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ABSTRACT 

Autocorrelation has been pointed out as one of the most challenging issues in manufacturing systems 
modeling. Numerical experimentation has shown that it may either enhance or harm performance. Fur-
thermore, there is not yet a general agreement in what a realistic autocorrelation model is or whether it is 
actually relevant for practical applications. This paper provides a simulation analysis of the effects on per-
formance caused by manufacturing process parameters following autoregressive (AR) processes. AR time 
series are employed for modeling variations in parameters that happen at a time scale different from the 
corresponding to process cycle execution. Three basic configurations are analyzed: serial line, assembly 
process and a disassembly process. A case study from the natural slate tiles industry is presented showing 
the differences obtained in simulation results between a model in which independent and identically dis-
tributed (i.i.d.) assumptions are adopted and one in which autocorrelation effects are considered. 

1 INTRODUCTION 

Autocorrelation is defined as the correlation between successive observations of a time series (Banks et 
al., 2010). For instance, if 𝑥𝑡 is the observation of the variable 𝑥 in the time period 𝑡, then the autocorrela-
tion of lag 𝑙 is: 

 
𝜌𝑙 = 𝑐𝑜𝑣�𝑥𝑡,𝑥𝑡,𝑡−𝑙�

𝑣𝑎𝑟(𝑥)          (1) 
 
The question on how autocorrelation affects manufacturing processes has been addressed in previous 

works by different authors. Positive autocorrelation in event streams causes a “bursty behavior” in which 
events seem to be clustered (Altiok and Melamed, 2001). Thus, successive events separated by either 
short or long time periods tend to be followed by similar corresponding observations Negative autocorre-
lation, on the other hand, causes an alternation between short and long time periods between events. Au-
tocorrelation effects are present in production lines time series even if arrival processes and service times 
are assumed i.i.d (independent and identically distributed). In this case, autocorrelation is present in the 
output processes, which have been studied by authors such as Hendricks and Mcclain (1993). It has been 
found to explain the response of the system to changes in buffers capacity. 

Results from queuing theory show that autocorrelation in service or inter-arrival times may severely 
affect queue lengths and waiting times (Livny et al. 1993). Manufacturing lines can be modeled as queues 
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networks and therefore autocorrelation in process variables may have a relevant effect in performance. 
Altiok and Melamed (2001) studied the relevance of autocorrelation in different performance metrics for 
pull type processes. They introduce autocorrelation by means of TES (Transform-Expand-Sample) pro-
cesses and their results alert on the potential losses on accuracy that might be derived from an inadequate 
use of independence assumption. Takahashi and Nakamura (1998) studied the case of Just-In-Time sys-
tems achieving similar conclusions. Balcioglu et al. (2007) provide an approximate solution for the mean 
waiting times when autocorrelation is present in time to failure time series. They later proposed an ap-
proximate method to analyze the effect of splitting and superposition of autocorrelation processes in 
queues (Balcıoglu et al., 2008). Some works have shown examples of autocorrelation in data from indus-
trial plants (Luxhoj and Shyur, 1995; Melamed and Hill, 1995; Mertens et al. 2009; Schomig and Mittler, 
1995; Young and Winistorfer, 2001). 

However, Hejn Nielsen (2007) casts doubts on the practical relevance of some of the autocorrelation 
models employed by the authors previously mentioned. His results also provide evidence that autocorrela-
tion, if present, has a relevant impact in process performance. But circumstances present in manufacturing 
plants may reduce its importance; for example, due to the adoption of certain process control rules. Also, 
the effects might either be favorable or unfavorable depending on the autocorrelation pattern. If autocor-
relation is included in a model, great care should be taken when choosing the model parameters. High or-
der terms might be necessary in some situations. 

The section 2 of this paper presents a simulation experiment conducted in order to illustrate the dif-
ferent effects on process performance that can be related to autocorrelation in cycle times. Autocorrela-
tion is introduced by means of autoregressive processes of up to order five. This form of autocorrelation is 
introduced at a process cycle execution time scale and is similar to the models considered by previous au-
thors. 

