the behavior of complex simulation models.
In recent years, many new designs have been created to address the large number of factors and complex
response surfaces that often arise in simulation studies, but handling discrete-valued or qualitative factors
remains problematic. We proposed a framework for generating, with a (given) limited number of design
points n, a design which is nearly orthogonal and also nearly balanced for any mix of factor types (categorical,
numerical discrete, and numerical continuous) and/or mix of factor levels.

Our approach can be used to create designs with low maximum absolute pairwise correlation, low
imbalance level, and high D-optimality for simulation problems with mixed factor types. Our mixed designs
are much more efficient than existing alternatives.

1 INTRODUCTION

The field of statistical design of experiments (DoE) was born in the 1920’s through the pioneering work
of Fisher (2000) in the agriculture arena. The basic principles of DoE are the use of randomization,
replication, and control to allow the analyst to make statistically valid inferences about the behavior of a
system. As noted by Montgomery (2005), “[T]here is not a single area of science and engineering that has
not successfully employed statistically designed experiments.”

Simulation is one of those fields, and we refer the reader to Sanchez and Wan (2009), Kleijnen (2007),
Law (2007), or Santner, Williams, and Notz (2003) to find out more about conducting experiments in
simulation settings. Large-scale simulation experiments often have more complex goals than physical
experiments. These goals include: developing a broad understanding of a complex system; identifying
robust aspects of the system; and comparing alternative system configurations (Kleijnen et al. 2005,
Sanchez et al. 2011). Classical designs typically cannot be used in the simulation environment without
making restrictive or unwarranted assumptions. Fortunately, recent advances in DoE is expanding the
design portfolio available to analysts, improving their ability to conduct large-scale simulation experiments.

In this paper, we focus on single-stage experiments. The experimental design is an n× p matrix of
factor settings, with a row corresponding to each of n design points and a column corresponding to each
of p factors. The title of this work has several terms that we now formally clarify.
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• We define mixed designs as designs with different factor types (categorical, discrete and continuous)
and/or different factor levels (e.g., factor 1 with 10 levels, factor 2 with 5 levels, factor 3 with 2 levels,
etc.). Throughout this paper, we use the terms “qualitative” and “categorical” interchangeably, and
may refer to discrete and continuous factors as “quantitative” or “numerical.”

• A design is said to be balanced if the number of objects in each of the levels of each column is
equal. We call a design nearly balanced if the number of objects in each level of each factor differs
from the ideal by no more than α . Put mathematically: (1−α)λc ≤ ωcl ≤ (1+α)λc, ∀l,c, where
0≤ α < 1 is the percentage of allowed imbalance, λc = n/

βc
is the ideal number of objects in each

level in column c, n is the number of design points, βc is the number of levels in column c, and
ωcl is the number of objects in level l in column c. The specification of the imbalance value is
subjective and problem dependent. From our point of view, an acceptable imbalance value is less
than 20%.

• Let ρmap denote the maximum absolute pairwise correlation between any two factors (columns). An
orthogonal design has ρmap = 0. If a design has 0 < ρmap ≤ 0.05, it is called a nearly orthogonal
design.

• Finally, we characterize a design as efficient if the number of design points is acceptable. Again,
this concept is subjective and is problem driven.

The above concepts are important, especially for simulation studies, for several reasons. Simulation
models usually have different factor types and factor levels, and designs that accommodate this variety
are needed. The balance property allows correct analysis of non-normal heteroscedastic experiments (see
Bathke (2007)). Orthogonality makes it possible to model the effect of one factor independently of other
factors (see, e.g., Montgomery (2005) and Ryan (2008)). Finally, despite the ready availability of high-
speed computing processors, brute-force computation cannot be used to explore large-scale simulation
experiments. Real-world simulation studies face restrictions due to time, cost, number of computers
available for experimentation, etc. They need efficient designs, although the number of design points is
not the overriding consideration.

