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ABSTRACT

This paper is an overview of recent results by Belomestny and Schoenmakers 2011 and Belomestny, Ladkau,
and Schoenmakers 2012, on dual and primal Monte Carlo evaluation of American style derivatives using
multilevel principles. It presents a novel and generic approach to reduce the complexity of nested simulations
problems arising in Monte Carlo pricing of American options. The approach genuinely uses the multilevel
idea where each level corresponds to a given number of inner simulations. A thorough complexity analysis
of the respective nested dual algorithm and nested policy improvement algorithm shows that a significant
complexity reduction can be achieved by using the multilevel versions of the algorithms.

1 INTRODUCTION

Pricing high-dimensional American options in an efficient way has been a challenge for decades. For low
or moderate dimensions, deterministic (PDE) based methods may be applicable, but for higher dimensions
Monte Carlo based methods are practically the only way out. Besides the dimension independent convergence
rates, Monte Carlo methods are also popular because of their generic applicability. In the late nineties
several regression methods for constructing “good” exercise policies yielding price lower bounds were
introduced in the literature (see Carriere 1996, Longstaff and Schwartz 2001, and Tsitsiklis and Van Roy
2001, for a detailed description see also Glasserman 2004). Among many other approaches we mention
that Broadie and Glasserman 2004 developed a stochastic mesh method, Bally and Pages 2003 introduced
quantization methods, and Kolodko and Schoenmakers 2006 considered a class of policy iterations. In
Bender, Kolodko, and Schoenmakers 2008 it is demonstrated that the latter approach can be combined
effectively with the Longstaff-Schwartz approach.

The methods mentioned above commonly provide a (generally suboptimal) exercise policy, hence a
lower price for an American product. They are therefore called primal methods. As a next breakthrough
in the Monte Carlo simulation of American options, a dual approach was developed by Rogers 2002 and
independently by Haugh and Kogan 2004, related to earlier ideas in Davis and Karatzas 1994. Due to the
dual formulation one considers “good” martingales rather than “good” stopping times. In fact, based on a
“good” martingale the price of an American derivative can be bounded from above by a “look-back” option
due to the difference of the cash-flow and this martingale. Probably one of the most popular numerical
methods for computing dual upper bounds is the method of Andersen and Broadie 2004. However, this
method has a drawback, namely a high computational complexity due to the need for nested Monte Carlo
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simulations. As a remedy, Belomestny, Bender, and Schoenmakers 2009 developed a non-nested simulation
algorithm using regression for approximating the integrand of a suitable martingale representation.

In this paper we review two new multilevel Monte Carlo simulation approaches where the multilevel
concept is applied to the number of inner Monte Carlo simulations, rather than the discretization step size
as in Giles 2008. While the first approach relies on the dual method leading to a multilevel version of the
Andersen and Broadie 2004 algorithm, the second one leads to a multilevel version of the policy iteration
approach presented in Kolodko and Schoenmakers 2006. Regarding the latter part only standard (Howard)
policy iteration is considered, but, with no doubt the method may be applied successfully to the more
refined policy iteration procedure in Kolodko and Schoenmakers 2006 as well. Finally we note that in this
review all theorems are stated without proofs. For proofs and further details we refer to Belomestny and
Schoenmakers 2011 and Belomestny, Ladkau, and Schoenmakers 2012, respectively.

2 PRIMAL AND DUAL VALUATION OF AMERICAN OPTIONS

Let (Z;) j>0 be a nonnegative adapted process on a filtered probability space (Q,F = (.%;) j>0,]P) representing
the discounted payoff of an American option, so that the holder of the option receives Z; if the option
is exercised at time j € {0,...,T} with T € N,. The pricing of American options can be formulated as
a primal-dual problem. Let Y; denote the time j solution to this problem. The primal representation
corresponds to the following optimal stopping problems

Y':= max Egzl[Z], j=0,...,T,
7= Bl

J

where 7 [j,...,T] is the set of F-stopping times taking values in {j,...,T}. The process (Y *) . is called
jz
the Snell envelope. It is well known that Y* is a supermartingale satisfying the Bellman principle

Y/ =max (Z;,Ez[Y;,]), 0<j<T, Yf=Zr.

An exercise policy is a family of stopping times (Tj)j:() _p such that 7; € 7[j,...,T].
During the nineties the primal approach was the only method available. Some years later a quite
different “dual” approach was discovered by Rogers 2002 and Haugh and Kogan 2004. The next theorem

summarizes their results.

Theorem 1 Let.# denote the space of adapted martingales, then we have the following dual representation
for the value process ¥

Y= inf Ez | max (Z,—m,+T;
Y A se{j,A..,T}( s A )

where

Y] =Yg+ — A (1)
is the (unique) Doob decomposition of the supermartingale Y;. That is, 7* is a martingale and A* is an
increasing process with my = Ag = 0 such that (1) holds.

