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ABSTRACT 

Simulation has been applied in many optimization problems to evaluate their solutions’ performance un-
der stochastic environment. For many approaches solving this kind of simulation optimization problems, 
most of the attention is on the searching mechanism. The computing efficiency problems are seldom con-
sidered and computing replications are usually equally allocated to solutions. In this paper, we integrate 
the notion of optimal computing budget allocation (OCBA) into a simulation optimization approach, Par-
ticle Swarm Optimization (PSO), to improve the efficiency of PSO. The computing budget allocation 
models for two versions of PSO are built and two allocation rules PSOs_OCBA and PSObw_OCBA are 
derived by some approximations. The numerical result shows the computational efficiency of PSO can be 
improved by applying these two allocation rules.  

1 INTRODUCTION 

In this paper, we consider the problem of simulation optimization with continuous solution space in sto-
chastic setting. The classic approaches to tackle this problem include stochastic approximation (Rubin-
stein and Shapiro 1993) and sample path method (Gurkan, Ozge, and Robinson 1994). In recent years, 
because of the advantages of derivative-free and black-box nature, many metaheuristics have been adopt-
ed to solve the simulation optimization problems with continuous solution space, such as the nested parti-
tion (Shi and Olafsson 1997), particle swarm optimization (Kennedy and Eberhart 1995) and differential 
evolution (Storn and Price 1997). 

For all these approaches, the search mechanism is a very important part as it decides where the candi-
date solution(s) should move so that the optimal solution can be gradually obtained. Due to the stochastic 
environment, each selected solution should be repeatedly evaluated and the sample mean used as an esti-
mator of this solution’s performance. Therefore, we need to make a computing effort balance between 
exploration and exploitation, which means a trade-off between how much computing effort should be de-
voted to searching new solution(s) and evaluating the new generated solution(s) versus how much compu-
ting effort should be allocated to the existing candidate solution(s). Moreover, at each iteration of many 
metaheuristics, some better solutions need to be selected from all the candidate solutions to generate the 
new solutions. So there is also the problem about how to allocate the computing effort to each candidate 
solution within each iteration. In this paper, we aim to do some contribution on the efficiency improve-
ment of simulation optimization using the particle swarm optimization method.  
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The origin of particle swarm optimization (PSO) is from the computer animation requirement of form-
ing what appeared to be a fuzzy object. Kennedy and Eberhart (1995) develop the basic model for PSO 
and lead to the application of PSO in finding the optimal solution of mathematical functions. In PSO, 
each time certain number of solutions in the search space will be selected as particles to form a swarm. 
Each particle in the swarm will move through a search space according to its velocity value based on the 
location information of both the best solution that it has found individually (personal best) and the best 
solution that is found by any of the particles that this particle can communicate with (global best). To 
avoid the case of rapid convergence to local optimal and the case of finding the global optimal but with 
very slow convergence rate, Shi and Eberhart (1998) incorporate an inertia weight into the velocity update 
equation to improve the basic PSO model. Based on the same consideration, Clerc and Kennedy (2002) 
introduce another factor, named as constriction factor, into the velocity update equation to build a gener-
alized PSO model. By incorporating the idea of cluster analysis, Kennedy (2000) modifies the original 
PSO and develops a new version of PSO algorithm by using cluster centers as personal best of particles. 
For different specific simulation optimization problems, a lot of other versions of PSO have been devel-
oped in recent years. Banks, Vincent and Anyakoha (2007, 2008) give a comprehensive review of these 
developments. Bratton and Kennedy (2007) take these recent developments into account and define a 
standard for PSO. 

