

Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

EFFICIENT COMPUTING BUDGET ALLOCATION FOR A SINGLE DESIGN
BY USING REGRESSION WITH SEQUENTIAL SAMPLING CONSTRAINT

Xiang Hu
Loo Hay Lee

Ek Peng Chew

Douglas J. Morrice

Dept. of Industrial and Systems Engineering Red McCombs School of Business
National University of Singapore The University of Texas at Austin
10 Kent Ridge Crescent, 119260,

SINGAPORE
1 University Station, B6500

Austin, TX 78712,USA

Chun-Hung Chen

Dept. of Systems Engineering and Operations Research
George Mason University

4400 University Drive, MS 4A6
Fairfax, Virginia 22030, USA

ABSTRACT

In this paper, we develop an efficient computing budget allocation rule to run simulation for a single
design whose transient mean performance follows a certain underlying function, which enables us to
obtain more accurate estimation of design performance by doing regression. The sequential sampling
constraint is imposed so as to fully utilize the information along the simulation replication. We
formulate this problem as a c-optimal design problem based on some common assumptions in the
field of simulation. Solutions are generated for some simple polynomial, logarithmic, and sinusoidal
functions. Based on the numerical solutions, we develop the Single Design Budget Allocation
(SDBA) Procedure that determines the number of simulation replications we need to run, as well as
their run lengths, given a certain computing budget. Numerical experimentation confirms the
efficiency of the procedure.

1 INTRODUCTION

As is often the case, the mean performance of the design might not be constant, but a function of some
variables that can be simulation time or simulation run length. A common practice to estimate the
transient mean performance of the design and its variance is to run the simulation up to the point
where we want to make a prediction which is called the point of interest in this paper, and calculate
the sample mean and sample variance by using the simulation outputs collected at that point. Another
more sophisticated way is to use the regression approach which would make use of all information
along the simulation replication instead of only at the point of interest. The latter is expected to
provide us with more accurate estimation since more information is used.

Analysis of transient behavior is an important simulation problem in, for example, the initial
transient problem (Law and Kelton 2000, Section 9.5.1) and sensitivity analysis (Morrice and
Schruben 2001). Kelton and Law (1983) develop a regression-based procedure for the initial transient
problem. Transient analysis is also important in so-called “terminating simulations” (Law and Kelton
2000, Section 9.4) that have finite terminating conditions and never achieve steady state. Examples
are found in many service systems like hospitals or retail stores that have closing times or clearly
defined “rush hour” patterns. They are also found in new product development competitions where

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 156

Hu, Lee, Chew, Morrice, and Chen

and by relaxing the integer constraint, our objective function is Lipchitz continuous, and we can solve
the problem numerically by using the Lipchitz-continuous Global Optimizer (LGO) embedded in
AIMMS (Pinter 1996; Pinter 2005).

We will first study the case when the underlying function is a simple polynomial, including linear,
full quadratic or full cubic polynomials. In the DOE literature, the simple polynomial models are of
particular importance and interest due to their relative ease of derivation and wide application. We
will also consider other simple underlying functions containing logarithmic and trigonometric feature
functions. However, for these functions the number of feature functions is limited to two to avoid an
excessively complex objective function which cannot be handled by the software.

3 NUMERICAL SOLUTIONS AND RESULT DISCUSSION
3.1 Linear Underlying Function

In the case of linear underlying function, the transient mean performance of the design follows a
linear function . Suppose that we would like to predict the mean performance of the
design at the point of interest , with a total computing budget that varies from 1000 to
4000, in increments of 1000. By using AIMMS, we can determine the minimum PVF given a certain
computing budget, together with the corresponding optimal number of simulation replications and
their run lengths. The numerical solutions indicate that we need one and only one simulation group to
achieve the minimum PVF and the results are listed in Table 3-1 in which stands for the optimal
simulation run length and stands for the optimal number of simulation replications we need.

