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ABSTRACT 

In this paper, we develop an efficient computing budget allocation rule to run simulation for a single 
design whose transient mean performance follows a certain underlying function, which enables us to 
obtain more accurate estimation of design performance by doing regression. The sequential sampling 
constraint is imposed so as to fully utilize the information along the simulation replication. We 
formulate this problem as a c-optimal design problem based on some common assumptions in the 
field of simulation. Solutions are generated for some simple polynomial, logarithmic, and sinusoidal 
functions. Based on the numerical solutions, we develop the Single Design Budget Allocation 
(SDBA) Procedure that determines the number of simulation replications we need to run, as well as 
their run lengths, given a certain computing budget. Numerical experimentation confirms the 
efficiency of the procedure. 

1  INTRODUCTION 

As is often the case, the mean performance of the design might not be constant, but a function of some 
variables that can be simulation time or simulation run length. A common practice to estimate the 
transient mean performance of the design and its variance is to run the simulation up to the point 
where we want to make a prediction which is called the point of interest in this paper, and calculate 
the sample mean and sample variance by using the simulation outputs collected at that point. Another 
more sophisticated way is to use the regression approach which would make use of all information 
along the simulation replication instead of only at the point of interest. The latter is expected to 
provide us with more accurate estimation since more information is used.  

Analysis of transient behavior is an important simulation problem in, for example, the initial 
transient problem (Law and Kelton 2000, Section 9.5.1) and sensitivity analysis (Morrice and 
Schruben 2001). Kelton and Law (1983) develop a regression-based procedure for the initial transient 
problem. Transient analysis is also important in so-called “terminating simulations” (Law and Kelton 
2000, Section 9.4) that have finite terminating conditions and never achieve steady state. Examples 
are found in many service systems like hospitals or retail stores that have closing times or clearly 
defined “rush hour” patterns. They are also found in new product development competitions where 
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and by relaxing the integer constraint, our objective function is Lipchitz continuous, and we can solve 
the problem numerically by using the Lipchitz-continuous Global Optimizer (LGO) embedded in 
AIMMS (Pinter 1996; Pinter 2005).  

We will first study the case when the underlying function is a simple polynomial, including linear, 
full quadratic or full cubic polynomials. In the DOE literature, the simple polynomial models are of 
particular importance and interest due to their relative ease of derivation and wide application. We 
will also consider other simple underlying functions containing logarithmic and trigonometric feature 
functions. However, for these functions the number of feature functions is limited to two to avoid an 
excessively complex objective function which cannot be handled by the software. 

3 NUMERICAL SOLUTIONS AND RESULT DISCUSSION 
3.1 Linear Underlying Function 

In the case of linear underlying function, the transient mean performance of the design follows a 
linear function . Suppose that we would like to predict the mean performance of the 
design at the point of interest , with a total computing budget  that varies from 1000 to 
4000, in increments of 1000. By using AIMMS, we can determine the minimum PVF given a certain 
computing budget, together with the corresponding optimal number of simulation replications and 
their run lengths. The numerical solutions indicate that we need one and only one simulation group to 
achieve the minimum PVF and the results are listed in Table 3-1 in which  stands for the optimal 
simulation run length and  stands for the optimal number of simulation replications we need. 

Table 3 - 1: Numerical Solution for Linear Underlying Function 
T xM Minimum PVF l1 N1 

1000 30 0.001000 59 16.9492 

2000 30 0.000500 59 33.8983 

3000 30 0.000333 59 50.8475 

4000 30 0.000250 59 67.7966 

It seems that , and the optimal value for this run length  is a function of , and 
. In fact, when there is only one simulation group, the optimal simulation run length and 

the minimum PVF can be calculated easily by using the computing software. In order to minimize the 
PVF, it is always better to exhaust the available computing budget (Brantley et al. 2011). Hence the 
inequality budget constraint can be replaced by an equality constraint. When we have only one 
simulation group, we have two decision variables. Due to the equality budget constraint, we can 
express the objective function as a univariate function whose global minimum can be found 
numerically, regardless of the types of feature functions comprising the underlying function. 