In all of these PSO versions, a comparison among all candidate solutions within each iteration is re-
quired to update particles’ locations. And the computing budget is usually equally allocated to these can-
didate solutions under stochastic environment. Because the number of particles at a swarm is limited, 
some approaches in ranking and selection procedures can be applied into the comparison process to effi-
ciently allocate computing replications to these competing candidate solutions. Among these approaches, 
the optimal computing budget allocation (OCBA) procedures developed by Chen et al. (2000) aims at 
maximizing the probability of correctly selecting the best design(s) from finite number of designs under 
limited computing budget constraint. It has shown great potential in improving simulation efficiency for 
tackling simulation optimization problems. Chen et al. (2008) show numerical examples about the per-
formance of the algorithm combining OCBA-m with Cross-Entropy (CE). The theoretical part about the 
integration of OCBA with CE is then further analyzed in He et al. (2010). Chew et al. (2009) integrate 
MOCBA with Nested Partition (NP) to handle multi-objective inventory policies problems and Lee, 
Wong, and Jaruphongsa (2009) integrate MOCBA with GA to solve an aircraft spare part allocation prob-
lem. In all these papers, the numerical results demonstrate the significant improvements gained by inte-
grating OCBA into these simulation optimization approaches. The application of OCBA into PSO is con-
sidered in Pan, Wang, and  Liu (2006), where they do not analyze the PSO from the OCBA perspective 
but just directly apply OCBA allocation rule from Chen et al. (2000) to select the best particle at a swarm.  

In this paper, we integrate OCBA into two versions of PSO and model the computing budget allocation 
problems of PSO by maximizing the convergence rate of the probability of incorrect selection. The condi-
tions for the asymptotical optimal allocation rules for the standard PSO and PSObw are derived. Under 
some assumptions, we get the optimal allocation rules, named as PSOs_OCBA and PSObw_OCBA, 
which are closed-form and easy to implement. Numerical testing indicates that the resulting integrated 
procedure can lead to computational efficiency gains for both the standard PSO and PSObw. We reiterate 
that our objective is not to find the best PSO algorithm or compare the standard PSO with PSObw, but ra-
ther to demonstrate that an intelligent control of simulation budget allocation can improve the computa-
tional efficiency of PSO. The framework in this paper can also be flexibly applied to other versions of 
PSO or other simulation optimization approaches to seek the computational efficiency improvement. 

The rest of this paper is organized as follows. In section 2, we introduce the simulation optimization 
problem setting and build computing budget allocation models for both the standard PSO and the PSObw 
from a large deviation perspective. Section 3 derives the asymptotically optimal simulation allocation 
rules to minimize the probability of incorrect selection. In section 4, we show two numerical experiments 
to compare the performance of PSOs_OCBA and PSObw_OCBA with the equal allocation rule 
PSOs_EA and PSObw_EA. Section 5 concludes the whole paper. 
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2 SIMULATION OPTIMIZATION PROBLEM FORMULATION 

In this section, we firstly give a brief introduction of PSO algorithms, and then we build the computing 
budget allocation models for two versions of PSO. 

2.1 Particle Swarm Optimization 

In PSO, there are total m  particles in a swarm. Let  1 2, , ,i i i iDX x x x  , 1,2,...,i m , denote the loca-

tion of an individual particle i within an iteration in the D-dimensional solution space. The location of 
particle i is updated at each time step by updating the velocity  1 2, , ,i i i iDV v v v  , which is related to the 

old velocity, the distance to the personal best  1 2, , ,i i i iDP p p p  and the distance to the global best 

 1 2, , ,g g g gDP p p p  . In the version of standard PSO algorithm (Bratton and Kennedy 2007), the per-

sonal best of one particle is defined as the location of this particle’s own previous best performance, while 
the global best is defined as the best solution that all particles have found. The updated position equals to 
the old position with the updated velocity added.  So we have the following updating equations with con-
striction at each dimension d  ( 1,2,...,d D ). 

                                             1 1 2 2id id id id gd idv v c p x c p x                                                   (1) 

id id idx x v                                                                                             (2) 

    In equation (1),   is the constrictive factor to induce convergence and prevent particles moving to the 

outside of the desirable range of the search space. 1c  and 2c  are two constants to justify the convergence 

to local best and the convergence to global best. 1  and 2  are two independent uniformly distributed 
random numbers to ensure certain level of random search among the whole solution space. The whole al-
gorithm of PSO can be summarized as follows. 

 
Algorithm. PSO  
Initialization Particles are originally initialized in a uniform random manner throughout 

the search space; velocity is also randomly initialized. Based on each parti-
cles’ fitness values, get the initial value of  1 2, , ,i i i iDP p p p   and 

 1 2, , ,g g g gDP p p p   . Set t=1; 

Updating For each particle i in the swarm do  
Update velocity iv  and position iX  using equations (1) and (2); 

end for 
Calculate these new particles’ fitness values ;        
Update iP  and gP ; 

Stopping If the stopping criteria is satisfied, stop; otherwise set t=t+1 and loop to the 
step Updating. 