However, autocorrelation in a manufacturing process may not only be introduced at a cycle execution 
time scale. Sources of variation affecting performance at different time scales may also display autocorre-
lation. For instance, let’s consider a hypothetical case of daily variations in performance related to human 
factors in a manufacturing system. External factors to the process, such as physiological conditions, moti-
vation or others may affect the labor’s performance and vary from one day to the next (Baines et al. 
2004). Furthermore, these variations in performance might display autocorrelation due to persistent fac-
tors that affect performance in successive days. Similar examples might be constructed referring to varia-
tions in demand (whose time series ought to display autocorrelation) and other external factors such as 
weather or the social environment.  

Let’s consider the case of variability in task times happening at two time scales: task execution and 
time periods of length 𝑇 (these time periods might be hours, days, months, etc.). Then, a general model 
for the task duration would be as given by (2). 

 
𝑡𝑖,𝑐~𝐺𝑐(𝜇𝑖)         (2) 

 
where 𝑡𝑖 is the random variable that represents the duration of the 𝑐𝑡ℎ task execution during the time peri-
od 𝑖, 𝜇𝑖 is the average task duration during the time period 𝑖 and 𝐺𝑐 is a general distribution that might 
depend on other parameters as well as 𝜇𝑖 . Variability at the time scale given by periods of length 𝑇 can 
be described by the general distribution of task duration averages: 

 
𝜇𝑖~𝐺𝑑(𝜇, 𝜇𝑖−1, 𝜇𝑖−2, … )         (3) 

 
where 𝜇 is the long term average task duration, 𝐺𝑑 a general distribution that might depend on other pa-
rameters as well as 𝜇 and the previous observations (case of autocorrelation). Figure 1 shows an example 
of such a process in which 𝑇 = 5. 

Section 3 presents a series of simulation experiments conducted on three general process arrange-
ments (serial, assembly and disassembly lines) in which autoregressive processes are employed for mod-
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eling variations in process parameters arising at a time scale different from the corresponding to process 
cycle execution. 

Such a type of variation was found to have practical relevance in the analysis of a natural slate tiles 
manufacturing process (Crespo Pereira et al, 2012). In this actual case, the variability in the properties of 
the input materials caused several performance parameters to change, affecting both flow balance and the 
overall plant performance. The time series displayed significant levels of autocorrelation. Section 4 revis-
its this case presenting a new time series analysis of performance metrics. The paper ends with some con-
clusions on the modeling of autocorrelation in manufacturing. 
 

 
Figure 1. Example of a task duration time series with variability at two time scales: task execution and pe-
riods of length 5. 

2 AUTOCORRELATION IN CYCLE TIMES 

The following simulation experiment was conducted in order to illustrate the complexity in process be-
havior caused by autocorrelation. A serial line consisting of ten machines with intermediate limited ca-
pacity buffers was simulated in Quest V5R20 (Figure 2). Machines cycle times were modeled as an auto-
regressive process of order up to five. Coefficients were arranged so that the coefficient of variation was 
equal to 1/3 for all the cases. This value is representative of variability in human tasks duration. 

 

 
Figure 2. Quest model of a 10 machines serial line. 

Then, the cycle time at the 𝑐𝑡ℎ execution of the process of a machine is given by (4): 
 

𝑡𝑐 = 𝜇 + 𝜑1 · (𝑡𝑐−1 − 𝜇) + 𝜑2 · (𝑡𝑐−2 − 𝜇) + 𝜑3 · (𝑡𝑐−3 − 𝜇) + 𝜑4 · (𝑡𝑐−4 − 𝜇) + 𝜑5 · (𝑡𝑐−5 − 𝜇) + 𝜀𝑐  
 (4) 

 
Where 𝜇 = 10 is the cycle time average, 𝜑𝑘 , 𝑘 = 1, … ,5 are the coefficients of the AR5 model and 

𝜀𝑐~𝑁(0,𝜎𝛿) is a white noise process following a normal distribution with 𝜎𝛿 deviation. 
Table 1 shows eight combinations of parameters values corresponding to eight scenarios that were 

studied. In addition, 𝜎𝛿 has been adjusted for each scenario so that �𝑉𝑎𝑟(𝑡𝑐)
𝜇

= 1/3. Thus, only the auto-
correlation pattern is altered but the coefficient of variation is kept constant. Scenario O represents the 
case of no autocorrelation. Scenario A contains only positive first order autocorrelation. Scenarios B and 
B’ represent cases with higher order autocorrelation, positive in one case and negative in the other. Sce-
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narios C and C’ represent cases in which there is jointly a low order autocorrelation effect and a higher 
order (5th order) opposite effect. D and D’ are variations on the previous scenario. 

