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ABSTRACT

We present a general control variate method for Monte Carlo estimation of the expectations of the functionals
of Lévy processes. It is based on fast numerical inversion of the cumulative distribution functions and
exploits the strong correlation between the increments of the original process and Brownian motion. In
the suggested control variate framework, a similar functional of Brownian motion is used as a main
control variate while some other characteristics of the paths are used as auxiliary control variates. The
method is applicable for all types of Lévy processes for which the probability density function of the
increments is available in closed form. We present the applications of our general approach for simulation
of path dependent options. Numerical experiments confirm that our method achieves considerable variance
reduction.

1 INTRODUCTION

A Lévy process is a general continuous time stochastic process with stationary and independent increments.
Lévy processes gain an increasing importance in the mathematical finance literature due to the well known
drawbacks of the classical Black Scholes geometric Brownian motion (GBM) model. Empirical evidence
shows that asset returns follow clearly non normal distributions having higher kurtosis. Increments of a
Lévy process can follow any type of distribution as long as it is infinitely divisible. For an overview of
different types of Lévy processes and their application to option pricing, see Schoutens (2003) or Cont and
Tankov (2003).

Let {L(t), t ≥ 0} be a Lévy process starting at zero L(0) = 0 and q be a function of the sample path of
L(t) on a discrete time grid 0 = t0 < t1 < t2 < ... < td with equidistant time points ti = i∆t. The unknown
quantity that we are trying to estimate is the expectation

E [q(L(t1), . . . ,L(td))]. (1)

For high dimensions and complicated functions, it is often not possible to find the exact value with a closed
form solution. Such situations commonly arise e.g. when pricing options with path dependent payoffs.

Monte Carlo simulation is one of the widely used techniques for estimating the expectations of high
dimensional problems. Compared to other methods, the availability of an error bound and the ease of
implementation and parallelization make it attractive. However, an important disadvantage is that it is
comparatively slow when precise results are required. Variance reduction techniques thus play an important
role to increase the speed or precision of the simulation. Glasserman (2004) presents applications of
different variance reduction methods for financial problems. As noted there, to design a successful variance
reduction method, one has to exploit the specific nature of the problem. It is therefore quite difficult to
design a general variance reduction method.

In the literature, there exist studies proposing variance reduction methods that work well for some
special Lévy processes. However, there seem to exist only a limited number of studies proposing variance
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reduction methods, which are generally applicable to Lévy processes and different problem types. Dingeç
and Hörmann (2012) developed a general control variate (CV) method for option pricing under Lévy
processes. It is based on the idea of using the CV of the corresponding GBM option and reaches strong
correlation by using common random numbers for the path simulation. In this paper, we extend the idea
introduced by Dingeç and Hörmann (2012) to a larger class of problems and suggest to use some path
characteristics as additional CVs together with a main CV. This results often in higher variance reduction
due to the use of multiple CVs. We present the application of the new CV framework to path dependent
options, which are contingent on the average and the maximum stock prices.

In Section 2, we formulate and explain the basic principles of the general CV framework. Section 3
presents our general CV candidates with their expectation formulas. We consider the application to path
dependent options in Section 4, whereas Section 5 contains our conclusions.

2 GENERAL CV FRAMEWORK

When using multiple CVs the simulation output takes the form

Y = q(L)− cT (V −E [V ]),

where V = (V1, . . . ,Vm)
T and c = (c1, . . . ,cm)

T are the CV vector and the CV coefficient vector, respectively
and m denotes the number of CVs used.

The optimal CV coefficients c∗, minimizing the variance of Y are the coefficients of the classical linear
regression model with response variable q(L) and covariates V . These least square estimates can be obtained
by using a pilot run with a smaller sample size or by using the full sample of the simulation. The former
approach leads to an unbiased estimate whereas the latter has a bias of order O(1/n) with respect to the
sample size n, which is negligible unless n is small. When the optimal coefficient c∗ is used, the variance
reduction factor of the control variate method with respect to the naive simulation is V RF = 1/(1−R2), a
function sharply increasing with respect to the R2 value of the regression model.