 
Inspired by the clustering idea in the PSO with cluster analysis developed by Kennedy (2000), we pro-

pose another version of PSO, named as PSO with best half and worst half method (PSObw). In PSObw, 
particles are classified into two subsets, the best half set bestS  and the worst half set worstS   based on their 
fitness values, not based on their locations in PSO with cluster analysis. For PSObw, the personal best of 
the particles in the best half is defined as their own current locations and the personal best of the particles 
in the worst half is defined as the location of the particle in the best half nearest to them. The global best 
is the best particle in the swarm. The updating equations and the algorithm of PSObw is the same with the 
standard PSO’s, except that the determinations of the personal best and global best are different. In stand-
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ard PSO, personal best and global best is related to the historical performances of the locations these par-
ticle have visited. However, in PSObw, personal best and global best are updated based on the perfor-
mances of particles in the current swarm. The introduction of PSObw here is for displaying the generality 
of the application of OCBA into PSO algorithms, not for comparing PSObw with PSO. 

In deterministic case, we can directly get each particle’s true fitness value. However, under stochastic 
environment, the performance at each location is a random variable because of the noise. In this case, we 
generally use the unbiased estimator, sample mean, to estimate the mean fitness value of each particle. 
Both for the standard PSO and for PSObw, we need to find the global best and personal best of each par-
ticle in the updating step. It belongs to a ranking & selection (R&S) problem. The correctness of selecting 
the personal best and global best will directly affect the quality of particles generated at the next iteration. 
Intuitively, to ensure the high level of the selection correctness, more replications should be allocated to 
the particles that play a more important role in the updating step. Instead of simulating each particle with 
equal replications as most PSO algorithms do, we integrate the concept of OCBA, an efficient R&S pro-
cedure, into PSO when we calculate particles’ fitness values in the updating step at each iteration to im-
prove the efficiency of PSO. In the following subsections, we model the computing budget allocation 
problem of the standard PSO and the PSObw from the perspective of maximizing the convergence rate 
function of the probability of incorrect selection. 

2.2 Computing Budget Allocation Model for Standard PSO 

Let   denote the continuous solution space and ( )f X  denote the mean fitness of the solution X  that 

belongs to  . So the general optimization problem can be modeled as follows. 

 min
X

f X


 

Because it is impossible to have infinite replications, the performance of ( )f X  under the stochastic envi-

ronment can only be estimated by the sample mean, denoted as  
1

ˆ( ) 1 ( )
N

j
j

f X N f X


  , in which ˆ ( )jf X  

is the sample performance of solution X  at the  j-th simulation replication and N is the computing budget 
allocated to X .  
    In standard PSO, the personal best of one particle is the location of this particle’s own previous best 
performance and the global best is the best solution that any particle has found. Suppose the solution iP   

and gP  is the personal best and global best respectively of last iteration. Let T  be the computing budget 

at this iteration and let i iN T  denote the replications allocated to particle i at this iteration. For con-
venience, we introduce the following notation to partition the swarm into three mutually exclusive sub-
sets: 

 AS : the set of particles whose fitness values are better than gP , that is, 

    :A i i gS X f X f P  , 

 BS : the set of particles whose fitness values are worse than gP  but greater than their per-

sonal best iP , that is,       :B i g i iS X f P f X f P   , and, 

 CS : the set of particles whose fitness values are worse than their personal best iP , that is, 

    :C i i iS X f X f P  . 

    The incorrect selection happens when the personal best and global best cannot be correctly selected. 
The incorrect categorization of particles into the above sets affects the selection of personal best and 
global best. Therefore, we want to control the probability below to improve our correctness of selection.  
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                     
A B C

i g j g j j k k
i S j S k S

P IS P f X f P f X f P f X f P f X f P
  

                          
        (3) 

Note that  gf P  and  if P  in (3) are all known sample mean values obtained in last iteration and 

 if X ,  jf X  and  kf X  are random variables required to be estimated at this iteration. 

Let  

                    * max max , max ,max , max
A B B C

i g j g j j k k
i S j S j S k S

P P f X f P P f X f P P f X f P P f X f P
   

        . 