There are two common approaches to dealing with mixed factors. The first approach involves using an
orthogonal array, which is a balanced design suitable for any type of factor (qualitative and/or quantitative).
The second approach involves constructing separate designs for quantitative and categorical factors, and
then crossing the designs. Typically, a discrete factor is treated as categorical if it has only a handful
of levels, or continuous (perhaps with rounding) otherwise; note that too much rounding can destroy the
orthogonality of the design. Unfortunately, both these approaches can be extremely inefficient and lead to
enormous designs (n� p) if there are many discrete or categorical factors with several levels. Also, the
catalogue of orthogonal arrays for large p is extremely limited, particularly if the factors take on different
numbers of levels.

Recently, we have successfully used mixed integer programming (MIP) to construct designs that are
suitable for discrete-valued factors without treating them as continuous or requiring them all to have the
same numbers of levels. In Vieira Junior et al. (2011b), we create orthogonal, balanced designs for
quantitative (discrete and/or continuous) factors. In Vieira Junior et al. (2011a), we relax the balance
requirement, and provide a MIP formulation suitable for constructing nearly orthogonal, nearly balanced
designs for quantitative (discrete and/or continuous) factors.

The purpose of this paper is to propose a framework for generating, with a (given) limited number
of design points n, a design which is nearly orthogonal and also nearly balanced for any mix of factor
types (categorical, numerical discrete, and numerical continuous) and/or number of factor levels. The
organization of the rest of this paper is as follows. In Section 2, we present technical background, and
discuss the drawbacks of the crossed design and orthogonal array approaches in more detail. Our MIP
formulation appears in Section 3. In Section 4 we provide some examples, and our concluding remarks
appear in Section 5.
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2 TECHNICAL BACKGROUND

We are interested in designs able to provide the analyst with a broad understanding of the simulation over
the region of interest in exploratory simulation studies. When factors are continuous, space-filling designs
are useful for exploratory studies because they provide insight about the simulation behavior throughout
the region of interest. An analogy for discrete-valued factors is that they take on many (perhaps all) of
the potential levels of interest. For example, a design where x assumes levels βx ∈ {0,1} (in weeks) is
less space-filling than a design where x assumes levels βx ∈ {1,2, . . . ,7} (in days). For categorical factors,
we assume that βx may need to be large in order to adequately reflect the complexity of the real-world
situation being modeled and/or that the number of categorical factors is big.

2.1 Designs for Categorical Factors

Orthogonal arrays (OAs) have played an important role in experimental design (see Hedayat, Sloane, and
Stufken (1999) for more information). These arrays possess some properties that allow them to be used for
analysis of any type of data (numerical and/or categorical). For example, consider an n× p matrix, where
the elements in column x are from the set of integers {1,2, . . . ,βx} for some integer βx ≤ n. If the array
has the property that any subarray of size n×g contains all possible combinations of values equally often
as rows, the OA is said to have “strength g.” Orthogonality is important because it allows one to estimate
the effect of one factor independently of the others.

In order to achieve this desirable characteristic, orthogonal arrays must “save” several degrees of
freedom to allow a subsequent analysis of the collected data (the reason will be shown in Subsection 2.1.1).
In order to “save” degrees of freedom, classical DoE requires the number of design points to be greater than
the number of factors. Design points are often called “runs” in statistical literature, but in this paper we
use “design points” because the terms “run” and “replication” are often used interchangeably in simulation
studies. When the number of levels each factor possesses is big, the required number of design points is
much greater than the number of factors.

2.1.1 Indicator Variable Representation

If any of the factors are categorical, it is necessary to work with indicator (also known as “dummy”)
variables. “The design column for a factor level is constructed as the zero-one indicator of that factor level
minus the indicator of the last level ... [In this fashion, the design matrix] achieves full rank unless there
are missing cells or other incidental collinearity” (SAS Institute 2005). Other indicator variable codings
are possible, such as a two-level 0/1 coding with the omitted factor representing the baseline, but this
three-level coding assures that when regression models are fit to the resulting data, the intercept represents
the overall mean response. An example of the construction of indicator variables for a four-level categorical
factor is given in Table 1.