Let {W (t), t ≥ 0} be a Brownian motion (BM) with parameters µ and σ > 0,

W (t) = µ t +σ B(t),

where B(t) is a standard Brownian motion. Assume that increments of {W (t), t ≥ 0} are correlated with
that of the original Lévy process {L(t), t ≥ 0} with a comonotonic copula. Also, assume that there exist a
functional ζ of W , which is equal or similar to q and there exist a solution for E [ζ (W )]. The idea is to use
ζ (W ) as main CV for q(L). The comonotonicity between the increments and the similarity between ζ ()
and q() should imply high correlation and thus lead to large variance reduction. One technical difficulty
is the simulation of the comonotonic copula. It requires inversion of the cumulative distribution functions
(CDFs) of the increments of both processes for a common uniform random number. However, for the Lévy
processes considered in the literature, at most the probability density function (PDF) of the increments is
available in closed form while the CDF and the inverse CDF are not tractable. So, to use inversion we
need the fast numerical inversion algorithm, see Derflinger et al. (2010), that requires as input only the
PDF of the distribution.

When ζ (W ) is used as single CV, the remaining variance is due to the difference between the two
functions, ζ () and q(), and the two processes L and W . In practice, these functions are contingent on some
characteristics of the paths such as average, maximum and terminal value. By using those characteristics
as additional CVs we can further reduce the variance as they carry some information about the difference
between ζ () and q(). The only requirement is the availability of their expectations. Moreover, in some
cases, it is possible to obtain significant variance reduction by using only those characteristics as CVs
without using ζ (W ). Let γ(W,L) be a function of the paths of W and L that evaluates the set of path
characteristics. We call these additional CVs ’general CVs’ since they are applicable to any q(), whereas
ζ (W ) is called ’special CV’ as it is designed considering the special properties of q().
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Algorithm 1 presents the general CV method. In the algorithm, the CV coefficient vector is denoted
c = (c1,c2) where c1 denotes the single coefficient of ζ (W ) and c2 the vector of coefficients necessary for
γ(W,L). The increments of W are generated by inversion of the standard normal CDF Φ():

F−1
BM(U) = µ ∆t +σ

√
∆t Φ

−1(U). (2)

Here µ and σ are the unspecified parameters of the BM model. Our choice is to select them as µ = E [L(1)]
and σ =

√
Var(L(1)). This selection leads to close to maximal correlation in our experiments.

Algorithm 1 The General CV Method
Require: Sample size n, simulation output function q, time interval ∆t, number of time points d, quantile

function of the Lévy process increments F−1
L , special CV function ζ , general CV function γ , parameters

of BM {µ,σ}, CV coefficients c.
Ensure: An estimate of E [q(L)] and its 1−α confidence interval.

1: for i = 1 to n do
2: Generate independent uniform variates U j ∼U(0,1), j = 1, . . . ,d.
3: Set X j← F−1

L (U j) and Z j← F−1
BM(U j), j = 1, . . . ,d, see (2).

4: Set L(t j)← L(t j−1)+X j and W (t j)←W (t j−1)+Z j, j = 1, . . . ,d.
5: Set Yi← q(L)− c1 (ζ (W )−E [ζ (W )])− cT

2 (γ(W,L)−E[γ(W,L)]).
6: end for
7: Compute the sample mean Ȳ and the sample standard deviation s of Yi’s.
8: return Ȳ and the error bound Φ−1(1−α/2) s/

√
n, where Φ−1 denotes the quantile of the standard

normal distribution.

