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ABSTRACT 

This paper examines a multi-variety and small-batch production system with a tightly coupled cell. Using 
production data analysis, various random factors and constraints in a system with a tightly coupled bottle-
neck cell caused higher work-in-process (WIP) inventory levels and longer cycle times. Aiming to resolve 
these production problems, a two-dimensional distributed fuzzy controller with two correction factors has 
been developed. This heuristic approach is used to supervise the dynamic WIP inventory level changes 
and regulate the processing rate of each workstation with simple representations and linguistic IF-THEN 
rules. Based on consideration of certain major stochastic factors, a simulation model is explored with a 
control objective to maintain the WIP and cycle time at a low level. Simulation results show that this op-
timized control policy avoids system imbalances and eliminates bottlenecks. By comparison, the pro-
posed approach significantly improves the system’s performance and robustness. 

1 INTRODUCTION 

For modern environment-oriented manufacturing, many mechanical manufacturing enterprises have ap-
plied multi-variety and small-batch production systems with coupled cells, represented by robot agent sets 
to improve flexibility and precision. This production mode satisfies the diversified demands of consumers 
and rapid responses to market needs. In this advanced production system, work-in-process (WIP) buffers 
are set among workstations. They are used to balance production rhythm and guarantee production lines 
stability by avoiding “block”/“starvation” caused by many random events (Tao et al. 2008; Tsourveloudis 
2010; Luca 2011). However, a high WIP inventory level leads to the following serious problems: (1) hav-
ing too much liquid capital without any profit (Kenneth 1992); (2) increasing production cycle time and 
decreasing market responsiveness (Tsourveloudis et al. 2000); (3) requiring more space for layout; and 
(4) causing production imbalance. A control policy for reducing WIP, which is associated with shorter 
cycle times and higher productivity, is thus an important and urgent issue in modern production research. 

During the production process, changing and adjusting for various stochastic factors related to WIP 
complicate production management. Many scholars have recently researched these WIP control policy 
problems in unreliable production systems. Yang et al. presented a simulation optimization approach to 
resolve a constant work-in-process strategy problem (Yang et al. 2007; Jan and Anders 2009). Diamanti-
dis and Papadopoulos (2006) adopted a Markov chain model to effectively analyze WIP buffer capacity. 
Bai and Gershwin (1994a and 1994b) introduced a WIP control algorithm for scheduling single and mul-
tiple part-type production lines. Morteza et al. (2011) developed a new economic production quantity to 
consider WIP inventory and sell non-repairable imperfect products at a reduced price. Tamani et al. pre-
sented artificial intelligence-based methods for WIP control of realistic continuous manufacturing sys-
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tems (Ioannidis et al. 2004; Tamani et al. 2009; Tsourveloudis 2010). These studies mainly focused on 
WIP minimization or optimization by improving production scheduling or adjusting production capacity 
based on certain system structure hypotheses. However, research on multi-variety and small-batch dis-
crete production systems considering major production uncertainty factors and control policies for WIP 
by analyzing dynamic inventory level changes is rare, especially research identifying bottlenecks caused 
by tightly coupled cells to design a WIP control policy. 

Most current studies on production research have also performed minimal work on heuristic control 
policy because accurate analytical solutions are not easily attainable (Gershwin 2000). This paper thus 
developed a distributed heuristic fuzzy control method for a multi-variety and small-batch production sys-
tem with one tightly coupled cell. A corresponding simulation model applying this optimized control ap-
proach was constructed, which considers specific major random factors and system bottlenecks. The con-
trol objective involves keeping WIP inventory and cycle time at low levels while improving productivity 
by dynamically regulating the processing rate according to inventory-level changes of distributed WIP 
buffers between workstations. Finally, simulation results were presented along with comparisons and re-
marked to validate the effectiveness of the proposed approach. 