Table 1. Scenarios for the simulation experiment. 

Scenario 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜎𝛿 
O 0.00 0.00 0.00 0.00 0.00 3.333 
A 0.50 0.00 0.00 0.00 0.00 2.350 
B 0.20 0.20 0.20 0.00 0.00 2.892 
B’ -0.20 -0.20 -0.20 0.00 0.00 3.019 
C 0.50 0.00 0.00 0.00 -0.50 3.207 
C’ -0.50 0.00 0.00 0.00 0.50 2.578 
D 0.30 0.20 0.00 -0.20 -0.30 2.984 
D’ -0.30 -0.20 0.00 0.20 0.30 1.995 

 
If times are constant, the capacity of this serial line would be 0.1 products per time unit. However, 

due to the limited capacity of intermediate buffers along with variability, this throughput rate is not 
achieved. Interarrival times were introduced following a normal distribution 𝑁(10, 1).The line perfor-
mance, defined as the percentage of the maximum capacity, was evaluated for each scenario by means of 
30 simulation runs. Table 2 shows the obtained results for buffer capacity equal to 1, 3 and 5. Average 
line performance (𝜂̅), its standard deviation (𝑠𝜂) and the 95% confidence interval for the mean (𝐶𝐼𝜂) are 
given for each buffer capacity. Figure 3 presents the same results in a chart. 

Table 2. Scenarios for the simulation experiment. 

Scenario 
Buffer capacity 1 Buffer capacity 3 Buffer capacity 5 
𝜼� 𝒔𝜼 𝑪𝑰𝜼 𝜼� 𝒔𝜼 𝑪𝑰𝜼 𝜼� 𝒔𝜼 𝑪𝑰𝜼 

O 86.43% 0.94% 0.35% 93.38% 1.39% 0.52% 94.87% 1.26% 0.47% 
A 81.74% 0.97% 0.35% 88.47% 1.30% 0.46% 91.47% 1.32% 0.47% 
B 81.42% 0.86% 0.31% 86.57% 1.58% 0.57% 89.55% 1.17% 0.42% 
B’ 92.14% 0.39% 0.14% 97.41% 0.69% 0.25% 98.23% 0.72% 0.26% 
C 76.55% 0.84% 0.30% 88.31% 1.07% 0.38% 93.37% 0.95% 0.34% 
C’ 91.49% 0.51% 0.18% 95.78% 0.66% 0.24% 96.80% 0.84% 0.30% 
D 80.67% 0.86% 0.31% 91.83% 0.80% 0.29% 95.58% 1.10% 0.39% 
D’ 95.04% 0.36% 0.13% 97.78% 0.63% 0.22% 98.10% 0.62% 0.22% 

 
As it can be seen in Table 2 and Figure 3, there is an evident impact of autocorrelation in line perfor-

mance which is indeed affected by buffer capacity. Positive autocorrelation scenarios (A and B) deterio-
rate performance when compared to the base scenario with independence in cycle times (O), irrespective 
of buffer size. Scenarios with negative first order autocorrelations (B’, C’ and D’) demonstrate an en-
hanced performance. Scenarios C and D (low order positive autocorrelation, high order negative autocor-
relation) show a more complex effect on performance depending on buffer capacity. For small buffer ca-
pacity, equal to 1, performance is as low or even lower than scenarios A and B. But once buffer capacity 
is increased, performance achieves similar levels to the base scenario or even higher. These results sup-
port evidence from previous research regarding the potential positive or negative effects driven by auto-
correlation on process performance (Hejn Nielsen, 2007). 
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Figure 3. Line performance for different buffer capacities. 