3 UPPER AND LOWER BOUNDS FOR BERMUDAN OPTIONS VIA NESTED MONTE CARLO

Assume that the cash-flow Z; is of the form (with a slight abuse of notation) Z; = Z;(X) for some underlying
(possibly high-dimensional) Markovian process X. As a consequence, the Snell envelope then has the form
Y:=Y;(X;),j=0,...,T, as well. Furthermore, it is assumed that we are given a stopping family (7;)
that is consistent, 1i.e.

Tj>j:>Tj:’L'j+1, j=0,...,T—1,
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and that (7;) depends on @ only through the path X. in the following way. For each j the event {7; = j}
is measurable w.r.t. 6{X;}, and 7; is measurable w.rt. 6{Xy, j <k <T}, ie,

7j(®) = hj(Xj(®),....Xr(@)) )
for some Borel measurable function /;. A typical example of such a stopping family is
ti=inf{k: j <k <T,Z(Xx) > fi(Xi) } AT,

for a set of real valued functions f;(x), with j =0,...,7, and A denoting the minimum operator. The
stopping policy defines a lower bound for Y* via

Y;=Eg[Z;), j=0,...,T.

Consider now a new family (T]) _,...r defined by

.....

Ti=inf{k: j<k<T, Zx >Egz[Zq, ]} AT. 3)

The basic idea behind (3) goes back to Howard 1960 in fact. For more general versions of policy iteration
and their analysis, see Kolodko and Schoenmakers 2006. Next, we introduce the (.%)-martingale

J
= Z E,/k Z’Ck E«gk,l [Z’Ck]) ) ] = 07 (ARS T) (4)

and then consider,

Yi:=Egz kil}?t?(T(Zk_ )|,

along with

Y;:=Egz[Z], j=0,...,T.
The following theorem states that Y is an improvement of ¥ and that the Snell envelope process Y lies
between IA’ i and ?j with probability 1.
Theorem 2 It holds

=

Y;<Y;<Y;<Y;, j=0,....T as.

The main issue in the Monte Carlo construction of ¥ and Y is the estimation of the conditional
expectations in (3) and (4). A canonical approach is the use of sub-simulations. In this respect we consider
an enlarged probability space (Q,F',P), where I’ = (F]) j—0..r and F; C F for each j. By assumption,

7 specified as

Fi=F;Vo{X"N i< j} with F;=0{X;, i< j},

where for a generic (@, ®;,) € Q, X' = X,ﬁ’x"(m(a)m) k > i denotes a sub trajectory starting at time 7 in

the state X;(®) = X; FXi(@) of the outer trajectory X(w). In pamcular the random variables X and X' "

are by assumption 1ndependent, conditionally {X;, Xy}, for i #{'. On the enlarged space we consider .7 ]’

measurable estimations ¢y of C; =E T [ZT]. +1] as being standard Monte Carlo estimates based on M sub
simulations. More precisely

1 ¥ X;
Cimw=—Y Z (X’
M M mgl T/“( J(Il)
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where (m) Xj,(m) . Xj,(m)
m ] JAj,\m .
T =hjin (XG0, Xp7), 0<j<T
are evaluated on M sub trajectories all starting at time j in X;. Obviously, ¢ s is an unbiased estimator

for C; with respect to E#, [-]. We thus end up with simulation based versions of (3) and (4) respectively,

Ty :=inf{k: j<k<T, Zx>CGu}NT, j=0,.,T,

j
Tim = Z (Zk — Cr1.m) Vz=iy
=

~

J
+ ) (Gom — C1m) Lz
k=1
Denote R

Yj,M = Eg;j[Z?le}, jZO,...,T

and

Yj,M = E(gzj kmaxT(Zk — T m + T, M)

.....

Concerning the properties of 17]7M and ?LM one can prove the following results under mild regularity
conditions.

Theorem 3 Let us assume that there exist constants By > 0, B; > 0 and o > 0, such that for any 6 > 0
and j=0,....,T—1,
P(|Eg[Z:,,,] — Zj| < 8) <Bo8*, |Z;| <Bi.
It then holds,
Yo — You| < M B,
with some constant B depending only on «, By and B. Moreover

E[(Z-

fow — Z7,)'] < CMO2,
for some C > 0.

Theorem 4 Introduce for 2 :=max;—o__ r(Z;—7;), the random set

Q:{jlzj'—ﬂj:ff},
and the .%7r measurable random variable

A=min(Z -Z;+7;),
j¢2

with A := 4o if 2=1{0,...,T}. Obviously A > 0 a.s. Further suppose that
E[A™%] < oo for some 0 < & <1, and #2=1.
It then holds,
’170 _?O,M’ < CM_%I
for some constant C.