Table 1: Example of indicator-variable construction.

Categorical Level 1 Level 2 Level 3
factor indicator indicator indicator

1 1 0 0
2 0 1 0
3 0 0 1
4 -1 -1 -1
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2.1.2 Drawbacks of Using OAs for Mixed Factor Experiments

From Table 1, it is easy to understand why orthogonal arrays need to “save” so many degrees of freedom:
each categorical factor is transformed into βx−1 new factors. Doing so means that at least 1+∑

j
x=1 (βx−1)

design points are needed for an experiment involving j categorical factors, where βx is the number of
categories for factor x.

Now suppose that the experiment includes quantitative factors as well as categorical factors. If OAs
are to be used, a (numerical) discrete factor x with βx levels will use βx−1 degrees of freedom as above. In
contrast, if x is treated as a quantitative factor, then a single degree of freedom is sufficient for estimating
the main effect of x (two degrees of freedom can be used to estimate a quadratic relationship, and so
forth). Clearly, treating the factor as quantitative is more efficient if a parsimonious representation of the
response’s dependence on x can be obtained.

OAs are most efficient if all the βx are small, so there is a temptation to set βx = 2 for any quantitative
factor x. However, the resulting designs will have poor space-filling behavior, and so are far less useful for
exploratory studies than other designs. But if the βx are large, then the size of the OA can be immense.

In summary, using an OA for a mixed factor experiment will likely require an excessively large number
of design points—particularly if there are several discrete or continuous factors.

2.2 Space-filling Designs for Continuous Factors

Randomly generated Latin hypercubes (LHs) have been widely used for computational experiments (Sacks
et al. 1989). They tend to have good space-filling and orthogonality behavior if n� p, but when n≈ p they
can perform quite poorly. Cioppa and Lucas (2007) constructed efficient, space-filling, nearly orthogonal
Latin hypercubes (NOLHs) that have proven useful for investigating continuous factors in a number of
studies. To overcome the limited combinations of p and n for which NOLHs were available, Hernandez
et al. (2011) developed a mixed integer programming approach that allows for the construction of nearly
orthogonal Latin hypercubes for non-saturated cases (2 < p < n).

2.2.1 Drawbacks of Using Rounded NOLHs for Mixed Factor Experiments

One issue relating to all of the designs of both Cioppa and Lucas (2007) and Hernandez et al. (2011) is
that they are constructed for continuous-valued factors. Applying them to discrete-valued factors requires
rounding. A limited amount of rounding is acceptable, but if there are several factors with small numbers
of levels this can destroy the near-orthogonality of the designs.

If rounding a particular design M causes problems, there are a few steps the analyst can take to
mitigate these problems. First, the analyst could construct a new design based on n′ > n design points
to see if the additional granularity in the base design reduces the correlations induced by rounding. For
the designs of Cioppa and Lucas (2007), the available n’s are 2p + 1 for p = 4(1)8, so the number of
design points is essentially doubled each time n increases. Hernandez et al. (2011) greatly expand the
available combinations of p and n for which NOLHs are available for continuous factors so that n need not
grow so rapidly, but even so, achieving good orthogonality in the presence of rounding is not guaranteed.
Alternatively, the analyst could construct several designs and stack them until suitable near-orthogonality
is achieved. However, this is an ad hoc method. If the original NOLH (for continuous factors) has n design
points, then each stack has ≈ n design points as well.

Even if the rounding problem is solved, the NOLH can deal only with numerical (discrete and/or
continuous) factors.

2.3 Designs for Mixed Numerical Factors

In the previous Sections, we discuss how neither OAs or NOLHs may be suitable for handling designs
involving a mixture of continuous, discrete, and categorical factors. If suitable designs can be created for
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each type of factor separately, then these smaller designs can be crossed to obtain one that, overall, is close
to orthogonal. For example, OAs can be used for factors that are categorical, or discrete with a limited
number of levels. NOLHs or other space-filling designs could be used for continuous factors, and for
discrete factors with many levels of interest. However, if designs D1 and D2 have n1 and n2 design points,
respectively, then the crossed design D1×D2 will have n1×n2 design points.