3 POSSIBLE CONTROL VARIATES

In Algorithm 1, the user has to provide the CV functions ζ () and γ(). The selection of ζ () of course
depends on the problem type, as it is tailored to q(). However, the general CVs can be freely chosen
from a large pool or basket of CV candidates. For the selection of the successful CVs from that basket,
we can try to use our theoretical knowledge on the problem and guess which CV will be successful. In
this paper, we propose an alternative approach, which is more automatic and universally applicable to all
problems. We make a stepwise backward regression to detect the useful CVs in a pilot simulation run.
First we start with a full regression model where all possible CVs in the basket are used. The CV with the
smallest absolute t statistic is removed from the model if its value is smaller than 5. After removal, the
t statistics of the other CVs are recomputed for the new regression model. These two steps are repeated
till all absolute t values are above 5. The CV candidates, which remain in the regression model, are used
for the main simulation. Instead of using only the significant CVs, one can prefer to use all CVs in the
basket. However, simulation or evaluation of the expectation of some CVs can be computationally quite
expensive. Therefore it is sensible to use backward regression to automatically eliminate the CVs that are
not useful.

A single regression with k covariates requires O(np k2) operations, where np denotes the sample size
of the pilot simulation. In the worst case, when all CVs in the basket are useless, the complexity of the
backward regression becomes O(np k3). As we select np typically much smaller than n the regression round
of the algorithm will not cause a substantial increase in the computational time unless k is larger.

Table 1 shows our basket of general CVs that contains the path characteristics of which the expectation
is available in closed form. This list is not exhaustive and depends on our knowledge of the closed form
solutions of the expectations. One can enlarge this basket by adding new CVs with new expectation formulas.
We decided not to include CVs that require numerical methods to evaluate their expectations. The details
of the expectation formulas of the CVs are given in Section 3.1. Some CVs have simpler expectation
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formulas if the processes exp(−r t +L(t)) and exp(−r t +W (t)) with some r > 0 are martingales. We also
give these simpler formulas in Table 1, as they are important for option pricing.

Table 1: A basket of general CVs. Expectation-M: simpler expectation formulas for the martingale case.

Label CV Expectation Expectation-M
CVL1 L(td) d E [X ]
CVL2 exp(L(td)) M∆t(1)d er T

CVL3 1
d ∑

d
i=1 L(ti) E [X ](d +1)/2

CVL4 exp( 1
d ∑

d
i=1 L(ti)) ∏

d
i=1 M∆t(i/d)

CVL5 1
d ∑

d
i=1 exp(L(ti)) 1

d ∑
d
i=1 M∆t(1)i 1

d ∑
d
i=1 er i∆t

CVW1 W (td) d µ ∆t
CVW2 exp(W (td)) e(d(µ∆t+σ2 ∆t/2)) er T

CVW3 1
d ∑

d
i=1W (ti) µ ∆t(d +1)/2

CVW4 exp( 1
d ∑

d
i=1W (ti)) exp(µ̃ + σ̃2/2)

CVW5 1
d ∑

d
i=1 exp(W (ti)) 1

d ∑
d
i=1 e(i(µ∆t+σ2 ∆t/2)) 1

d ∑
d
i=1 er i∆t

CVW6 max0≤i≤d W (ti) see (5)
CVW7 exp(max0≤i≤d W (ti)) xd in (6)
CVW8 sup0≤u≤td W (u) see (8)
CVW9 exp(sup0≤u≤td W (u)) see (9)

In Table 1, CVLs are based on the path characteristics of the original Levy process, while CVWs are
based on the auxiliary BM. Indeed CVLs are internal CVs whereas CVWs are external. The internal CVs
do not require any additional effort but often yield moderate variance reduction. However, when CVLs,
CVWs and the special CV ζ (W ) are used together, they often result in large variance reductions. CVL1-5
and CVW1-5 depend on the terminal value and arithmetic averages of the paths and their exponentials,
while CVW6-9 depend on the maximum of the discrete path and the supremum of the continuous path of
W (t). The counterparts of CVW6-9 for L(t) are not available in the CV basket as closed form solutions
of their expectations only exist for the special case of Brownian motion.

Instead of the averages one could try to use all L(ti)’s and eL(ti)’s as CVs. To keep the total number
of CVs moderate we decided not to include them in our basket. It is also possible to add some other CVs
depending on the averages of the squared values of L(ti) as their expectations are also available thanks to
the variance formulas of the distribution of increments of the Lévy processes. However, their contribution
is expected to be insignificant as the CVs depending on the exponentials already convey much of the
information of the CVs depending on the squared values.