Moreover, in the case of linear underlying function, an analytical solution to the problem can be 
derived as the objective function is not too complex. After doing some derivation, the minimum PVF 

is found to be  when , or . This result is consistent with our observation 

based on the numerical solutions generated by AIMMS. 

3.2 Full Quadratic and Full Cubic Underlying Function 

In this case, we assume that the underlying function follows a full quadratic polynomial, namely, 
. Again we want to make prediction at , and the total computing 

budget  varies from 1000 to 4000. The numerical solutions tell us that we need two different 
simulation groups of different run lengths to achieve the minimum PVF, and we denote the number of 
simulation replications we need for run lengths  and  as  and , respectively. In Table 3-2, we 
summarize the numerical solutions obtained from AIMMS under various  and . 
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Table 3 - 2: Numerical Solutions for Full Quadratic Underlying Function (Continuous Case) 

T xM Minimum PVF l1 l2 N1 N2 

1000 30 0.001003 59.5624 1000.00 16.7726 0.000980 

2000 30 0.000501 59.3804 1496.11 33.6670 0.000563 

3000 30 0.000333 59.2528 2266.91 50.6215 0.000236 

4000 30 0.000250 59.1889 3038.92 67.5736 0.000129 

The value of  is observed to be approximately . Similar to the linear underlying 

function, as shown in the continuous optimal solutions, the minimum PVF is lower bounded by . We 

notice that the value of  is almost zero. In practice, the number of simulation replications must be 
an integer. In order to determine whether it is necessary to run the simulation at run length , we 
compute the optimal solutions when the integer constraint is imposed and when the number of 
different simulation groups is two, by comparing the values of PVF calculated from all possible 
combinations of , ,  and . The results are presented in Table 3-3.    

Table 3 - 3: Numerical Solutions for Full Quadratic Underlying Function (Discrete Case)

T xM Minimum PVF l1 l2 N1 N2 

1000 30 0.001139 58 188 14 1 

2000 30 0.000543 59 230 30 1 

3000 30 0.000355 58 274 47 1 

4000 30 0.000263 58 288 64 1 

It is noted that we still have two different simulation groups in the optimal solutions for the 
discrete case, and we would run a single simulation replication at run length , implying that it is 
better to run this longer simulation replication than discarding it.  

We have done a similar study for the full cubic underlying function 
, and the same observations as in the full quadratic case can be made. 

3.3 General Underlying Function 

In this section, we look at the numerical solutions to some other simple underlying functions. The 
types of feature functions studied in this section include linear, quadratic, cubic, logarithmic and sine 
functions. Due to the complexity of the objective function, analytical solutions cannot be obtained, 
except in the linear polynomial case. However, there is still an interesting observation we can make 
based on the numerical solutions presented in Table 3-4. 

Table 3 – 4: Numerical Solutions for Various Types of Underlying Function

Underlying Function 
Number of 

Feature Functions 
Optimal Number of 
Simulation Groups 

Optimal Number of 
Decision Variables 
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We observe that the number of decision variables we need in order to achieve the minimum PVF 
is at least equal to the number of feature functions in the underlying function. The usefulness of this 
observation is that it enables us to determine the minimum number of simulation groups we need in 
order to achieve the minimum PVF, regardless of the types of the component feature functions in the 
underlying function.  

An intuitive way to explain the results in Table 3-4 is that the number of component feature 
functions in the underlying function is the same as the number of parameters we want to estimate in 
order to predict the mean performance of the design at . The parameter vector  
contains  parameters and it has  degrees of freedom. In order to estimate this parameter vector, 
we need at least  independent decision variables which give us  degrees of freedom due to the 
equality budget constraint. Therefore, the number of decision variables should not be smaller than the 
number of parameters we want to estimate. Nevertheless, a more rigorous argument needs to be 
developed to justify this observation statement. 

3.4 SDBA Procedure 

Based on the observations we made in the previous sections, we develop the following Single Design 
Budget Allocation (SDBA) Procedure, which helps us efficiently allocate computing budget to better 
estimate the transient design performance. 

SDBA-Linear Underlying Function When the underlying function follows a linear polynomial, 
we need one and only one simulation group in which all simulation replications would have the same 
run length , where  is the point where the prediction is made. 