Thus, P{IS} in (3) can be bounded by 

 * *{ } 2A B CP P IS S S S P    . 

    If i > 0 for each particle i, and T   at each iteration,   gf P  and  if P  go to  gf P  and  if P , 

and  P IS  goes to zero. The convergence rate of  P IS  is equal to the convergence rate of *P . Based on 

large deviation theory (Dembo and Zeitouni 1992, Szechtman and Yücesan 2008), for certain solution X  
with n  replications, there exists a rate function  I y such that 

    1
lim log
n

P f X y I y
n

   , for  y f X , and 

    1
lim log
n

P f X y I y
n

   , for  y f X . 

    Based on the lemma 1 of Glynn and Juneja (2004), we can obtain rate functions below. 

       1
lim log i g i i gT

P f X f P I f P
T




   , for i AX S , 

       1
lim log j g j j gT

P f X f P I f P
T




   , for j BX S , 

       1
lim log j j j j jT

P f X f P I f P
T




   , for j BX S , 

       1
lim log k k k k kT

P f X f P I f P
T




   , for k CX S . 

     So we have 

            *

, ,

1
lim log min , , ,

A B C
i i g j j g j j j k k kT i S j S k S

P I f P I f P I f P I f P
T

   
   

  . 

Thus,  

              
, ,

1
lim log min , , ,

A B C
i i g j j g j j j k k kT i S j S k S

P IS I f P I f P I f P I f P
T

   
   

  . 

    This means that  P IS  will decay exponentially with increasing T at a rate given by 

            
, ,
min , , ,

A B C
i i g j j g j j j k k ki S j S k S
I f P I f P I f P I f P   

  
. For different allocation rules,  P IS  will 

have different convergence rates. A good allocation rule should be the one that can obtain high conver-
gence rate of  P IS . 

Based on the above analysis, we can model the computing budget allocation problem of the standard 
PSO from the perspective of maximizing the convergence rate of  P IS  as below. 

                        

            
, ,

1

max min , , ,

. .        1

            0.

A B C
i i g j j g j j j k k k

i S j S k S

m

i
i

i

I f P I f P I f P I f P

s t

   





  







                      (4) 
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2.3 Computing Budget Allocation Model for PSObw method 

Following a similar way, we can build the computing budget allocation model for PSObw method. In 
PSObw, the global best is the best particle in the swarm. For each particle in worstS , we need to find the 

particle in bestS  nearest to it as its personal best while the personal best for particles in bestS  are them-

selves. Suppose bX  is the global best in the swarm. The probability of incorrect selection is the probabil-
ity that the global best or personal best of any particle is incorrectly selected, which can be formulated as 
below. 

 

                                  
, ,i best i b i best j worst

b i i j
X S X X X S X S

P IS P f X f X f X f X
   

         
        

  .                    (5) 

 
By lemma 1 in Glynn and Juneja (2004), we have 

 

                       1
lim log , infb i bi b i b b i iT y

P f X f X G I y I y
T

   


      , for i bestX S , and 

                       1
lim log , infi j ij i j i i j jT y

P f X f X G I y I y
T

   


      , for i bestX S  and j worstX S . 

 
Therefore,  

      
,

1
lim log min , , ,

best worst
bi b i ij i jT i S j S

P IS G G
T

   
  

  . 

 

This means that the convergence rate of  P IS  in PSObw is     
,

min , , ,
best worst

bi b i ij i ji S j S
G G   

 
. The com-

puting budget allocation model for PSObw can be built as below.  
 

                                        

    
,

1

max min , , ,

. .        1

            0.

best worst
bi b i ij b i

i S j S

m

i
i

i

G G

s t

   





 







                                                       (6) 

 

3 DEVELOPMENT OF ASYMPTOTICALLY OPTIMAL ALLOCATION RULES 

We analyze the models (4) and (6) to get the asymptotic optimal allocation rules for two versions of PSO. 

3.1 Asymptotically Optimal Allocation Rule for the Standard PSO 

In the model (4), we can get the expression of   i i gI f P ,   j j gI f P ,   i j jI f P  and 

  k k kI f P  for certain distribution of  f̂ X . Since all these terms are the linear and strictly increasing 

functions with respect to  1 2, ,..., m    , the minimum of linear functions is concave and still strictly 

increasing. So the model (4) is a convex optimization problem, which can be equivalently rewritten as, 
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  
  
  
  

1

max       . .