2 APPROACH 

2.1 Approach Review 

In a production system viewed as a network of workstations and buffers, analytical results have demon-
strated the superiority of surplus-based systems (Ioannidis et al. 2004). In surplus-based systems, control 
policy is determined based on how far cumulative or in-process production is ahead of or behind a certain 
hedging-point. The case study in this paper is also considered as a surplus-based system. The production 
rate for each workstation is adjusted by investigating whether the real-time WIP inventory level is higher 
or lower than a hedging point. An actual production system is a black-box system that is synthetically re-
stricted by various random factors. Accurately controlling these variable factors to achieve predetermined 
objectives is more difficult, and NP-hard problems are frequently encountered. A heuristic control policy 
has thus been gradually considered to achieve a satisfactory strategy that is not an exact solution (Gersh-
win 2000). Consequently, this paper develops a heuristic fuzzy control method. The demonstrated ad-
vantages of this control method are that it is computationally simple and can be applied in real-time and 
dynamic control/scheduling (Tsourveloudis et al. 2007). Applying this approach can avoid disturbances 
from bottlenecks caused by a tightly coupled cell and achieve lower WIP inventory levels, shorter cycle 
time and higher productivity. 

The fuzzy control method has been applied in production systems by Tamani et al., resulting in suc-
cessful heuristic fuzzy production control applications for WIP (Tsourveloudis et al. 2000; Tamani et al. 
2009; Tsourveloudis 2010; Tamani et al. 2011). Additionally, their research achievements and successful 
applications provide many suggestions and references. For easier analysis, their study cases are simulated 
by viewing the production system as a continuous system while only considering two random factors: 
machine failure/repair probability and demand change. However, the most realistic mechanical manufac-
turing system is a classic discrete system. This is especially apparent in a multi-variety and small-batch 
production system because various stochastic factors cause random WIP changes and reduce system per-
formance. A bottleneck in a system with high “block”/“starvation” frequency can also disturb the whole 
discrete system. Based on the studies of Tamani et al., we consider this study case as a discrete system 
with more uncertain factors, and provide a closer representation of the actual production system. This pa-
per also further improves the distributed fuzzy control method by increasing two correction factors, which 
can easily and quickly control the system’s performance, compared to the methods used by Tamani et al. 
(Tamani et al. 2009; Tamani et al. 2011). 
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2.2 Fuzzy Control Method 

An appropriate control policy for a production system can satisfy multiple conflicting criteria and adapt to 
dynamic and stochastic constraints. A fuzzy logic controller uses a mathematical structure and method to 
control the production operation with some simple control principle representations using IF-THEN rules. 
This paper applied a two-dimensional (double-input and simple-output) fuzzy logic controller with two 
correction factors. For on-site supervisors, the easiest way to adopt a control strategy that regulates pro-
cessing rates is to investigate the relative and absolute error values in WIP inventory levels for each dis-
tributed workstation in each check time interval. According to a surplus-based system, the relative error 
value is the difference between the actual WIP value and a hedging point. The absolute error value refers 
to the difference between successive WIP values. These relative and absolute error values constitute the 
double input for the fuzzy logic controller, and the processing rate is the simple output. For the two cor-
rection factors, the first factor is set to quickly eliminate errors when the actual WIP inventory levels 
drastically depart from the hedging point, and the second factor maintains stability when the actual WIP 
inventory level is near the hedging point. The other main inputs affecting the system output are dynamic 
and stochastic factors, which can cause discrete WIP level and system performance changes. Figure 1 
shows a two-dimensional fuzzy logic structure with two correction factors.  
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cE
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Processing Rate
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Figure 1: A double-input and simple-output fuzzy logic structure with two correction factors. 

For fuzzy logic controllers, a control policy is described using linguistic IF-THEN rules with appro-
priate mathematical meanings (Driankov 1994). For the double-input and simple-output fuzzy logic con-
troller in this work, the rule base for the control model contains rules with the following form: 

Theorem 1 IF E is X AND cE is Y, THEN R is Z 

Here, E and cE are the inputs’ relative and absolute WIP error values, respectively. R is the output or 
processing rate. These inputs and output are divided into five corresponding linguistic variations sets: 
X=Y=Z={PL (Positive Large), PS (Positive Small), O (Zero), NL (Negative Large), NS (Negative 
Small)}.  

The correction factors, α1 and α2, are real numbers between 0 and 1, with α1 < α2. The analytical ex-
pression for the fuzzy controller is corrected thus: 

Theorem 2  IF E  PL, PS , THEN R= -[α1×E+(1-α1) ×EC] 
          ELSEIF E {NL, NS}, THEN R= -[α2×E+(1-α2) ×EC] 

The outputs of the activated rules are aggregated to form the value of the overall control output with 
two correction factors, which are then defuzzified into a crisp number Z.  