3 AUTOCORRELATION AT DIFFERENT TIME SCALES 

In this section, the impact in performance from average cycle times following first order autoregressive 
processes is studied for three general types of manufacturing processes: 

 A serial line with three machines 
 An assembly process in which the product flow from two parallel machines converges in a 

single workstation. 
 A disassembly process in which, after an initial processing in one machine, the product flow 

is randomly divided in two parallel lines with one machine each. 
All the process parameters have been chosen similarly so that the results from the three models may 

be compared more easily. Accordingly: 
 Input parts to the system are always available in the sources. 
 Machines cycle times are calculated as 𝑡𝑖,𝑐 = 𝜇𝑖 · 𝜀𝑖,𝑐 where 𝑡𝑖,𝑐 is the duration of cycle 𝑐 in 

the time period 𝑖, 𝜇𝑖 is the cycle time average in the period i and 𝜀𝑖,𝑐 follows a lognormal dis-
tribution with average 1 and standard deviation 𝜎𝑐 = 1/3.  

 Intermediate buffers capacities are set to one in all the experiments conducted (as a means for 
strengthening losses of performance due to blocking and starvation). 

 The response of the simulation model is the line performance 𝜂 calculated as the percentage 
of the maximum throughput (achievable under non-variability conditions with the long term 
cycle time average 𝜇 = 1 and equal to 1 product per time unit) that is observed in the model. 

For the serial line and the assembly line, every 𝑇 time units the average cycle time 𝜇𝑖 is generated fol-
lowing a first order autoregressive model (AR1) as shown in (5). 

 
𝜇𝑖 = 𝜇 + 𝛽 · (𝜇𝑖−1 − 𝜇) + 𝛿𝑖          (5) 

 
where 𝜇 = 1 is the long term average cycle time and 𝛿𝑖 is a white noise process with standard deviation 
𝜎𝛿. 

3.1 Serial Line 

The serial line modeled in Quest is shown in Figure 4. The model contains a source, three machines, two 
capacitated buffers, a sink and two controllers that generate the time series and sample data at fixed peri-
ods of time corresponding to the time series step 𝑇. 

The experimentation consisted of 200 simulation runs of 2000 time units (with a warm up time of 100 
units in which statistics were not collected) for each combination of the following parameters: 𝑇 =
{5,10,50,100}, β = {−0.8,−0.4,0.0,0.4,0.8} and σδ = {0,0.1}. Table 3 summarizes the results. As it can 
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be seen, autocorrelation has a negative impact in performance for both positive and negative autocorrela-
tion coefficients. The impact is greater when 𝑇 is increased. 
 

 
Figure 4. Serial line model. 

Table 3. Line performance 𝜂 (95% confidence level). 

𝑻 𝝈𝜹 = 𝟎 𝝈𝜹 = 𝟎.𝟏 
𝜷 = 𝟎.𝟎 𝛃 = −𝟎.𝟖 𝜷 = −𝟎.𝟒 𝜷 = 𝟎.𝟎 𝜷 = 𝟎.𝟒 𝜷 = 𝟎.𝟖 

5 92.21%±0.07% 90.88%±0.08% 91.20%±0.08% 90.92%±0.08% 90.29%±0.09% 87.28%±0.19% 
10 92.18%±0.07% 89.22%±0.10% 90.53%±0.08% 90.41%±0.10% 89.78%±0.11% 87.13%±0.26% 
50 92.17%±0.07% 87.39%±0.20% 89.60%±0.12% 89.69%±0.14% 89.46%±0.21% 87.25%±0.55% 

100 92.20%±0.07% 87.41%±0.29% 89.34%±0.16% 89.72%±0.18% 89.24%±0.29% 86.87%±0.64% 

3.2 Assembly Line 

The assembly line is based on the previous case. Two sources in parallel create parts which are processed 
in machines 1 and 2 (Figure 5). They are later assembled in the machine 3 requiring one part from each 
source to be batched together. 200 simulation runs of 2000 time units (with a warm up time of 100 units 
in which statistics were not collected) were performed for each combination of the following parameters: 
𝑇 = {5,10,50,100}, β = {−0.8,−0.4,0.0,0.4,0.8} and σδ = {0,0.1}. This assembly line shows the same 
behavior as the serial line (Table 4). 
 

 
Figure 5. Assembly line model. 

Table 4. Line performance 𝜂 for different model parameters (95% confidence level). 