,    for 

,    for 

,    for 

,    for 

    1

         0.

i i g i A

j j g j B

j j j j B

k k k k C

m

i
i

i

z s t

I f P z X S

I f P z X S

I f P z X S

I f P z X S














 

 

 

 







 

    Because of the convexity of the maximization problem, the Karush-Kuhn-Tucker conditions can be 
used to find the best allocation rule. We can get the following theorem. 

Theorem 1 The allocation rule  1 2, ,..., m     is asymptotically optimal for model (4) if it satis-

fies the following conditions: 

(a)            1 1 2 2i i g j j g j j j k k kI f P I f P I f P I f P      ; 

(b) 
1

1
m

i
i




 ; 

(c) 0i  . 

in which       1 1:  and j B j j j gj j X S I f P I f P   ,       2 2 :  and j B j j j gj j X S I f P I f P   . 

Lemma 1 When the performance of each particle is normally distributed, the optimal allocation rule 
for the standard PSO at each iteration, named as PSOs_OCBA, is 

                   

2 22 2
1 2

1 2 2 2 2 2

1 2

: : : : : :j ji k
i j j k

k ki g j g j j
f X f Pf X f P f X f P f X f P

  
    

  
.    (7) 

3.2 Asymptotically Optimal Allocation Rule for PSObw 

Model (6) for PSObw is also a convex optimization problem when  ,bi b iG    and  ,ij i jG    are con-

cave and strictly increasing functions with respect to  1 2, ,..., m    . Referring to Glynn and Juneja 

(2004),  ,bi b iG    can be expressed by      , ,b b b i i i b iI y I y      , and  ,ij i jG    can be ex-

pressed by      , ,i i i j j j i jI y I y      . In the same way, model (6) for PSObw can be transformed 

into the following model: 

     
     

1

max      

. .      , , ,    for 

           , , ,    for , 

          1

         0.

b b b i i i b i i best

i i i j j j i j i best j worst

m

i
i

i

z

s t z I y I y X S

z I y I y X S X S

     

     






  

   







 

     
Applying the Karush-Kuhn-Tucker conditions, we can get the conditions of the optimal allocation rule. 
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Theorem 2 If an allocation rule is the asymptotically optimal allocation rule to minimize the proba-

bility of incorrect selection in model (6), it satisfies the following conditions: 

(a)            , , , ,    for , b b b i i i b i i i i j j j i j i best j worstI y I y I y I y X S X S                ; 

(b) 
1

1
m

i
i




 ; 

(c) 0i  . 
    We cannot get a closed-form allocation rule from theorem 2 for model (6). Therefore, we can simplify 
the model under some assumptions such that a closed-form allocation rule can be derived and implement-
ed as a good allocation rule (no guarantee of optimality) into some algorithms. For convenience, we cate-
gorize particles into different subsets: 

 0
bestS : the set of particles which belong to bestS  and are not the personal best of any particles in 

the set  worstS ,  

 1
bestS : the set of particles which belong to bestS  and are the personal best of at least one parti-

cles in the set  worstS ,  

 i
worstS : the set of particles which belong to worstS  and treat particle i as its personal best. 

 
       Lemma 2 Under the assumptions: (i) the performance of each particle is normally distributed; (ii) 

b >> i >> j   for , i best j worstX S X S  ; (iii)    
10

max min
i bestk best

k i
X SX S

f X f X


 . The asymptotically optimal 

allocation rule for model (6), named as PSObw_OCBA, is 

(a) For  1
i bestX S  which satisfies 

         22

2 2
min

i
j worst

i jb i

X S
i i j j

f X f Xf X f X

   


  

              
22 2

2 2 2
: : : : jk i

k i j

b k b i i j
f X f P f X f X f X f X

 
   

  
 

(b) For  1
i bestX S  which satisfies 

         22

2 2
min

i
j worst

i jb i

X S
i i j j

f X f Xf X f X

   


  

              
2 2 22

2 4 2
: : : :

i
j worst

i j jk
k i j

X Sb k i j i j
f X f P f X f X f X f X

  
  




  

  

(c)                                                
0

22 2

2 2 2
i i

best best worst

ji i
b b

k S i S j Si i j

 
 

    

 
    

 
    

in which 0
k bestX S , 1

i bestX S  and i
j worstX S . 