Our recent work takes a more direct approach for constructing designs for mixed factors. In Vieira
Junior et al. (2011b), we extend and enhance the mixed integer programming (MIP) formulation of
Hernandez et al. (2011) in order to construct orthogonal designs, or improve existing orthogonal arrays,
for experiments involving quantitative factors with limited numbers of levels of interest. Subsequently,
we relax the requirement for balance and orthogonality, and present a MIP formulation for constructing
nearly orthogonal, nearly balanced designs for mixed factors (Vieira Junior et al. 2011a). We now provide
a brief description of this formulation, in order to facilitate the presentation of our new extension which
incorporates qualitative factors.

Let M = [arc]n× j denote a design matrix with n rows and j columns, and for notational convenience let
c and sc denote the mean and standard deviation of column c, respectively. The sample pairwise correlation
between two columns x and y of this matrix is given by (1).

ρxy =

n
∑

r=1
(arx− x)(arc− y)

(n−1)sxsy
. (1)

Now, fix the values of all columns in M except column x; this means that the ary, y, and sy are all
constants for y 6= x. Define ρ∗xy as given by (2).

ρ
∗
xy = ρxy(n−1)sx =

n
∑

r=1
(arx− x)(ary− y)

sy
. (2)

If we constrain the factor x to be balanced, then ρ∗xy ∝ ρxy. If we allow only a small imbalance on x, then
ρ∗xy∝̃ρxy, where ∝̃ means approximately proportional.

Now, if a design is nearly orthogonal, that means that |ρxy| < 0.05, but mathematical programming
approaches cannot deal directly with this form of an objective function. Fortunately, we can define a
quantity v and constrain it to satisfy v ≥ maxy 6=x ρ∗xy and v ≥ −maxy 6=x ρ∗xy. If we can identify values for
the xr so that v = 0, then column x is orthogonal to all other columns in M.

Vieira Junior et al. (2011a) show that, with suitable constraints, one can use a mathematical programming
approach to optimize v as a linear function of the entries in a particular column xr. A MIP formulation is
required because integer-valued variables are used in the design construction process. Applying this MIP
sequentially allows new designs to be constructed. Specifically, start by randomly creating a one-column
matrix M = [arc]n× 1 with the desired levels and, sequentially, add a new column corresponding to a new
factor, and solve the MIP.

2.3.1 MIP Formulation for Numerical Factors

If all the factors are numerical (continuous and/or discrete), the MIP formulation of Vieira Junior et al.
(2011a) can be used to construct designs. This MIP is provided in (3), and has the following characteristics:
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INPUTS
M = [arc]n× j A design matrix with n rows and j columns;
x The column of M to optimize;
βx The number of levels (≤ n) associated with the factor in column x (x = 1, . . . , j);
α The maximum allowable imbalance for any factor (0≤ α < 1).

VARIABLES
xr Entry in the rth row of column x

FORMULATION

Min v
s.t.

(i) v≥ 1
sc

n
∑

r=1

(
xr− 1

n

n
∑

k=1
xk

)
(arc− c) c = 1, 2, . . . , x−1, x+1, . . . , j

(ii) v≥− 1
sc

n
∑

r=1

(
xr− 1

n

n
∑

k=1
xk

)
(arc− c) c = 1, 2, . . . , x−1, x+1, . . . , j

(iii)
βx

∑
l=1

θrl = 1 r = 1, 2, . . . , n

(iv) xr =
βx

∑
l=1

lθrl r = 1, 2, . . . , n

(v)
n
∑

r=1
θrl ≤ (1+α)

⌈
n
βx

⌉
l = 1, 2, . . . , βx

(vi)
n
∑

r=1
θrl ≥ (1−α)