Example 1 Let us assume that A has a density g that is continuous and finite in a right neighborhood of

zero. We then have : .
IE—:/ 7 %g(z)dz < oo forany 0 < & < 1.
AS 0
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4 POLICY IMPROVED LOWER BOUND BY MULTILEVEL MONTE CARLO

For a fixed natural number L and a set of natural numbers m : = (my, ...,my) satisfying 1 <myg < ... <my,
we consider in the spirit of Giles 2008 the telescoping sum

mfﬂ%+zﬁ%—mH)
=1
where ?m = ?O,m- Next we take a set of natural numbers n : = (ny, ...,n;) satisfying nop > ... >n; > 1, and
simulate an initial set of cash-flows .
{70, =1, .m0},

)

due to an initial set of trajectories {X.O’x’(j ,j=1,..,n0}, where

) . 0.5()
20 =z (x57).

T
"o 0,m 1077710

Next we simulate independently for each level [ =1,...,L, a set of pairs

due to a set of trajectories x0=U ), j=1,...,n;, to obtain the multilevel estimator

7o L0y LN ()0
% m .= YA +IZZI n j;l (Z?m[ Z?nq_l) (5)

) T,
no ;= o

as an approximation to Y. Henceforth we always take m to be a geometric sequence m; = mok’, for some
mo, KEN, k> 2.

5 DUAL UPPER BOUND BY MULTILEVEL MONTE CARLO

With the notations of the previous section we define

where Y, := Yo,m. Given a sequence n = (ng,...,ny) with ng > ... > ny > 1, we then simulate for / =0 an
initial set of trajectories

“4%#%Li:1me j:anﬁ}

of the two-dimensional vector process (Z;, ; ), and then for each level [ = 1,...,L, independently, a set
of trajectories

(@) A, 20, i=1m, j=0...T}

Jo0 i
of the vector process (Zj,jm, ,,%;m ). Based on this simulation we consider the following multilevel
estimator:

Tom =Y 0 13 Ly 0 0 6
nm - n Z my +Z Z[ my ml,l] ( )
0i=1 =1 " =1

with .%,(,f) ‘= max;—g,..T (Z(.i) — g

j j7ml>,i:17...,nl7l:0’.”7L.
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Complexity analysis

Let us now compute the numerical complexity of the multilevel estimators (5) and (6). To this end we
consider a “generic” multi-level estimator for a target quantity X of the form:

nm—iz%mo“‘z Z - mll (7)

nl,

where for any fixed [ the random variables 5&”,75,’ ,i=1,...,n, are i.i.d. and the pairs (%,&f),%,ﬁfll),
l=1,...,L, are independent. Assume that there are some positive constants ¥, B, Ue, O and ¥ such
that Var[.2,,] < o2,
X —E[Zu]] < pom™, meN ®)
and
B[ L — X )P < Ve P 1=1,.. L. )
These assumptions immediately imply
B [Xnm] — X[ < poorm ”
and ,
oz Ve
Var [Xom] < —=+ ) —5-
n
0 1=1nmy
Note that in the case of the multilevel policy iteration algorithm we have (under assumptions of Theorem 3)

Y= (14+a)/2 and B = a /2, where typically @ > 1. For the multilevel dual algorithm it obviously holds
(under premises of Theorem 4) Y= (§+1)/2 and B = 1.

Theorem 5 Let us assume that 0 < f <1, 7> > 1 5 and m; = mox! for some fixed k and mg € N. Fix some
0 < e <1.Let L=L(¢) be the integer part of

3]

ylnk mie

and
n = noK‘il(lJrﬁ)/z with

202 2¥, kHI-B)/2_q
— _ e o (1-B)/2
no = ng (€) =2 +82mg B K )

Then the number of numerical operations needed to achieve the accuracy €, i.e., to get \/E[(X —Xam)?] < €
is given, up to a constant, by

%1\',’[{“(8) = nomo—l—an(ml—l—ml_l)
=1

Z%OKI*Bm(I)_ﬂ (1+x1)

82
(V2o i) P 1 o2y
xk(1=B)/2 — 9 1c(1=B)/2
(\ﬁ“w/mg)’g)(lfﬁ)/w_ 1 - (1-B)/2
(-B)/2 _ | )
= 0(8_2_%), £\, 0.
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Corollary 6 By letting B 1 we derive from Theorem 5 that under the choice

nlznoKil with
202 2V
+

oo

Ty 2
e €my

nop=nop (&) =

for B =1 it holds
G (€) = 0(e *In*e), €\,0.

(cf. the situation in Belomestny and Schoenmakers 2011).

Let Cff&é‘/[ (&) stand for the numerical complexity of the standard Monte Carlo estimate of X based on

M inner and N outer paths.
Corollary 7 It holds for 8 < 1,

e
=0(eP/r), eN,0
Gyan (€)
and for f =1,
G, (€) 1
ML Z) — 0(e'/71n?e), e \,0.
ey 0TI e
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