In this paper, the processing time for each workstation is regulated based on a processing speed 
change rate ri, which is the fuzzy controller output and can be calculated by defuzzification. A VBA 
module in the simulation model operates this calculation, as illustrated in Section 4.  
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3 CASE STUDY 

This paper considers a case of a certain multi-variety and small-batch discrete production system with one 
tightly coupled cell. This system is located in an engine component manufacturing workshop of a Japa-
nese company. Considering the system characteristics and ensuring the current logical structure, Figure 2 
shows a simplified layout model for this production system. This production system mainly comprises 21 
workstations and three main part families (Part Type A, B, and C), which are processed by different pro-
duction lines that can use the same machines, according to their technology groups. Each part batch that 
enters the system includes three types of parts in random proportions. The WIP buffers are used to bal-
ance the machining capabilities, improve production stationarity, and meet the processing demands for 
the diversified part types. The processing capacity of each independent process in a workstation is han-
dled by a machining center that can be controlled by regulating processing time. According to the part 
family characteristics, each workstation completes the processing task for various parts in a correspond-
ing part family, either in whole or part. The processing time for each part on each workstation is different. 
Furthermore, there are three coupled cells: two cells are loose coupled cells with machines that act like 
conveyors and can do continuous processing; the remaining cell is a tightly coupled cell in the NC station, 
in which a robot agent is used to accurately transfer parts between two fine machines. The buffer space is 
limited to 12. In this cell, the milling machine is easily blocked until limited buffer space becomes availa-
ble. This prototype system is called the AS-IS model. 
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Figure 2: Multi-variety and small-batch production systems with one tightly coupled cell. 

For this AS-IS model, Table 1 provides a statistical analysis of the latest two months of production 
data. The largest average WIP inventory level is over 80, and the standard deviations (SDs) are large. The 
system’s ability to resist disturbance is affected by various random factors and is low. WIP control in this 
production system remains a serious issue. From Table 1, due to the large SD, the Takt time is unbalanced 
when comparing production lines. In the tightly coupled cell, the “block” frequency of the milling ma-
chine exceeds 5%, but the “starvation” frequency of the drilling machine is not zero and is instead ap-
proximately 0.7%. The SD of each downstream WIP level in this cell is larger than the upstream WIP. 
This suggests that this cell has a large effect on disturbances in the entire system and is the main bottle-
neck for the whole production system. 
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Table 1: Latest two-month actual production statistics. 

Production Line 1
Production Line 2
Production Line 3

Tightly Coupled CellAverage Takt
Time Unit/min

Standard
Deviations

Block Frequency
of Milling 5.88 %

Starvation Frequency
of Drilling 0.69 %

Average WIP Level
Unit/Quantity

Standard
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516.06
605.62
666.62

69.12
87.85

47.3314.89 1.72
10.62 2.04
7.43 2.09
b1
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Based on data from these two months, the cycle time for each part family batch obeys a normal distri-
bution (X N (μ=5220, σ2=2700)). Approximately 19.31% of the batches are completed within two days, 
while half of the batches are completed in three days or more. Most orders thus cannot meet the delivery 
time of three days. Figure 3 presents the details for this distribution. 
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Figure 3: Probability distribution of cycle time for the AS-IS model. 

Analysis and data from the AS-IS model suggest that the WIP inventory level of each workstation is 
high, the cycle time is long, and the tightly coupled cell seriously restricts productivity. 

4 SIMULATION 

4.1 Simulation Submodels 

To resolve current production problems, a simulation model using an optimized fuzzy control method is 
developed, called the TO-BE model. To achieve the control objective and keep WIP inventory and cycle 
time at low levels, the simulation model comprises five sub-models, shown in Figure 4.  
 