⌊
n
βx

⌋
l = 1, 2, . . . , βx

(vii) θrl ∈ {0,1} r = 1, 2, . . . , n; l = 1, 2, . . . , βx

(3)

Here, dbe is the smallest integer greater than b, and bbc is the greatest integer smaller than b.
As discussed above, constraints (i) and (ii) ensure that v≥ ρ∗xy and v≥−ρ∗xy, i.e., v≥ |ρ∗xy| regardless

of the sign of ρ∗xy, for all y 6= x. Constraint (iii) assures that only one of the βx levels will be assigned to xr.
The translation from these binary indicators to their integer equivalents (i.e., from θrl to xr) is accomplished
by (iv). The imbalance limits are guaranteed by the constraints (v) and (vi). Finally, constraint (vii) ensures
that θrl can assume only the values 0 or 1.

2.3.2 Implementation

In real-world-simulation problems, the numbers of levels and numbers of design points are usually not
small. This makes the size of the branch and bound tree large (with (βx)

n alternatives), restricting its full
inspection in a reasonable amount of time. Consequently, we allow the MIP algorithm to perform its search
for a limited, pre-specified amount of time t and consider at the current best solution v∗. At that time, if
the optimized v∗ = minmax

y

∣∣ρ∗xy

∣∣ 6= 0, we calculate the ρmap = max
x 6=y
|ρxy|. If it is less than or equal to 5%,

we accept the optimized column and move forward to create new ones. If ρmap > 0.05, then we run the
MIP algorithm again, giving it more time to perform its search. This last procedure should be repeated
until ρmap ≤ 0.05. If v∗ = 0, then an orthogonal column has been found and it is not necessary to calculate
the new value of ρmap.
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2.3.3 Pitfalls to Avoid

A mistake that might be made by someone unfamiliar with experimental design is to use a column of a
design matrix intended for a numerical factor to represent the (coded) levels of a categorical factor. We
now give a small example to show why this is such a bad idea.

Table 2 shows two categorical factors and their respective indicator variables, where xi is the ith categorical
factor and x j

i is the indicator variable for the jth level of the ith categorical factor. The correlation between
x1 and x2 is ρx1x2 = 0; i.e., they are orthogonal to each other (at least with the orthogonality definition
we use). Despite being orthogonal in the original levels, when we analyze the corresponding indicator
variables, the correlation between x3

1 and x2
2 is ρx3

1x2
2
=−1; i.e., they are perfectly correlated with each other.

If the statistical analysis states that the level three of factor one is the main responsible for the measured
outcome variability, it cannot be assessed if this variability was due to level three of factor one, to level
two of factor two or to a combination of both. This is called “confounding” in DoE terminology.

Table 2: Example of correlation problems with categorical variables.

Categorical Factors Indicator Representations

x1 x2 x1
1 x2

1 x3
1 x1

2 x2
2 x3

2

1 3 1 0 0 0 0 1
2 1 0 1 0 1 0 0
3 4 0 0 1 -1 -1 -1
4 2 -1 -1 -1 0 1 0

This situation exists even if one of the factors is numerical. If x1 were numerical instead of categorical,
we still would have problems with correlation: ρx1x3

2
=−0.632. This means that the columns constructed

using the MIP of (3) cannot be used to define the levels of categorical factors. We also remark that the MIP
formulation of (3) cannot be used to directly construct indicator variables, except in one special case. If all
categorical factors have only two potential levels, then each categorical factor requires a single indicator
column. A design could be constructed using the coded values {1,2} for each of these indicators, and the
results could be converted back to the original units for the associated categorical factors.

3 CONSTRUCTING MIXED DESIGNS THAT INCLUDE QUALITATIVE FACTORS

Our new formulation uses the same basic ideas the previous one used (the new correlation calculus and the
sequential creation of columns instead of generating the whole matrix in one step). However, in order to be
able to deal with categorical factors, we move to an indicator variable view of the factors, as described in
Section 2.1.1. This leads us to modify some constraints and add others. We briefly describe the motivation
for the modifications, then present the new formulation and discuss some of the new constraints in more
detail.