𝑻 𝝈𝜹 = 𝟎 𝝈𝜹 = 𝟎.𝟏 
𝜷 = 𝟎.𝟎 𝛃 = −𝟎.𝟖 𝜷 = −𝟎.𝟒 𝜷 = 𝟎.𝟎 𝜷 = 𝟎.𝟒 𝜷 = 𝟎.𝟖 

5 92.26%±0.07% 90.96%±0.08% 91.39%±0.07% 91.15%±0.09% 90.40%±0.10% 87.39%±0.19% 
10 92.24%±0.06% 89.13%±0.10% 90.62%±0.09% 90.47%±0.09% 89.87%±0.11% 87.32%±0.31% 
50 92.18%±0.06% 87.16%±0.22% 89.54%±0.13% 89.79%±0.13% 88.93%±0.14% 86.30%±0.49% 

100 92.19%±0.06% 87.20%±0.32% 89.29%±0.19% 89.87%±0.19% 89.09%±0.27% 87.14%±0.80% 
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3.3 Disassembly Line 

For the disassembly line, autocorrelation was introduced in the definition of fractions of disassembled 
products which are processed in each parallel line instead of in cycle times averages. The model shown in 
Figure 6 consists of a first machine that performs the disassembling operation. For each input part two 
new parts are created. These two parts are randomly assigned to each one of the following parallel lines 
with probability 𝑝𝑖 where 𝑖 is the index of the time period of length 𝑇 as previously defined. Thus, parts 
are routed to machine 2 with probability 𝑝𝑖 and to machine 3 with probability (1 − 𝑝𝑖). The variability in 
𝑝𝑖 is modeled by an AR1 process as given in (6) in which 𝑝 = 0.5 is the long term average and 𝜉𝑖 is a 
white noise process with standard deviation 𝜎𝑝. As shown in Table 5, no relevant effects due to autocorre-
lation were found. 

 
𝑝𝑖 = 𝑝 + 𝛽𝑝 · (𝑝𝑖−1 − 𝑝) + 𝜉𝑖          (6) 

 

 
Figure 6. Disassembly line model. 

Table 5. Average buffer content for different model parameters (95% confidence level). 

𝑻 𝝈𝜹 = 𝟎 𝝈𝜹 = 𝟎.𝟏 
𝜷 = 𝟎.𝟎 𝛃 = −𝟎.𝟖 𝜷 = −𝟎.𝟒 𝜷 = 𝟎.𝟎 𝜷 = 𝟎.𝟒 𝜷 = 𝟎.𝟖 

5 75.06%±0.10% 75.06%±0.10% 75.14%±0.09% 75.11%±0.08% 75.04%±0.09% 75.06%±0.08% 
10 75.04%±0.11% 74.95%±0.08% 74.96%±0.09% 75.11%±0.08% 75.02%±0.10% 75.03%±0.10% 
50 74.93%±0.10% 75.00%±0.08% 75.04%±0.10% 74.99%±0.09% 75.02%±0.10% 74.98%±0.07% 

100 74.94%±0.11% 75.03%±0.08% 75.19%±0.09% 74.93%±0.09% 74.97%±0.09% 74.99%±0.09% 

4 CASE STUDY 

4.1 Process Description 

A manufacturing plant of natural slate tiles was analyzed by means of discrete events simulation within 
the frame of a co-operation R&D project (Rego Monteil et al. 2010; del Rio Vilas et al. 2009). Since this 
is a labor-intensive process that deals with natural products, it is a paradigmatic case of highly variable 
manufacturing environment (Crespo Pereira et al. 2012). 

The production process begins with the extraction of irregular pieces of slate from a quarry, which are 
then transported to the manufacturing plant. There, they are first sawed into blocks and then manually 
split into pieces of a standard thickness. Afterwards, the resulting piles of plates are cut into different 
shapes and sizes according to the commercial formats. Finally, tiles are classified by standardized grades 
of quality and then packed in crate pallets. Three main formats are produced (32x22mm, 30x20mm and 
27x18mm) as well as three quality grades (first, traditional and standard) and two thickness (3.5mm and 
4.5mm). 
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The process was initially out of statistical control and neither task duration standards nor systematic 

production control rules were available. Decisions were taken in a reactive mode according to intuitive 
rules developed by the plant foreman. As a means for improving the knowledge on the process behavior, 
data were collected from production records, video recording and interviews with workers. A simulation 
model was developed and implemented in Quest V5R20 aiding in the process analysis stage by indicating 
information requirements and the relations between elements.  