 
Figure 4: Simulation Submodels. 
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The Parts Order Arriving sub-model is designed to simulate part family orders arriving, randomly 
create part batch quantities, and determine the production line. The Parts Orders Processing sub-model is 
designed to process parts on the corresponding workstations. The Parts Order Leaving sub-model is de-
signed to ensure that all parts in a batch are completed and develop statistics for the parts leaving. The 
Fuzzy Control sub-model is the core for this simulation. It is designed to calculate changing WIP values 
from the Parts Orders Processing sub-model and make a control policy to regulate processing time for 
each workstation using a distributed fuzzy control methodology. The Order Cycle Time Calculation sub-
model creates WIP change statistics for workstation and processing cycle time for each part order. 

4.2 Optimized Approach A Distributed Fuzzy Control Controller 

The Fuzzy Control sub-model embeds and uses a two-dimensional fuzzy controller with two correction 
factors to make an optimized control policy to regulate processing time for each distributed workstation. 
Because of system’s stochastic changes caused by various random factors, the inventory level changes at 
workstations differ from one another over time. According to the distributed workstation locations in a 
real production system, a corresponding distributed fuzzy controller developed for each workstation sim-
plifies making the corresponding control policy. 

As Figure 5 shows, for each distributed workstation in the Parts Orders Processing sub-model, its rel-
ative and absolute WIP error values (e and ce) are collected and input into the corresponding fuzzy con-
troller in the Fuzzy Control sub-model. In this controller, the output r is computed using fuzzy processing, 
parameter correction, fuzzy rules selection, fuzzy inference, and defuzzification. By consulting this output, 
a simulation instruction based on an optimized control policy is made to regulate the processing time of a 
corresponding workstation.  
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Figure 5: A distributed fuzzy controller. 

In the Fuzzy Control sub-model, a VBA module operates these calculation steps during the simulation 
running at each check time interval. After the optimized fuzzy calculation, a control instruction is sent to 
the Parts Orders Processing sub-model. The process time for the corresponding workstation is regulated 
by pi. The main steps in this optimized approach are designed as follows. 

[Step 1] Perform Fuzzification and Define Fuzzy Sets Universe 

The relative and absolute WIP error values (e and ce) of each distributed workstation are input into 
the Fuzzy Control sub-model. The fuzzy controller converts inputs into fuzzy sets, and a quantizer k is 
used with ke= kce=1/5. After fuzzification, for e, three cases exist. 

(1) If e×ke  X, and -4 e×ke 4, it should be rounded off. 
(2) If e×ke  X, and e×ke≤-4, it should be quantized as -4. 
(3) If e×ke  X, and e×ke≥4, it should be 4.  
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[Step 2] Design Linguistic Fuzzy Sets and Fuzzy Rules 

This paper denotes the linguistic fuzzy sets as X=Y={PL, PS, O, NL, NS}, α1=1/2, α2=3/4. Using 
Theorems 1-2, the membership function and variable assignment of inputs and the output are obtained. 
Membership function is a generalization of each corrected input in classical sets and represents the attrib-
ution ratio as a fuzzy set for input. After fuzzification, fuzzy rules should be made for the control policy. 
Figure 6 shows the results of this step.  
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Figure 6: Membership function and fuzzy control rules. 

[Step 3] Defuzzification 

The corrected inputs can be represented as ei and cei, with membership functions µX
*(ei) and µX

*(cei), 
respectively. The membership functions of the conjunction of these two inputs, for AND=min, is: 

 � � � � � �* * *,AND i i X i Y ie ce e ce� � �� �
 

(1) 

The following defuzzification formula gives the processing rate ri
*, which is the control degree after 

each WIP checking time interval: 

 
� �
� �

*

*
i Z i

i
Z i

r r
r

r
�
�

� �
�  

(2) 

[Step 4] Calculate the Processing Time 

Based on step 3, after setting quantizer kr, the processing time pi for workstation i can be designed as 
the following function and regulated by pi: 

 � �1i d i rp p r k� � 	 �   (3) 

where, pd means the processing time created by the normal processing time distribution. After Step 3, 
ri has positive and negative values. (ri×kr) denotes the regulation value for processing time pd. The pro-
cess time for workstation i is regulated by (1- ri×kr) of the original processing time.  