First, we need new notation to allow for the construction of βx− 1 indicator variables (i.e., βx− 1
columns) for each categorical variable, rather than a single column for each numerical factor. We let xi

r
represent the value in the rth row of the ith indicator variable associated with categorical factor x; we modify
variable θrl to θ i

rl for the same reason. Second, several constraints are needed to ensure that the indicator
variable columns are constructed correctly. These columns should contain entries xi

r ∈ {−1,0,1} but not
necessarily in equal proportions: zeroes will be more prevalent if βx is large. Related to this, constraints
enforcing near-balance of the design are not concerned with the numbers of zeros in indicator variable
columns.

3.1 MIP Formulation for Categorical Factors

Equation (4) gives our new MIP, which works for qualitative (categorical) factors.
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INPUTS
M = [arc]n× j A design matrix with n rows and j columns;
x The categorical factor to be added to M;
βx The number of levels (≤ n) associated with the categorical factor x;
α The maximum allowable imbalance for a factor (0≤ α < 1).

VARIABLES
xi

r Entry in the rth row of the ith indicator variable column for x

FORMULATION

Min v
s.t.

(i) v≥ 1
sc

n
∑

r=1

(
xi

r− 1
n

n
∑

k=1
xi

k

)
(arc− c̄) c = 1,2, . . . , j; i = 1,2, . . . ,βx−1

(ii) v≥− 1
sc

n
∑

r=1

(
xi

r− 1
n

n
∑

k=1
xi

k

)
(arc− c̄) c = 1,2, . . . , j; i = 1,2, . . . ,βx−1

(iii)
3
∑

l=1
θ i

rl = 1 r = 1,2, . . . ,n; i = 1,2, . . . ,βx−1

(iv) xi
r =

3
∑

l=1
(l−2)θ i

rl, r = 1,2, . . . ,n; i = 1,2, . . . ,βx−1

(v)
n
∑

r=1
θ i

rl ≤ (1+α)
⌈

n
βx

⌉
l = 1,3; i = 1,2, . . . ,βx−1

(vi)
n
∑

r=1
θ i

rl ≥ (1−α)
⌊

n
βx

⌋
l = 1,3; i = 1,2, . . . ,βx−1

(vii)
βx−1
∑

i=1
θ i

r3 ≤ 1 r = 1,2, . . . ,n

(viii)
βx−1
∑

i=1
θ i

r2 ≤ βx−2 r = 1,2, . . . ,n

(ix) θ i
r1−θ 1

r1 = 0 r = 1,2, . . . ,n; i = 2, 3, . . . ,βx−1

(x) θ i
rl ∈ {0,1} r = 1,2, . . . ,n; l = 1,2,3; i = 1,2, . . . ,βx−1

(4)

As in Formulation (3), constraints (i) and (ii) ensure that v ≥ |ρ∗xiy| regardless of the sign of ρ∗xiy.
Constraint (iii) assures that only one of the three possible levels will be assigned to xi

r, and constraint (iv)
performs that assignment. The imbalance limits are guaranteed by the (v) and (vi); note that these are
enforced only for non-zero values of the indicator variables.

Constraints (vii)–(ix) are needed to construct the indicator variables properly. Specifically:

• No two indicator variables can have 1’s assigned to the same row if they correspond to the same
categorical factor. For example, if we have x1

1 =
(

1 −1 −1 0 0 1
)T , then the column

vector
(

1 0 1 −1 −1 0
)T is not an allowable solution for x2

1. Despite being orthogonal
to each other, the value 1 in the first row of both vectors would be interpreted as “set factor x1 to
levels 1 and 2 for design point 1,” which is not possible. Constraint (vii) assures that multiple level
assignments do not occur within a particular design point (row) of M;
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• There must not be a row in the set of indicator variables filled only with 0’s. The reason is that
every level of the categorical factor must be represented by exactly one of the indicator vectors. If
we have 0 in a row at all indicator vectors, it means that none of them are “indicating” the level
that that row has in the categorical factor. This is assured by the constraint (viii); and

• All indicator variables for the same categorical factor must have -1 assigned to same rows. This is
assured by the constraint (ix).