CVL1-5 and CVW1-7 are all easy to simulate as they are simple functions of the paths. However,
CVW8 and CVW9 can not be calculated directly from the generated paths, as they are random functions
of the discrete path. Note that to simulate sup0≤u≤td W (u) we have to generate the maxima of d Brownian
bridges. The maximum of these d local maxima gives us sup0≤u≤td W (u). That is

sup
0≤u≤td

W (u) = max
1≤i≤d

(
sup

ti−1≤u≤ti
W (u)

)
.

To generate these local maxima, we need the cumulative distribution function of the maximum of a Brownian
bridge. Fortunately, it has a simple structure, and random variate generation from that CDF can be done
easily by using the inverse transformation method. The conditional CDF of the supremum of W (t) is well
known see, e.g., Shreve (2004), Glasserman (2004) and it is given by

P
(

sup
0≤u≤t

W (u)≤ x
∣∣∣∣W (t) = y

)
= 1− exp

(
−2x(x− y)

σ2t

)
, (3)
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where x≥max(y,0). From that CDF, the maximum of the Brownian bridge can be generated by the inversion
method as it was e.g. suggested in Beaglehole, Dybvig, and Zhou (1997) to decrease the simulation bias
under a general diffusion process:

x = 0.5
(

y+
√

y2−2σ2 t logU
)
, (4)

where U ∼U(0,1) is a uniform random number.
Generating sup0≤u≤td W (u) for a given discrete path W (t1), . . . ,W (td) introduces some extra randomness

to the estimator, and as a direct consequence, increases the variance, since the sigma field has been expanded
from σ(W (t1), . . . ,W (td)) to σ(W (t) : 0 ≤ t ≤ td). As mentioned in Dingeç and Hörmann (2011), it is
possible to use the conditional expectation of the maximum E [sup0≤u≤td W (u)|W (t1), . . . ,W (td)] as CV to
get a higher variance reduction. Our experiments with that idea showed that, as numerical integration is
necessary to evaluate that expectation, the conditional expectation approach increases the computation time
more than the variance reduction. We therefore do not suggest to use it.

Note that the CVs in the basket are strongly correlated with each other. This situation, which is called
multicollinearity in the statistical literature, can be a problem for the accuracy of the estimates of the t
statistics when the sample size is too small, as it inflates the standard errors of the estimates of the regression
coefficients. So, for the pilot run, it is important to select a sample size which is not too small. Our
numerical experience shows that the sample size of n = 104 is generally sufficient to get relatively stable
estimates of the t values.

3.1 Expectation Formulas

3.1.1 Expectations of CVLs

The expectations of CVL1 and CVL3, L(td) and 1
d ∑

d
i=1 L(ti), can be calculated by using the expectation

formulas of the increment distribution of the corresponding Lévy process (see e.g., Table 2). For CVL2,
CVL4 and CVL5, we need the moment generating function (MGF) of the increment distribution (see e.g.,
Table 2). Let Xi denote the increment of L over time interval [ti−1, ti]. As the time lengths are equal to
∆t, Xi’s are iid copies of a random variate X . Expectations of CVL1 and CVL3 are given by d E [X ] and
E [X ](d +1)/2, respectively.

Let M∆t(u) denote the MGF of the increment for the time length ∆t, that is M∆t(u) = E [euX ]. Then

E [exp(L(ti))] = E

[
exp

(
i

∑
j=1

X j

)]
= M∆t(1)i.

The expectation of CVL2 is simply M∆t(1)d . Also, the expectation of CVL5 is 1
d ∑

d
i=1 M∆t(1)i. The

expectation of CVL4 is given by

E

[
exp

(
1
d

d

∑
i=1

L(ti)

)]
=

d

∏
i=1

M∆t(i/d),

since
1
d

d

∑
i=1

L(ti) =
1
d

d

∑
i=1

(d− i+1)Xi.