Table 3 - 1: Numerical Solution for Linear Underlying Function
T xM Minimum PVF l1 N1

1000 30 0.001000 59 16.9492

2000 30 0.000500 59 33.8983

3000 30 0.000333 59 50.8475

4000 30 0.000250 59 67.7966

It seems that , and the optimal value for this run length is a function of , and
. In fact, when there is only one simulation group, the optimal simulation run length and

the minimum PVF can be calculated easily by using the computing software. In order to minimize the
PVF, it is always better to exhaust the available computing budget (Brantley et al. 2011). Hence the
inequality budget constraint can be replaced by an equality constraint. When we have only one
simulation group, we have two decision variables. Due to the equality budget constraint, we can
express the objective function as a univariate function whose global minimum can be found
numerically, regardless of the types of feature functions comprising the underlying function.

Moreover, in the case of linear underlying function, an analytical solution to the problem can be
derived as the objective function is not too complex. After doing some derivation, the minimum PVF

is found to be when , or . This result is consistent with our observation

based on the numerical solutions generated by AIMMS.

3.2 Full Quadratic and Full Cubic Underlying Function

In this case, we assume that the underlying function follows a full quadratic polynomial, namely,
. Again we want to make prediction at , and the total computing

budget varies from 1000 to 4000. The numerical solutions tell us that we need two different
simulation groups of different run lengths to achieve the minimum PVF, and we denote the number of
simulation replications we need for run lengths and as and , respectively. In Table 3-2, we
summarize the numerical solutions obtained from AIMMS under various and .

160

Hu, Lee, Chew, Morrice, and Chen

Table 3 - 2: Numerical Solutions for Full Quadratic Underlying Function (Continuous Case)

T xM Minimum PVF l1 l2 N1 N2

1000 30 0.001003 59.5624 1000.00 16.7726 0.000980

2000 30 0.000501 59.3804 1496.11 33.6670 0.000563

3000 30 0.000333 59.2528 2266.91 50.6215 0.000236

4000 30 0.000250 59.1889 3038.92 67.5736 0.000129

The value of is observed to be approximately . Similar to the linear underlying

function, as shown in the continuous optimal solutions, the minimum PVF is lower bounded by . We

notice that the value of is almost zero. In practice, the number of simulation replications must be
an integer. In order to determine whether it is necessary to run the simulation at run length , we
compute the optimal solutions when the integer constraint is imposed and when the number of
different simulation groups is two, by comparing the values of PVF calculated from all possible
combinations of , , and . The results are presented in Table 3-3.

Table 3 - 3: Numerical Solutions for Full Quadratic Underlying Function (Discrete Case)

T xM Minimum PVF l1 l2 N1 N2

1000 30 0.001139 58 188 14 1

2000 30 0.000543 59 230 30 1

3000 30 0.000355 58 274 47 1

4000 30 0.000263 58 288 64 1

It is noted that we still have two different simulation groups in the optimal solutions for the
discrete case, and we would run a single simulation replication at run length , implying that it is
better to run this longer simulation replication than discarding it.

We have done a similar study for the full cubic underlying function
, and the same observations as in the full quadratic case can be made.

3.3 General Underlying Function

In this section, we look at the numerical solutions to some other simple underlying functions. The
types of feature functions studied in this section include linear, quadratic, cubic, logarithmic and sine
functions. Due to the complexity of the objective function, analytical solutions cannot be obtained,
except in the linear polynomial case. However, there is still an interesting observation we can make
based on the numerical solutions presented in Table 3-4.

Table 3 – 4: Numerical Solutions for Various Types of Underlying Function

Underlying Function
Number of

Feature Functions
Optimal Number of
Simulation Groups

Optimal Number of
Decision Variables

161

Hu, Lee, Chew, Morrice, and Chen

We observe that the number of decision variables we need in order to achieve the minimum PVF
is at least equal to the number of feature functions in the underlying function. The usefulness of this
observation is that it enables us to determine the minimum number of simulation groups we need in
order to achieve the minimum PVF, regardless of the types of the component feature functions in the
underlying function.

An intuitive way to explain the results in Table 3-4 is that the number of component feature
functions in the underlying function is the same as the number of parameters we want to estimate in
order to predict the mean performance of the design at . The parameter vector
contains parameters and it has degrees of freedom. In order to estimate this parameter vector,
we need at least independent decision variables which give us degrees of freedom due to the
equality budget constraint. Therefore, the number of decision variables should not be smaller than the
number of parameters we want to estimate. Nevertheless, a more rigorous argument needs to be
developed to justify this observation statement.

3.4 SDBA Procedure

Based on the observations we made in the previous sections, we develop the following Single Design
Budget Allocation (SDBA) Procedure, which helps us efficiently allocate computing budget to better
estimate the transient design performance.