Finally, constraint (x) specifies that the θ i
rl are binary-valued variables.

When constructing a design for categorical factors only, begin by specifying a reasonable number
of design points. Given j qualitative factors, we need n > ∑

j
x=1(βx− 1) design points. Then, randomly

generate the first categorical factor and, based on the levels of this first factor, construct the set of indicator
columns in the same fashion Table 1 did. This set of indicator variables will be the initial design matrix
M. In each subsequent iteration, construct the appropriate indicator columns for another categorical factor
by using Formulation (4). After all of the qualitative factors have been added, then the indicator columns
for each categorical factor in the design matrix M should be replaced by a single column that lists the
categorical levels (in original units) for that factor to facilitate experimentation.

3.2 MIP Approach for Qualitative and Quantitative Factors

When generating a design for a mix of categorical and numerical factors, begin by specifying a reasonable
number of design points n. If Ncat , Ndisc, and Ncts represent the numbers of categorical, discrete, and
continuous factors, respectively, then we need n > Ndisc+Ncts+∑

Ncat
x=1(βx−1). A design for the categorical

factors should be created as described in at 3.1. Once a suitable design has been constructed for the
categorical factors, then iteratively add numerical columns, one at a time by using Formulation (3). After
all of the numerical factors have been added, then the indicator columns for each categorical factor in the
design matrix M should be replaced by a single column that lists the categorical levels (in original units)
for that factor to facilitate experimentation.

3.3 Other Implementation Issues

As described in at 2.3.2, it may be necessary to run the MIP for a specified amount of time t and then
stop to see if a suitable design has been obtained, rather than attempting to let the MIP run to completion.
If no design that meets the desired balance and correlation properties can be found in a timely manner,
consider increasing n and/or t, and starting over.

4 RESULTS

Our motivation for creating these nearly balanced, nearly orthogonal mixed designs arose from numerous
simulation studies in a variety of application areas related to defense and national security. Rather than
provide details about the factors, settings, results, and interpretation for any single study, we provide brief
descriptions of the design characteristics for two recent simulation experiments.

Before proceeding, a more detailed discussion of design efficiency is in order. We have already shown
that large-scale models cannot be explored using brute-force methods. However, it is not the case that
designs should be compared solely in terms of the number of design points n. Heterogeneous variances
are pervasive in simulation, meaning that multiple replications b > 1 are needed. The time required for a
single run at a single design point is typically not constant, so that the total computational effort is not
necessarily proportional to the number of design points n, or even the total number of runs nb. Most of
our experiments are performed on computing clusters, where multiple runs are conducted in parallel. This
means that the time required to complete all the runs is more important than either n or nb. Finally, there
is substantial benefit to the analyst if they can analyze and interpret the results of a single experiment,
rather than having to go through an iterative sequence of experiments that build on information from
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earlier ones (e.g., beginning with a screening experiment, then moving to a higher-resolution design for a
limited number of factors, then cross-checking to ensure that they have not missed important terms, and
repeating this process). Unless the time for an individual run is quite large, we have found that designs
with 3k ≤ n≤ 10k provide a good mix of efficiency, statistical power, and analysis flexibility.

4.1 First Design

The Naval Postgraduate School’s SEED Center for Data Farming (http://harvest.nps.edu/) is conducting a
study of the United States Marine Corps’ Total Life Cycle Management Assessment Tool (TLCM-AT). The
objectives of the study include assessing the model’s sensitivities, identifying critical input data, determining
robust strategies, and generating distributions on future possibilities. The study is intended to complement
other ongoing Validation & Verification (V&V) activities.

TLCM-AT has a large number of quantitative and qualitative inputs. Additionally, there are sources
of significant uncertainty associated with many of these inputs, e.g., failure rates, operational tempo, etc.
This project leverages the benefits of using state-of-the-art experimental design techniques, coupled with
high-performance computing, to investigate the model’s behavior over a range of inputs.