The first developed simulation model (M1) (in which no autocorrelation effects were considered) 
showed some problems in the validation step. Relevant differences in production variability and work in 
process levels were found. After a deeper analysis of the input data time series, a second model (M2) was 
developed in which daily variations in process parameters were modeled by means of autoregressive pro-
cesses. The second model presented a closer behavior to the real system so it was employed in later steps. 
A new proposed layout was analyzed by means of M2 (Crespo Pereira et al. 2012), showing a reduction 
in non-value added activities along with an increase in plant capacity. Figure 7 presents the simulation 
model for the original and proposed layouts. 

 

 
Figure 7. Quest models for the actual layout (left) and new proposed layout (right). 

4.2 Autocorrelation Effects 

In this system, the following seven key parameters were considered due to their impact in performance: 
 𝜏𝑆𝑈: Utilization rate of split blocks. It represents the percentage of the blocks material that is 

transformed into tiles. 
 𝜏𝑇𝐹: Rate of target format slates produced in the cutting operation. The target format is usual-

ly 32x22mm. A tile cut in 32x22mm size may be recirculated in the classification step to be 
cut in a smaller size. 

 𝜏𝑟𝑒𝑗: Rejection rate in the classification step. Rejected tiles are wasted. 
 𝜏32: Rate of 32 format slates finally produced in the factory. 
 𝜏𝐹: Rate of First grade slates produced in the factory. 
 𝜏𝑟𝑒𝑐𝑖𝑟𝑐: Rate of slates recirculated after the classification step for cutting into smaller sizes. 
 𝜏𝑡ℎ𝑖𝑐𝑘: Rate of slates classified as of 4.5mm thickness. 

Since the input rate of blocks into the factory is kept constant, the aforementioned parameters deter-
mine the throughput rate for the different grades and formats commercialized. Thus, they affect both pro-
duction costs and revenues. These parameters vary along time depending on the extracted material prop-
erties (which are heterogeneous throughout the quarry). Daily production records were used to estimate 
their values. 

In the first developed model (M1), these parameters were introduced by their mean values. Once re-
sults from the model were found to underestimate variability, their time series were analyzed. First of all, 
the time series were normalized and a Principal Components Analysis (PCA) was performed aiming at 
avoiding problems of collinearity. Four principal components were found to account for the 80.30% of 

1382



D. Crespo Pereira, D. del Rio Vilas, N. Rego Monteil, R. Rios Prado and A. Garcia del Valle 
 

the variance. Their values are shown in Table 6. Then, first order autoregressive models (as given in (7)) 
were fitted for these four components. Terms of higher autocorrelation order were rejected due to low 
significance. Table 7 shows the fitted models (indicated in the “System” rows).  
 

𝑐𝑖,𝑡 = 𝛽1,𝑖 · 𝑐𝑖,𝑡−1 + 𝜉𝑖,𝑡          (7) 
 
where 𝑐𝑖,𝑡 is the value of the 𝑖𝑡ℎ principal component in day 𝑡, 𝛽1,𝑖 the first order autocorrelation coeffi-
cient and 𝜉𝑖,𝑡~𝑁(0,𝜎𝑐,𝑖) is a white noise process of standard deviation 𝜎𝑐,𝑖. 

The fitted time series were implemented in the Quest simulation model. Thus, the two modeling ap-
proaches could be compared. In M1, process parameters average values were kept constant along the 
simulation and variability was only introduced in cycle time distributions. In M2, daily average values of 
the process parameters were generated following the fitted AR models and variability was also introduced 
in cycle time distributions. More details on the models implementation are provided by Crespo Pereira et 
al. (2012) 

Table 6. Principal Components Analysis of the parameters time series. 