4.3 Simulation Control Logic 

For the entire simulation system, dynamic testing and control of changing WIP inventory levels is the 
primary objective for determining a solution. However, upstream and downstream WIP buffers exist for 
each workstation, and the controller must select the first buffer to determine. As analyzed, the tightly 
coupled cell in this production system is the main bottleneck. According to the theory of constraints, this 
cell is viewed as the “drum” for the whole production system. The “pull” mode is thus used for the pro-
duction line upstream of the “drum”, and the “Push” mode is applied for the production line downstream 
of the “drum”. Each upstream workstation of the NC station should check the downstream WIP buffer, 
and each downstream workstation of the NC station should check the upstream WIP buffer. This paper 
integrates the “Pull”/“Push” mode and the fuzzy controller into a simulation model for controlling WIP. 
Figure 7 shows the simulation control logic.  
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Figure 7: Simulation control logic using the optimized fuzzy control approach. 

When a workstation is in the upstream line of the NC station, its downstream WIP change value is in-
put into the corresponding distributed fuzzy controller for calculation. If the relative and absolute WIP er-
ror values are both low, the fuzzy controller makes the control policy that the productivity of this work-
station should be increased. The processing time is thus reduced by simulation instruction. By doing this, 
the “starvation” frequency of the milling machine is reduced, and the production lines are steadier and 
more balanced. The NC station “pulls” the upstream line, and production performance is optimized. For a 
workstation downstream of the NC station, based on the same WIP value, the control policy made by the 
fuzzy controller is contrary to the upstream NC station line. Different outputs are made in the VBA mod-
ule by distinguishing workstation location and converting the positive/negative output ri values.  

4.4 Running the Simulation 

This paper uses the Arena simulation platform to build the simulation model. To ensure simulation ran-
domness similar to the AS-IS model with the various stochastic factors described in Figure 1, random dis-
tribution data and main parameters are set, as shown in Table 2.  

Table 2: Simulation data and parameters. 

Preprocessing (W1)
Cutting Station (W2)

3000t Impact Molding (W5)

Sand Blasting (W13)
Face Cutting (W14)

Heat Treatment (W8)
Heat Treatment (W9)

NC Station-Milling (W15)

Turning 1 (W16)
Turning 2 (W17)

Fine Machining 1 (W18)
Fine Machining 2 (W19)

Checking (W21)
Marking (W22)

Heating 1 (W3)
Heating 2 (W4)

1500t Impact Molding (W6)
3t Impact Molding (W7)

NC Station-Drilling (W15)

Production Line 1 Production Line 2 Production Line 3

TRIA(3.8,4,4.2)
TRIA(3.9,4.1,4.3)

TRIA(9.1,11.6,14.1)

TRIA(4.1,4.3,4.5)
TRIA(4.3,4.5,4.7)

TRIA(9.6,12.6,15.6)

TRIA(11.7,13.2,14.7)

TRIA(3.1,4.3,4.5)
TRIA(4.3,4.5,4.7)

TRIA(2.8,3,3.2)
TRIA(2.9,3.1,3.3)

TRIA(7.3,9.3,11.3)

TRIA(3.1,3.3,3.5)
TRIA(3.1,3.3,3.5)

TRIA(4.6,4.8,5)

TRIA(4.8,5,5.2)
TRIA(3.8,4,4.2)

TRIA(3.1,3.5,3.7)

TRIA(1.8,2,2.2)
TRIA(1.9,2.1,2.3)

TRIA(6,8,10)
TRIA(2.1,2.3,2.5)
TRIA(2.1,2.3,2.5)

TRIA(4.3,4.5,4.7)

TRIA(4.3,4.5,4.7)
TRIA(2.8,3,3.2)

TRIA(3.1,3.3,3.5)
Tightly Coupled Cell

TRIA(4.3,4.5,4.7)
TRIA(4.1,4.3,4.5) TRIA(3.1,3.3,3.5) TRIA(2.1,2.3,2.5)

TRIA(2.3,2.5,2.7)

Cold Treatment (W11)
Cold Treatment (W12)

Heat Treatment (W10)

Each Parts Batch Quantity
Unit/Quantiy

Parts Type Proportion
Parts Batch Arriving Time

Unit/min

Parts Family Batch Data

Run Speed
Loose Coupled Cell

TRIA(360,420,480)

DISC(0.27,1,0.61,2,1)

AINT(TRIA(124,138,152))