We developed a design for this study that involved 15 continuous factors, 5 qualitative factors with
2 levels, 2 qualitative factors with 3 levels, and 5 qualitative factors with 5 levels. The D-optimality,
maximum imbalance value, and ρmap of the design are, respectively, 99.97%, 10%, and 1.98%. Our design
has 100 design points.

For comparison purposes, consider the crossing approach. For the categorical factors, a full factorial
would require 25×32×55 = 900,000 design points. No OAs capable of handling all 12 categorical factors
are available in the online libraries of orthogonal arrays (Sloane 2007, Kuhfeld 2010), although one can
be constructed by crossing two smaller designs—one that handles up to 20 2-level factors and two 3-level
factors in 36 runs, the other that handles up to six 5-level factors in 25 runs. For the continuous factor
design, our rule of thumb suggests that between 45 and 150 design points is reasonable, although it is
possible to use as few as 16 design points. Crossing these designs yields overall design matrices with
the number of design points ranging from 36× 25× 16 = 14,400 for the smallest design (that someone
familiar with OAs could construct) up to 900,000×150 = 135,000,000 design points (if a full factorial
is used). With only 100 design points, our design is much more efficient.

4.2 Second Design

Cizek (2010) studies the launching of UAVs (Unmanned Aerial Vehicles) from submarines. UAVs provide
the submarine with a more detailed tactical picture of the battlefield. The study aims to analyze how UAV
capabilities affect a submarine’s ability to accomplish a maritime interdiction mission.

We created a design that mixed all type of factors: categorical, discrete and continuous. The
UAV/submarine simulation model has four categorical factors with 2, 3, 3 and 3 levels; four discrete
factors with 8, 11, 21 and 41 levels; and 37 continuous factors. The D-optimality, maximum imbalance
value, and ρmap of the design are, respectively, 99.97%, 10%, and 0.94%, respectively. Our design has 468
design points.

There are no suitable OAs readily available for the categorical factors, even though this is a much
smaller problem than the first example. There is a design capable of handling up to four 3-level factors in
9 design points; by doubling the number of design points, we can accommodate the single 2-level factor
as well. If we decide to treat the 8-level discrete factor as categorical, we need 9× 2× 8 = 144 design
points for the “qualitative” factor design. The size of a full factorial for these five factors is 432. OAs
are not available for 11-, 21-, or 41- level factors, so without the MIP formulation the analyst would
probably treat these as continuous factors, appropriately rounded (although the 11-level factor could be
treated as categorical). With 39–40 “continuous” factors, sizes of overall designs obtained by crossing
would range from 144×40 = 5,760 (treating the 11-, 21- and 41- level discrete factors as continuous) to
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432×11×39 = 185,328 design points (treating the 21- and 41- level discrete factors as continuous), or
over 1.5 billion design points (using factorials for all categorical and discrete factors). Once again, our
design is more efficient by several orders of magnitude.

5 CONCLUSIONS

We proposed a mixed integer programming formulation that, for a (given) limited number of design points
n, generates a design which is nearly orthogonal and also nearly balanced for any mix of factor types
(categorical, numerical discrete and numerical continuous) and/or number of factor levels. Our proposal
can be used to create designs with low maximum absolute pairwise correlation, low imbalance level, and
high D-optimality for simulation problems with any type of factors. The designs we construct require
orders of magnitude fewer design points than other approaches.

These new designs greatly expand the portfolio of designs available for analysts conducting large-scale
simulation experiments. Consequently, there are much greater opportunities for gaining insights about the
behavior of complex simulation models (and the real-world situations they represent) in a timely manner.

Interesting problems for future research involve the study of high-order aliasing (e.g., aliasing of main
effects and interactions) and how our MIP formulation might be expanded to diminish adverse alias effects.
A related topic is that of explicitly incorporating space-filling requirements into our MIP formulation.
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