3.3 Procedures to Implement PSOs_OCBA and PSObw_OCBA      

The implementation of PSOs_OCBA and PSObw_OCBA in Lemma 1 and Lemma 2 depends on the 
function of distribution. In practice, a sequential procedure is provided here to implement these allocation 
rules. After we get the new location of each particle by using equation (2), the procedure shown below 
will be applied to get the sample mean value of each particle and select the personal best and global best 
for the next iteration of updating in PSO algorithm. Each particle is initially simulated with 0n  replications 
at the first stage, and the additional replications are allocated to particles incrementally from   replica-
tions to be allocated at each subsequent stage until the simulation budget T  is exhausted.  
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Procedure. PSOs_OCBA and PSObw_OCBA Procedure 

Initialization 0l  ; Perform 0n  simulation replications for all m particles; Let 

1 2 0
l l l

mN N N n     and 0
lT mn . 

Loop while lT T  do 

    Updating Calculate sample means and sample variances of particles based on the 

simulation outputs; 

    Allocation Let 1l lT T     and calculate the new budget allocation 

 1 1 1 1
1 2, ,l l l l

mN N N N      based on PSOs_OCBA or PSObw_OCBA;  

    Simulation Perform additional  1max 0, l l
i iN N   replications for each particle i and 

let  1 1max ,l l l
i i iN N N  ;  1l l  . 

End of loop  

Stopping Select the personal best and global best based on particles’ sample mean 

values to update iP  and gP  in the PSO algorithms. 

 

4 NUMERICAL EXPERIMENT 

In the experiment, the performance of PSOs_OCBA and PSObw_OCBA are compared with equal alloca-
tion rule (PSOs_EA) and PSObw_EA.  

We use the following two functions to test these four allocation rules.  
(1) Sphere function 

  2

1

d

i
i

f X x


  ; 

(2) Printer function 

      22 2 2
1 1 10 1 1

1 1 1

20 sin sin sin log 1 2 3 cos 1
d d d

i i i i i i i i i
i i i

f X ix i x x x x i i x x x x   
  

            . 

The optimal solutions of these two functions are both (0,0) in two dimensional space and the minimal 
values are both zero. We set the feasible range of each dimension as [-50,50] and the variance of 210  is 
added to each function to simulate the stochastic environment. Our goal is to find the optimal solution for 
each function. For both the standard PSO and PSObw, we generate 20 particles at each iteration. The val-
ues of 1c  and 2c  in equation (1) are set to be 2.05 as the value recommended in Bratton and Kennedy 

(2007). The constrictive factor   is set to be an decreasing function of the iteration number, that is, 

   2

max_ 1 2

max_ 1 2 1 2 1 2 4 1 2

iter i

iter c c c c c c
  
 

      
 

in which max_iter is the maximal number of iterations. For the computing budget allocation, we set   
equal to 100 and 0n  equal to 10 in all numerical experiments. The total computing budget for each itera-
tion at PSO is 3000. 
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The performances of all allocation rules are shown in figure 1 and figure 2. From the figures, we can 
see both PSObw_OCBA and PSOs_OCBA perform better than PSObw_EA and PSOs_EA respectively. 
It can be concluded that integrating OCBA into PSO does support PSO to converge to the optimal solu-
tion faster in the above functions.  
 

 

Figure 1: Numerical result of Sphere function 

 

Figure 2: Numerical result of Printer function 
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5 CONCLUSIONS 

The PSO method has been widely used in global optimization problem, but the computing budget alloca-
tion problem for PSO under stochastic environment has been seldom studied. In this paper, we integrate 
the concept of OCBA into PSO. The conditions for the asymptotically optimal allocation rules are derived 
for the standard PSO and PSObw. Under some assumptions, we manage to get the allocation rules 
PSOs_OCBA and PSObw_OCBA in closed form and easily implementable. The numerical result shows 
PSOs_OCBA and PSObw_OCBA are better than PSOs_EA and PSObw_EA respectively. The integra-
tion of OCBA concept into PSO does improve the efficiency of PSO. 
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