3.1.2 Expectations of CVWs

Let Zi denote the increment of W over time interval [ti−1, ti]. Then Zi’s are iid copies of Z ∼ N(µ ∆t,σ2 ∆t).
The expectations of CVW1 and CVW3 are given by E [W (td)] = d µ ∆t and

E

[
1
d

d

∑
i=1

W (ti)

]
=

µ ∆t
d

d

∑
i=1

i =
µ ∆t(d +1)

2
,
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respectively. By using the MGF of the normal distribution, we obtain the expectations of CVW2 and
CVW5 as

E [exp(W (td))] = exp(d(µ∆t +σ
2

∆t/2))

and

E

[
1
d

d

∑
i=1

exp(W (ti))

]
=

1
d

d

∑
i=1

exp(i(µ∆t +σ
2

∆t/2)).

The expectation of CVW4 is obtained by using the fact that any linear combination of independent normal
variates is again normal. Note that

1
d

d

∑
i=1

W (ti) =
1
d

d

∑
i=1

(d− i+1)Zi

is equal in distribution to a normal variate with mean

µ̃ = E

[
1
d

d

∑
i=1

iZi

]
=

µ ∆t(d +1)
2

and variance

σ̃
2 = Var

(
1
d

d

∑
i=1

iZi

)
=

σ2 ∆t
d2

d

∑
i=1

i2 =
σ2 ∆t (d +1)(2d +1)

6d
.

Hence we get

E

[
exp

(
1
d

d

∑
i=1

W (ti)

)]
= exp(µ̃ + σ̃

2/2).

To find the expectation of CVW6, we use the fact that {W (ti), i ≥ 1} is a random walk with iid
increments. By Spitzer’s identity (Spitzer 1956) we get

E
[

max
0≤i≤d

W (ti)
]
=

d

∑
j=1

1
j
E
[
W (t j)

+
]
, (5)

where
E
[
W (t)+

]
= µ t Φ(µ

√
t/σ)+σ

√
t φ(−µ

√
t/σ)

and Φ() and φ() denote the CDF and the PDF of the standard normal distribution.
To find the expectation of CVW7, we use the recursion of Öhgren (2001). Let {X j, j≥ 1} be iid random

variables and X0 = 0. Define Yk = ∑
k
j=0 X j and Mk = max0≤ j≤k Yj. Also, let xk = E [eMk ] and ak = E [eY+

k ].
By using Spitzer’s formula, Öhgren (2001) proves that

xk =
1
k

k−1

∑
j=0

ak− j x j. (6)

In our case, X j ∼ N(µ ∆t,σ2 ∆t), Yk ∼ N(kµ∆t,kσ2∆t) and

ak = Φ

(
−µ

σ

√
k∆t
)
+ e(µ+σ2/2)k∆t

Φ

(
µ +σ2

σ

√
k∆t
)
. (7)

Hence the expectation of CVW7, E [exp(max0≤i≤d W (ti))], is simply equal to xd which can be calculated
using the recursion (6) with the coefficients (7).
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It should be noted that by using the formulas of Spitzer (1956) and Öhgren (2001) it is also possible
to evaluate E [max0≤i≤d L(ti)] and E [exp(max0≤i≤d L(ti))]. However, in that case, we need numerical
integration to evaluate each ak. Furthermore, if the increment distribution is not closed under convolution,
the evaluation of the ak’s requires the inversion of the characteristic functions.

The expectations of CVW8 and CVW9 are found by using the density of the maximum of Brownian
motion with drift on a finite interval see e.g., Shreve (2004). By integration of the density, we obtain

E

[
sup

0≤u≤td
W (u)

]
=

σ2

2µ
(2Φ(b1)−1)+Φ(b1)µ td +φ (b1)σ

√
td (8)

and

E

[
exp

(
sup

0≤u≤td
W (u)

)]
= 1+ eztd Φ(b1)−Φ(b2)+

(
σ2

2z

)[
−Φ(b1− (2z/σ)

√
td)+ eztd Φ(b1)

]
, (9)

where b1 = µ
√

td/σ , b2 = b1−σ
√

td and z = µ +σ2/2.