SDBA-Linear Underlying Function When the underlying function follows a linear polynomial,
we need one and only one simulation group in which all simulation replications would have the same
run length , where is the point where the prediction is made.

In practice, both the simulation run lengths and the number of simulation replications are discrete.
When is not divisible by , we will run as many simulation replications of run length as

possible, namely , where is a floor function. The remaining computing budget would be

used to run a single simulation replication of run length .
SDBA-Full Quadratic/Cubic Underlying Function When the underlying function follows a full

quadratic or full cubic polynomial, we need two and only two simulation groups and . Group
 contains several simulation replications of run length . Group contains a single

simulation replication of run length , whose value depends on the total computing budget and can
be determined numerically.

It is noted that the value of depends on and its value can be calculated numerically since the
objective function can be expressed as a univariate function using the pre-defined values for and

.
SDBA-General Underlying Function When the transient mean performance of design follows a

certain underlying function consisting of several feature functions, the minimum number of simulation
groups (K) we need in order to achieve the minimum PVF and the number of component feature
functions (n) comprising the underlying function are related by , where is a ceiling
function.

4 IMPLEMENTATION OF SDBA PROCEDURE
4.1 Full Quadratic Underlying Function

In this numerical experimentation, we would like to test the efficiency of the SDBA Procedure. To do
so, we consider the case when the transient mean performance of design follows a full quadratic
underlying function . We would like to predict the mean
performance of the design at point , which is expected to be 12.2127. The Simple Regression
Procedure in which all simulation replications run up to the point of interest is used as the comparison
procedure. The Simple Sampling Procedure in which the design performance is calculated as sample
mean is also used as a comparison procedure due to its wide application. We assume homogeneous
normal simulation noises along the simulation replication, with mean zero and variance one.

162

Hu, Lee, Chew, Morrice, and Chen

Expression (3) which is the least squares formula is used to estimate the design mean and variance.
The simulation has been conducted in MATLAB and the result is presented in Figure 4-1, in which the

Minimum Variance is the lower bound for the estimated variance calculated by using the formula ,

where is the unbiased estimator of the variance of design performance, calculated from the
simulation outputs.

Figure 4 - 1: Comparison of Estimated Variance Obtained by Using Different Procedures with Full
Quadratic Underlying Function

As illustrated in the diagram, given a certain amount of computing budget, using the regression
procedures would enable us to achieve smaller estimated variance than using the Simple Sampling
Procedure. Moreover, the SDBA Procedure gives a much smaller estimated variance, compared to the
Simple Regression Procedure. It is also noted that as the computing budget increases, we get closer to
the minimum variance obtained in the continuous case, though our procedure uses a discrete
computing budget. We have done similar numerical experimentation for the full cubic underlying
function, and similar conclusions can be drawn.

When the underlying function is a full quadratic or full cubic polynomial, the SDBA Procedure
suggests that we run simulation replications at two different run lengths. It is noted that we need to
run a single simulation replication at the longer run length, whose value depends on the total
computing budget. It seems that the impact of removing this run length from the SDBA Procedure
might not be very significant. When there is a single simulation group, the optimal run length can be
calculated numerically with a given . The analytical solution to this optimal run length might not
be available due to the excessive complexity of the objective function. In Figure 4-2, we present the
experimental results for the Simplified SDBA Procedure in which only a single simulation run length
is used, under the same experiment setting as in Figure 4-1.

163

Hu, Lee, Chew, Morrice, and Chen

 Figure 4 - 2: Numerical Experimentation Results for Simplified SDBA Procedure for Full Quadratic
Underlying Function

As we can see from Figure 4-2, the Simplified SDBA Procedure is able to perform much better
than the Simple Regression Procedure, though its performance is slightly worse than the SDBA
Procedure with two run lengths, which is expected. In fact, the minimum PVF we get from the
Simplified SDBA Procedure is about twice the minimum PVF we get by using SDBA Procedure. Due
to this minor difference in performance, in practice, we might run all the simulation replications at the
same run length due to its ease of implementation. Similar results can be obtained for the full cubic
underlying function.