In practice, both the simulation run lengths and the number of simulation replications are discrete. 
When  is not divisible by , we will run as many simulation replications of run length  as 

possible, namely , where  is a floor function. The remaining computing budget would be 

used to run a single simulation replication of run length . 
SDBA-Full Quadratic/Cubic Underlying Function When the underlying function follows a full 

quadratic or full cubic polynomial, we need two and only two simulation groups  and . Group 
 contains several simulation replications of run length . Group  contains a single 

simulation replication of run length , whose value depends on the total computing budget and can 
be determined numerically. 

It is noted that the value of  depends on  and its value can be calculated numerically since the 
objective function can be expressed as a univariate function using the pre-defined values for  and 

.  
SDBA-General Underlying Function When the transient mean performance of design follows a 

certain underlying function consisting of several feature functions, the minimum number of simulation 
groups (K) we need in order to achieve the minimum PVF and the number of component feature 
functions (n) comprising the underlying function are related by , where  is a ceiling 
function. 

4 IMPLEMENTATION OF SDBA PROCEDURE 
4.1 Full Quadratic Underlying Function 

In this numerical experimentation, we would like to test the efficiency of the SDBA Procedure. To do 
so, we consider the case when the transient mean performance of design follows a full quadratic 
underlying function . We would like to predict the mean 
performance of the design at point , which is expected to be 12.2127. The Simple Regression 
Procedure in which all simulation replications run up to the point of interest is used as the comparison 
procedure. The Simple Sampling Procedure in which the design performance is calculated as sample 
mean is also used as a comparison procedure due to its wide application. We assume homogeneous 
normal simulation noises along the simulation replication, with mean zero and variance one. 
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Expression (3) which is the least squares formula is used to estimate the design mean and variance. 
The simulation has been conducted in MATLAB and the result is presented in Figure 4-1, in which the 

Minimum Variance is the lower bound for the estimated variance calculated by using the formula , 

where  is the unbiased estimator of the variance of design performance, calculated from the 
simulation outputs.  

 

Figure 4 - 1: Comparison of Estimated Variance Obtained by Using Different Procedures with Full 
Quadratic Underlying Function 

As illustrated in the diagram, given a certain amount of computing budget, using the regression 
procedures would enable us to achieve smaller estimated variance than using the Simple Sampling 
Procedure. Moreover, the SDBA Procedure gives a much smaller estimated variance, compared to the 
Simple Regression Procedure. It is also noted that as the computing budget increases, we get closer to 
the minimum variance obtained in the continuous case, though our procedure uses a discrete 
computing budget. We have done similar numerical experimentation for the full cubic underlying 
function, and similar conclusions can be drawn.  

When the underlying function is a full quadratic or full cubic polynomial, the SDBA Procedure 
suggests that we run simulation replications at two different run lengths. It is noted that we need to 
run a single simulation replication at the longer run length, whose value depends on the total 
computing budget. It seems that the impact of removing this run length from the SDBA Procedure 
might not be very significant. When there is a single simulation group, the optimal run length can be 
calculated numerically with a given . The analytical solution to this optimal run length might not 
be available due to the excessive complexity of the objective function. In Figure 4-2, we present the 
experimental results for the Simplified SDBA Procedure in which only a single simulation run length 
is used, under the same experiment setting as in Figure 4-1. 
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 Figure 4 - 2: Numerical Experimentation Results for Simplified SDBA Procedure for Full Quadratic 
Underlying Function

As we can see from Figure 4-2, the Simplified SDBA Procedure is able to perform much better 
than the Simple Regression Procedure, though its performance is slightly worse than the SDBA 
Procedure with two run lengths, which is expected. In fact, the minimum PVF we get from the 
Simplified SDBA Procedure is about twice the minimum PVF we get by using SDBA Procedure. Due 
to this minor difference in performance, in practice, we might run all the simulation replications at the 
same run length due to its ease of implementation. Similar results can be obtained for the full cubic 
underlying function. 

4.2 Heterogeneous Simulation Noise 

In practice, the assumption of homogeneous simulation noise is often violated. Without knowing the 
exact noise distribution, it is very difficult to determine the optimal computing budget strategy. This 
problem can be addressed by assuming that the variance of the simulation noise follows a certain 
functional form and then determining numerically the optimal run length when a single simulation run 
length is used by minimizing the objective in expression (2). For example, if the simulation noise 
increases as the simulation run length increases, we might approximate the noise variance by a 
linearly increasing function. While this may be a crude approximation, it might provide us with a 
better budget allocation scheme than assuming homogeneous simulation noise, as it takes into account 
the fact that the simulation noise increases along the replication.  