3.2 A Simple Example

The easiest application of our general CV method uses only general CVs of the basket without a special
CV. In this section, we present the use of this general framework for the simple example

q(L) = exp
(

max
0≤i≤d

L(ti)
)
,

which demonstrates the effectiveness of the general method. More relevant examples can be found in
Section 4 below. To produce the numerical results, Algorithm 1 was coded in R (R Development Core
Team 2011). To find the approximate quantile function of the increments (F−1

L in Algorithm 1), we used
the numerical inversion algorithm of Derflinger et al. (2010) and the ’Runuran’ package of Leydold and
Hörmann (2012). The u-resolution of the numerical inversion algorithm was set to εu = 10−10. For more
details about the implementation, see Derflinger et al. (2010) and Dingeç and Hörmann (2012).

We assume that L is a generalized hyperbolic (GH) process. We fix the time step of the time grid to
∆t = 1/250. The parameters of the distribution of the increments for the time length ∆t are selected as
λ = 1.5 , α = 189.3, β = −5.71, δ = 0.0062, µ = 0.001 (see Section 4.2). With these parameters, the
increment distribution is close to normal but has a higher kurtosis. We try two cases d = 5 and d = 50.
For d = 5, the backward regression founds all CVs significant except for CVW8 and CVW9. The CV
algorithm with those CVs yields a variance reduction factor (VRF) of 560. For d = 50, the CVs, which are
found to be significant by backward regression, are CVL1,2,4,5, CVW1,2,4,5 and CVW7. The obtained
VRF is 395.

4 OPTION PRICING UNDER LÉVY PROCESSES

In this section, we present the application of our general CV algorithm to the simulation of path dependent
options under Lévy processes. Suppose that we have an option on a stock with the price process {S(t), t ≥ 0}
given by

S(t) = S(0)eL(t),

where L is a Lévy process. Let ψ denote the payoff function of the option. For discretely monitored
path-dependent options, ψ is a function from ℜd to ℜ where d denotes the number of control points in
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time. With time grid 0 = t0 < t1 < t2 < ... < td = T and maturity T , the price of the option is given by the
discounted risk neutral expectation of the payoff function

e−rT E [ψ(S(t1), . . . ,S(td))],

where r is the deterministic risk free interest rate. Note that by setting q(L) = ψ(S(0)eL), the above
expectation reduces to (1). So, Algorithm 1 can be applied.

In the application of our general CV approach, the first step is the selection of a special CV, ζ , which
is a functional of W (t). In the option pricing case, that functional corresponds to the payoff function of
a similar option with analytically available price under GBM. Let ψCV denote the payoff function of this
new option. Also, let

{
S̃(t), t ≥ 0

}
denote the stock price process which follows a GBM with parameters

r and σ :
S̃(t) = S̃(0)eW (t) = S̃(0)exp((r−σ

2/2)t +σB(t)).

where B(t) is a standard BM. Then our special CV is ζ (W ) = ψCV (S̃). In this setting, the only unspecified
parameter is the volatility σ of the GBM model, as the drift of BM is automatically set to µ = r−σ2/2
under the risk neutral measure. We set the volatility equal to the standard deviation of the increments
of the original Lévy process L(t), that is σ =

√
Var(L(1)). We also use the same initial values for both

processes S̃(0) = S(0).
For option pricing applications, some of the general CVs given in Table 1 have simpler expectation

formulas due to the martingale property of the discounted stock price process under the risk neutral measure,
E [e−r tS(t)] = E [e−r t S̃(t)] = S(0). The expectations of CVL2 and CVW2 reduce to er T , the expectations
of CVL5 and CVW5 are both equal to 1

d ∑
d
i=1 er i∆t .

4.1 Special CVs

We consider in the sequel the problem of pricing Asian options and fixed strike lookback options. As
special CVs we use those suggested by Dingeç and Hörmann (2012).