4.2 Heterogeneous Simulation Noise

In practice, the assumption of homogeneous simulation noise is often violated. Without knowing the
exact noise distribution, it is very difficult to determine the optimal computing budget strategy. This
problem can be addressed by assuming that the variance of the simulation noise follows a certain
functional form and then determining numerically the optimal run length when a single simulation run
length is used by minimizing the objective in expression (2). For example, if the simulation noise
increases as the simulation run length increases, we might approximate the noise variance by a
linearly increasing function. While this may be a crude approximation, it might provide us with a
better budget allocation scheme than assuming homogeneous simulation noise, as it takes into account
the fact that the simulation noise increases along the replication.

In this section, we consider an implementation of the SDBA Procedure assuming a certain
simulation noise pattern along the simulation replication. The example we use is the M/M/1 queue
which is of practical importance in many service systems like hospitals, in which the customer
waiting time can be considered as a good indicator of system performance. The traffic intensity is 0.9
(mean service rate of 1 and mean arrival rate of 0.9), with the system being initialized empty and idle
at time zero. Suppose we wish to estimate the system waiting time (i.e., waiting time in the queue plus
service time) of the customer joining the queue using simulation. It is expected that as the
simulation run length increases, the uncertainty in predicting the customer’s system waiting time
increases, resulting in a higher simulation noise. Therefore, we will approximate the noise variance by
a linearly increasing function as the number of customers joining the queue increases, namely,

, where is a positive number. By simulating and studying the average transient

164

Hu, Lee, Chew, Morrice, and Chen

customer system waiting times, we find that the logarithm underlying function
is a good approximation to the transient customer system waiting time. Using this underlying function
model and the linear simulation noise variance pattern approximation, we can obtain the optimal
simulation run length by minimizing expression (2). Once this optimal run length is determined, we
can use it in the SDBA Procedure to run the simulation. Expression (1), which is the weighted least
squares formula, is used to compute the design mean performance and variance.

In Table 4-1, we present results on the prediction of the customer’s system waiting time by
running the simulation using different budget allocation rules. The analytical value of the mean
system waiting time of the 20th customer is known to be approximately 4.275 (Kelton and Law 1985).
Of the three procedures, Simple Sampling has the lowest bias (see Table 4.2). This is to be expected
since it is an unbiased estimator. The SDBA Procedure has lower bias than the Simple Regression
Procedure in all cases. Additionally, the estimated variances for the regression procedures are much
smaller than the estimated variances for the Simple Sampling Procedure. In general, the SDBA
Procedure enables us to achieve about a 10% variance reduction as compared to the Simple
Regression Procedure and a 90% variance reduction compared to Simple Sampling approach. Table
4-2, also presents the mean squared errors (MSE) for all three procedures calculated from the
numerical results. As illustrated in Table 4-3, using the SDBA Procedure instead of the other two
procedures benefits us with significant improvement in MSE.

Table 4 - 1: Numerical Experimentation Results for M/M/1 Queue Using Logarithm Underlying
Function

T
Estimated Mean System Waiting Time Estimated Variance of System Waiting Time

SDBA
Simple

Regression
Simple

Sampling
SDBA

Simple
Regression

Simple
Sampling

1000 4.088984 3.912666 4.283880 0.013467 0.015034 0.248412

2000 4.100969 3.932829 4.263112 0.006966 0.007727 0.124803

3000 4.102279 3.934631 4.264272 0.004696 0.005178 0.083473

4000 4.121475 3.935219 4.273659 0.003555 0.003918 0.062574

5000 4.126383 3.934695 4.277299 0.002859 0.003144 0.050014

6000 4.127300 3.937391 4.287525 0.002386 0.002610 0.041706

Table 4 - 2: Simulation Bias and MSE for Different Procedures

T
Bias MSE

SDBA
Simple

Regression
Simple

Sampling
SDBA

Simple
Regression

Simple
Sampling

1000 0.185741 0.362059 -0.009155 0.047967 0.146121 0.250713

2000 0.173756 0.341896 0.011613 0.037157 0.124620 0.126184

3000 0.172446 0.340094 0.010453 0.034434 0.120842 0.084659

4000 0.153250 0.339506 0.001066 0.027041 0.119182 0.063305

5000 0.148342 0.340030 -0.002574 0.024864 0.118764 0.050632

6000 0.147425 0.337334 -0.012800 0.024120 0.116404 0.042288

165