0.72 m/min
0.90 m/min
0.75 m/min
0.90 m/min
0.90 m/min
0.90 m/min
0.90 m/min

0.9 m
0.6 m
0.9 m
0.6 m
0.6 m
0.9 m
0.6 m

Unit Size Length
7.2 m
7.2 m
4.5 m
5.4 m
5.4 m
3.6 m
5.4 m

Parts Processing Time
Unit/min

Machine Failure
Up Time Down Time

EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(30)
EXPO(720) EXPO(15)
EXPO(720) EXPO(15)

EXPO(1200) EXPO(20)
EXPO(1200) EXPO(20)

Hedging-Point s
ke=kce 1/5

30

kr 1/10

T
Fuzzy Control Parameters

α1
α2

1/2
3/4TRIA(3.3,3.5,3.7)

24 Hours
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The simulation duration is set to two months to match the AS-IS model. To avoid the impact of data 
deviation on simulation system performance due to the initial status, a steady-state simulation is appropri-
ate for this study. According to the statistical analysis for output inventory level data based on the original 
simulation model, the effects of the artificial initial conditions have worn off after 5000 minutes. The 
warm-up period is thus selected as 5000 minutes. Twenty replications are performed to obtain good statis-
tical analysis features and a narrower 95% prediction interval. To reduce output variance affected by ran-
dom number generation, a common random number method is applied so that all simulations running in 
the same input have the same random situation.  

4.5 Simulation Results 

In this section, the average WIP inventory level of each distributed workstation and cycle time are dy-
namically calculated with the TO-BE model. Simulation results show that the largest WIP average inven-
tory level for each workstation is under 60. Figure 8 shows that the SD is also largely reduced. Although 
the WIP for the preprocessing workstation is increased by 17 over the AS-IS model, the SD is reduced, 
which means system stability is effectively controlled. 
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Figure 8: Statistical data of the WIP inventory for the TO-BE Model by simulation. 

Figure 9 provides the cycle time for the TO-BE Model, which follows a normal distribution (X N 
(μ=558, σ2=87)). Approximately 97.81% of the batch parts can be completed before two days, and 100% 
of the batches are completed before three days. The delivery date is thus reduced and met. 
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Figure 9: Probability distribution of cycle time for the TO-BE model. 
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4.6 Comparison and Remarks 

Table 3 compares the AS-IS and TO-BE models. In the TO-BE model, the average WIP inventory level 
of each production line has been reduced by over 60%. The width of the 95% confidence interval and the 
SD for the TO-BE model are narrower and smaller than those for the AS-IS model, respectively. The cy-
cle time distribution SD for the TO-BE model is considerably smaller than that for the AS-IS model. 
These results show that the TO-BE model has higher stability, a stronger capacity for resisting disturb-
ance, and greater flexibility than the AS-IS model. Furthermore, the cycle time of the TO-BE model is 
shortened and the delivery day requirement is satisfied for almost all part batches. Conversely, for the 
bottleneck tightly coupled cell in the TO-BE model, simulation results show that the “block” frequency 
for milling is below 1%, and the “starvation” frequency for drilling is approximately 0.1%; effects due to 
the bottleneck are thus essentially eliminated.  

Table 3: Comparison of the AS-IS and TO-BE models. 

Production Line 1 WIP
Production Line 2 WIP
Production Line 3 WIP

Cycle Time
Unit/min

AS-IS Model TO-BE Model

16.76
26.59
29.26

6.3
7.34
8.41

Average Half Width

516.06
605.62
666.62

202.16
202.81
232.01

X N (μ=5220, σ2=2700) X N (μ=2100, σ2=387)

60.83 %

Decline Ratio %
(Unit/Quantity) Standard

Deviations Average Half Width Standard
Deviations

69.12
87.85

47.33
26.70
28.05

18.11
66.51 %
65.20 %

59.61 %

Average Half Width Standard
Deviations

62.41 %
72.40 %
71.26 %

/

61.74 %
61.37 %
68.07 %

85.67 %

Tightly Coupled Cell
Block

Frequency

5.88 %

Starvation
Frequency

0.69 %

Block
Frequency

Starvation
Frequency

0.71 % 0.103 %

Block
Frequency

Starvation
Frequency

87.93 % 85.07 %

Decline Ratio
%

 
 

The TO-BE model using the optimized approach is developed based on the major parameters in Table 
2. According to Figure 1, stochastic factors affect production system stability and the WIP changes. In 
this surplus-based system, the hedging point s, check time interval T, quantizer kr, and correction factors 
α1/α2, can greatly disturb the production system. The setting of s thus determines the descent speed of the 
WIP inventory level, system balance, and selection of other fuzzy control variables.  