4.1.1 Asian Options

We consider the arithmetic average Asian call option with payoff function

ψA(S) =
(

∑
d
i=1 S(ti)

d
−K

)+

where K is the strike price. We use the geometric average Asian call under GBM, suggested by Kemna
and Vorst (1990), as special CV. It has the payoff function

ψG(S̃) =
(

exp
(

∑
d
i=1 log S̃(ti)

d

)
−K

)+

.

The formula of the geometric price is

e−rT E [ψG(S̃)] = e−rT
(

eµs̃+σ2
s̃ /2

Φ(−k+σs̃)−K Φ(−k)
)
, (10)

where Φ() denotes the CDF of the standard normal distribution,

k =
logK−µs̃

σs̃
, (11)

µs̃ = log S̃(0)+(r−σ
2/2)∆t(d +1)/2, (12)

and
σs̃ =

σ

d

√
∆t d (d +1)(2d +1)/6. (13)

Here µs̃ and σs̃ denote the mean and the standard deviation of the logarithm of the geometric average.

185
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4.1.2 Lookback Options

We consider the fixed strike lookback call option with payoff function

ψL(S) =
(

max
0≤i≤d

S(ti)−K
)+

,

where K is the strike price. As special CV, we use the continuous lookback option under GBM (see Dingeç
and Hörmann (2011)). It has the payoff function

ψLC(S̃) =

(
sup

0≤u≤td
S̃(u)−K

)+

. (14)

As shown in Section 3, it is possible to simulate sup0≤u≤td S̃(u) from the discrete path. In Haug (2007),
the formula of the price of the continuous fixed strike lookback call option is given for two cases. For
K > S(0),

e−rT E [ψLC(S)] = S(0)Φ(d1)−Ke−rT
Φ(d2)

+S(0)e−rT
(

σ2

2r

)[
−(S(0)/K)−2r/σ2

Φ(d1− (2r/σ)
√

T )+ erT
Φ(d1)

]
, (15)

where

d1 =
log(S(0)/K)+(r+σ2/2)T

σ
√

T
, d2 = d1−σ

√
T .

For K ≤ S(0),

e−rT E [ψLC(S)] = e−rT (S(0)−K)+S(0)Φ(b1)−S(0)e−rT
Φ(b2)

+S(0)e−rT
(

σ2

2r

)[
−Φ(b1− (2r/σ)

√
T )+ erT

Φ(b1)
]
, (16)

where b1 =
(r+σ2/2)

√
T

σ
and b2 = b1−σ

√
T

4.2 Application of the General CV Method to Asian and Lookback Options

In this section the success of the general CV method suggested in Section 3 using the special CVs presented
in Section 4.1 are reported for numerical examples.

Variance Gamma (VG), Normal Inverse Gaussian (NIG), Generalized Hyperbolic (GH) and Meixner
(MXN) processes are among the most popular Lévy process models used for option pricing. Detailed
information about these processes can be found in (Dingeç and Hörmann 2012) and in the references given
there. In this paper, we report results only for the GH process as it is the most general process among the
ones listed above. VG and NIG distributions are in fact subclasses of the GH distribution. Also, when
the processes are calibrated by using the same data, the variance reductions obtained for the other three
processes are observed to be very similar to the ones obtained for the GH process. The PDF, expectation
and MGF formulas of the GH model are given in Table 2. Here, γ =

√
α2−β 2 and Kν(x) denotes the

modified Bessel function of the second kind of order ν .
The parameters of the GH process are estimated from the daily log return data of the Swiss stock

“Swiss.Re” given in the R package ’ghyp’ of Luethi and Breymann (2011). The sample consists of 500 daily
log returns from 2005-01-19 to 2007-01-10. The parameters of the models were estimated by maximum
likelihood estimation. The estimated daily parameters are λ = 1.5 , α = 189.3, β =−5.71, δ = 0.0062,
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Table 2: Formulas of the GH model.