Parameter Principal Components 
𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

𝜏𝑆𝑈 0.466 -0.254 - -0.152 
𝜏𝑇𝐹 - 0.566 -0.377 0.236 

1 − 𝜏𝑟𝑒𝑗 -0.537 0.162 0.116 - 
𝜏32 0.451 0.232 0.109 0.151 
𝜏𝐹 - -0.343 -0.819 -0.258 

𝜏𝑟𝑒𝑐𝑖𝑟𝑐 -0.492 - -0.234 - 
𝜏𝑡ℎ𝑖𝑐𝑘 - -0.397 -0.112 0.897 

 
In order to validate models M1 and M2, production records similar to those available from the factory 

were generated by means of simulation. The time series analysis conducted on real data was applied to the 
simulated data. Table 7 shows the variances and the autocorrelations of the principal components time se-
ries fitted for the real data and for the generated data from both simulation models. M2 provides a more 
precise approximation to real data than M1. Standard deviations and first order autocorrelation coeffi-
cients are closer to real values for M2 than those from M1. The Table also shows the p-value of the t-test 
performed for testing the null hypothesis 𝛽1,𝑖 = 0. 

Other process variables were also considered in the validation stage. Four relevant variables are the 
content of buffers previous to cutting and classification operations and the utilization of splitters and 
packers. The autocorrelation function of daily averages time series were compared for M1 and M2. Real 
values from data were not available in this case, but M2 was considered to be a more realistic representa-
tion of the system because of the previous results. Figure 8 shows the autocorrelation function generated 
by M1 and M2 for these variables. It represents the autocorrelation coefficients 𝜌𝑙 as a function of the lag 
𝑙 as defined by (1). As it can be clearly noticed, models M1 and M2 display quite different autocorrelation 
functions. This result shows that the behavior of process variables may be severely affected by the con-
sideration of autocorrelation effects in some process variables. 

Finally, Figure 9 depicts the simulated time series of daily average connection buffer contents for 
both models. M2 shows a more irregular pattern of buffer contents that better corresponds with descrip-
tions of the system behavior provided by the plant managers. Thus, this result supports the previous 
statement that M2 is a better representation of the plant. To conclude with, it can be said that in this case 
the i.i.d. assumption of process parameters would lead to an underestimation of both process variability 
and buffer contents. 
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Table 7. Comparison between models generated results and real data. 

  c1 c2 c3 c4 
Std. Deviation 

(�𝒗𝒂𝒓�𝒄𝒊,𝒕�) 

System 1.667 1.344 0.981 0.914 
Model 1 1.465 1.158 1.073 1.010 
Model 2 1.571 1.363 0.988 0.963 

AR1 coef. 
(𝜷𝟏,𝒊) 

System 0.714 0.619 0.451 0.211 
Model 1 -0.539 -0.474 -0.413 0.014 
Model 2 0.432 0.285 0.354 0.153 

𝜷𝟏,𝒊 t-test  
p-value 

System <2e-16 <2e-16 1.17e-10 0.00493 
Model 1 <2e-16  2.44e-14 1.34e-10 0.844 
Model 2 1.88e-09 0.000162 0.00000194 0.049 

 

  

  
Figure 8. Autocorrelation functions for daily averages of buffer contents and resources. 

 
Figure 9. Time series of average daily content of buffers for models 1 and 2 (M1 and M2). 
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5 CONCLUSIONS 

Autocorrelation in manufacturing processes has been analyzed by means of three simulation experiments. 
In the first experiment, autocorrelation in cycle time series has been shown to have diverse effects in pro-
cess performance depending on the autocorrelation structure being considered. This result supports previ-
ous results provided in the literature. Generally, process performance is enhanced by negative autocorre-
lation effects and reduced by positive autocorrelation. More complex autocorrelation patterns affect 
performance depending on buffer capacities. 

The second experiment consisted of the analysis of autocorrelation present in process parameters var-
ying at different time scales. In this case, negative effects in performance have also been found, becoming 
more acute as the considered time series step increases. In this case, both negative and positive autocorre-
lation diminish performance. However, for a disassembly process, autocorrelation in the product down-
stream routing probabilities  do not seem to have a noticeable effect. 

Finally, a real case study has been presented. This case provides a practical example on how consider-
ing autocorrelation may enhance the accuracy of a model. A model in which autocorrelation in process 
parameters is considered exhibits a more similar behavior to the real system. In addition, autocorrelation 
functions in key process variables such as daily buffers contents and resources utilization depict evident 
differences in this model. 
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