In this section, we consider an implementation of the SDBA Procedure assuming a certain 
simulation noise pattern along the simulation replication. The example we use is the M/M/1 queue 
which is of practical importance in many service systems like hospitals, in which the customer 
waiting time can be considered as a good indicator of system performance. The traffic intensity is 0.9 
(mean service rate of 1 and mean arrival rate of 0.9), with the system being initialized empty and idle 
at time zero. Suppose we wish to estimate the system waiting time (i.e., waiting time in the queue plus 
service time) of the  customer joining the queue using simulation. It is expected that as the 
simulation run length increases, the uncertainty in predicting the  customer’s system waiting time 
increases, resulting in a higher simulation noise. Therefore, we will approximate the noise variance by 
a linearly increasing function as the number of customers joining the queue increases, namely, 

, where  is a positive number. By simulating and studying the average transient 
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customer system waiting times, we find that the logarithm underlying function  
is a good approximation to the transient customer system waiting time. Using this underlying function 
model and the linear simulation noise variance pattern approximation, we can obtain the optimal 
simulation run length by minimizing expression (2). Once this optimal run length is determined, we 
can use it in the SDBA Procedure to run the simulation. Expression (1), which is the weighted least 
squares formula, is used to compute the design mean performance and variance. 

In Table 4-1, we present results on the prediction of the  customer’s system waiting time by 
running the simulation using different budget allocation rules. The analytical value of the mean 
system waiting time of the 20th customer is known to be approximately 4.275 (Kelton and Law 1985). 
Of the three procedures, Simple Sampling has the lowest bias (see Table 4.2). This is to be expected 
since it is an unbiased estimator. The SDBA Procedure has lower bias than the Simple Regression 
Procedure in all cases. Additionally, the estimated variances for the regression procedures are much 
smaller than the estimated variances for the Simple Sampling Procedure. In general, the SDBA 
Procedure enables us to achieve about a 10% variance reduction as compared to the Simple 
Regression Procedure and a 90% variance reduction compared to Simple Sampling approach. Table 
4-2, also presents the mean squared errors (MSE) for all three procedures calculated from the 
numerical results. As illustrated in Table 4-3, using the SDBA Procedure instead of the other two 
procedures benefits us with significant improvement in MSE. 

Table 4 - 1: Numerical Experimentation Results for M/M/1 Queue Using Logarithm Underlying 
Function

T 
Estimated Mean  System Waiting Time Estimated Variance of System Waiting Time 

SDBA 
Simple 

Regression 
Simple 

Sampling 
SDBA 

Simple 
Regression 

Simple 
Sampling 

1000 4.088984 3.912666 4.283880 0.013467 0.015034 0.248412 

2000 4.100969 3.932829 4.263112 0.006966 0.007727 0.124803 

3000 4.102279 3.934631 4.264272 0.004696 0.005178 0.083473 

4000 4.121475 3.935219 4.273659 0.003555 0.003918 0.062574 

5000 4.126383 3.934695 4.277299 0.002859 0.003144 0.050014 

6000 4.127300 3.937391 4.287525 0.002386 0.002610 0.041706 

Table 4 - 2: Simulation Bias and MSE for Different Procedures 

T 
Bias MSE 

SDBA 
Simple 

Regression 
Simple 

Sampling 
SDBA 

Simple 
Regression 

Simple 
Sampling 

1000 0.185741 0.362059 -0.009155 0.047967 0.146121 0.250713 

2000 0.173756 0.341896 0.011613 0.037157 0.124620 0.126184 

3000 0.172446 0.340094 0.010453 0.034434 0.120842 0.084659 

4000 0.153250 0.339506 0.001066 0.027041 0.119182 0.063305 

5000 0.148342 0.340030 -0.002574 0.024864 0.118764 0.050632 

6000 0.147425 0.337334 -0.012800 0.024120 0.116404 0.042288 
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