Table 4: Robustness analysis of WIP and cycle time with variations in s. 
Production Line 1

Average WIP
Production Line 2

Average WIP
Production Line 3

Average WIP
Average Cycle Time

202.16
206.21 195.69 224.39

2100
2065
2071

30
35

s

222.16 194.92 222.82 2104
40
45
50

202.81 232.01

232.26 197.33 225.56 2147

213.09 193.41 221.74

(Unit/Quantity)
347.79

299.55 364.31 413.61

3885

3319
2331

5

15

204.68 218.59 249.70 2195
20
25

438.73 500.56

211.37 238.40 271.86

317.68 354410 394.47 450.23

55 242.01 229.51 295.41 2195

(Unit/min)μ σ2

387
395
412
443
479

1623

1245
527
432

1431

513

%0 %0 %0 %0 %0
%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

%
%
%
%
%

1.25
4.56

48.17
57.14
72.03

19.71
14.89
9.89
5.41
2.00

7.78
17.54
79.68
94.50

126.33

13.17
2.70
3.89
4.63
3.51

7.62
17.18
78.27
94.06

115.75

27.33
2.78
3.96
4.43
3.28

4.52
11.00
58.05
68.76
85.00

4.52
2.24
1.90
1.38
1.67

11.63
36.18

221.71
269.77
319.38

32.56
23.77
14.47
6.46
2.07

MIN
MIN

MINMIN

MIN

 
 

By running several different simulation scenarios, Table 4 shows the average WIP inventory values of 
each production line and cycle time with variations in s. When s is lower than 15, resulting from a narrow 
span of WIP control, the absolute error value ce is also reduced and the correction factors α2 does not 
work properly. This causes a higher WIP level that cannot be reduced quickly, and the results are not sat-
isfactory and largely depart from s=30. When s is larger than 45, conversely, resulting from a wider span 
of WIP control, the relative error value e is small and the correction factor α1 does not work properly. This 
results in WIP levels close to s not being reduced while higher WIP levels can be reduced quickly; these 
results are thus slightly higher than s=30. The results for s=40 are generally better than those for s=30. 
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For changes in s ranging from 25 to 45, the results maintain their stability. This work shows that the op-
timized model (TO-BE model) has higher robustness and stability levels with a heightened randomicity 
tolerance capability for stochastic factors. Similarly, other major factors affecting the system reduce sen-
sitivity to control effects. The optimized fuzzy control method thus performs strongly. 

5 CONCLUSIONS 

This paper, aiming to resolve problems in a multi-variety and small-batch production system, has devel-
oped a distributed fuzzy controller. It is used to maintain the WIP inventory and cycle times at a low level 
by checking the inventory levels of distributed WIP buffers and dynamically adjusting the processing rate 
of each workstation. According to the surplus-based system, using correction factors makes the dynamic 
real-time WIP inventory level changes close to the hedging point and maintains system stability. The ad-
vantage of this two-dimensional fuzzy controller is that it can provide a supervisor group with a control 
policy based on simple representations and linguistic IF-THEN rules. A VBA module operates all fuzzy 
calculations for each distributed workstation in the simulation model. By analyzing a system bottleneck 
tightly coupled cell, a proposed optimized method, which integrates a “Pull”/“Push” mode and fuzzy 
method, is embedded into the discrete simulation model by fixing specific major stochastic factors. An 
AS-IS model joined with a TO-BE model provides remarkable control ability for WIP and enhanced cy-
cle time. Noticeable performance improvements and robustness are achieved with this model. This fuzzy 
control policy thus represents a successful approach to reduce WIP and shorten cycle time for this modern 
production system. 

Future studies will consider a discrete production system with multiple tightly coupled cells, in which 
the WIP buffer is a shared setting for multi-workstations and the capacity is changeable within certain 
limits. More stochastic factors will be changed and system flexibility with meeting multi-production lines 
will also be studied. 
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