Parameters λ ,α,β ,δ ,µ

PDF f (x) = (γ/δ )λ

√
2πKλ (δγ)

eβ (x−µ)
Kλ−1/2

(
α

√
δ 2+(x−µ)2

)
(√

δ 2+(x−µ)2/α

)1/2−λ

Expectation E [X ] = µ + βδ

γ

Kλ+1(δγ)
Kλ (δγ)

MGF M(u) = euµ

(
α2−β 2

α2−(β+u)2

)λ/2 Kλ (δ
√

α2−(β+u)2)

Kλ (δ
√

α2−β 2)

µ = 0.001. In our study, we have used the risk neutral Esscher measure proposed by Gerber and Shiu
(1994) for option pricing. This change of measure implies the transformation of the real world skewness
parameter β depending on the risk free interest rate r. For more details, see Gerber and Shiu (1994) and
Dingeç and Hörmann (2012).

In the application of the general CV method, the first step is the selection of the CVs from the basket
given in Table 1. For the Asian option example, the special CV (the geometric average option), CVL3,4,5,
and CVW3,4,6,7 are found to be significant by the backward regression in the pilot simulation run. For
the lookback option example, when K > S(0), the special CV (the continuous option) and the general CVs
are all found to be significant with large absolute t values. Note that the other case K ≤ S(0) is equivalent
to the problem presented in Section 3.2. So, we will not consider it again.

We report as main result the variance reduction factors of our new CV method denoted byV RF =σ2
N/σ2

CV
where σ2

N and σ2
CV denote the variances of naive simulation and our new CV method, respectively. In our

numerical results, we consider only the daily monitoring case ∆t = 1/250. Table 3 shows the success of
the new CV method for the two options and different strike prices. Substantial variance reductions are
obtained in all cases. We see that the largest variance reductions are obtained for small strike prices. In
Table 3, we also compare our final CV algorithm with the other CV algorithm variants using only general
CVs (CVLs and CVWs) or only the single special CV. From the comparison, we see that using only the
general CVs yields considerable VRFs, which are close to but often smaller than those using only the single
special CV. We obtain the largest VRFs when the general CVs are used together with the special CV.

Table 3: Results for Asian and lookback options under GH process with T = 1,∆t = 1/250,r = 0.05,S(0) =
100,n = 104. Price: value of the simulation estimator of the option price, Error: 95% error bound. VRF-A:
VRF obtained by using all significant CVs, VRF-G: VRF obtained by using only general CVs (CVLs and
CVWs), VRF-S: VRF obtained by using only special CV.

Option K Price Error VRF-A VRF-G VRF-S
Asian 90 12.239 0.004 1,743 185 78

100 4.912 0.005 530 51 64
110 1.240 0.006 121 13 40

Lookback 110 7.534 0.012 294 57 57
120 3.297 0.012 160 35 44
130 1.266 0.011 79 17 32

Finally we compare the speed of the naive simulation and the new CV algorithm by reporting the
time ratio tN/tCV , where tN and tCV are the CPU times of naive simulation and of the new multiple CV
algorithm respectively. (Note that the corresponding variance reduction factor σ2

N/σ2
CV is called VRF-A

in Table 3.) The time ratio and the variance reduction factor are required to calculate the efficiency factor
EF = (σ2

NtN)/(σ2
CV tCV ) of the new CV algorithm. For the generation of GH variates in the naive simulation

algorithm subordination was used (see Dagpunar (1989)), as it is the standard method in the literature. The
time ratios tN/tCV were observed to be equal to 1.0 and 0.7 for Asian and lookback options, respectively.
This shows that the speed up obtained by the use of the fast numeric inversion procedure is approximately
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as large as the slow down due to the extra computations required for the evaluation of the CVs. Note that
in these time ratios the pilot simulation runs are excluded. We observed in our examples that the additional
computational time necessary for the pilot simulation run with a sample size of one tenth of the main
simulation is between 30% and 50% of the computational time of the main simulation.

5 CONCLUSIONS

In this study, we propose a general control variate framework for the functionals of Lévy processes. The
new method exploits the strong correlation between the original Lévy process and an auxiliary Brownian
motion. In the suggested framework, we use special control variates tailored to the functionals and general
control variates selected from a large basket of control variate candidates. The application to path dependent
options shows that the general framework results in successful control variate methods. In our examples,
we observe moderate to large variance reductions.
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