
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

MODEL-DRIVEN PERFORMANCE PREDICTION OF
HLA-BASED DISTRIBUTED SIMULATION SYSTEMS

Daniele Gianni

Paolo Bocciarelli

European Space Agency University of Rome TorVergata
Keplerlaan, 1 Via del Politecnico, 1

N-2200 AG, Noordwijk, The Netherlands I-00133 Rome, Italy

Andrea D’Ambrogio

University of Rome TorVergata
Via del Politecnico, 1
I-00133 Rome, Italy

ABSTRACT

Performance models offer a convenient tool to assess design alternatives and predict the execution time of
distributed simulation (DS) systems at design time, before system implementation. Currently, perfor-
mance models are to be manually developed and the related extra effort often becomes the limiting factor
for their cost- and time-effective use. In this paper, we aim to reduce this extra effort with the introduction
of a model-driven method for the automated building of performance models whose evaluation provides a
prediction about of the execution time of a distributed simulation system. As such, the method contributes
to bring software performance engineering techniques into the distributed simulation system lifecycle. In
particular, we show how the SysML-based specification of the system to be simulated and the design
documents of the DS system can be used to derive the topology and the parameters of a performance
model specified according to the Extended Queueing Network formalism.

1 INTRODUCTION

Computer simulation is a key tool for systems engineering in many domains as it provides engineers with
virtual representations that can be used to predict and validate the design alternatives at design time, as
well as to analyze system behavior at operation time. However, the ever growing complexity of modern
systems may often require computational capabilities that are not available through local simulation ap-
proaches. These capabilities can be often achieved by Distributed Simulation (DS) approaches, which
overcome the limitations of the local approaches by running loosely coupled partitions of the simulators
over an internetworked set of hosts. However, DS approaches require substantial technical know-how and
a considerable development effort for implementing the DS system (Gianni et al. 2011). Moreover, a DS
may not necessarily yield reduced execution times with respect to a local simulation, as the synchroniza-
tions and communications over the network can become the bottleneck of the DS system. Before invest-
ing in the development of a DS system, it is therefore convenient to predict the DS performance and eval-
uate whether the DS approach can lead to reduced execution times.

Predictive performance engineering methodologies have been introduced to estimate the execution
time of a DS system, thus supporting the evaluation of design alternatives and minimizing the risk that the
DS system will not meet the expected performance (Chu-Cheow et al. 1999; Perumalla et al. 2005; Ewald

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 3300978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Gianni, Bocciarelli, and D’Ambrogio

et al. 2006; Gianni et al. 2010). However, barriers to the wide adoption of these methodologies still exist.
Specifically, considerable performance engineering expertise is still needed as well as a manual effort to
derive the performance models from the simulated system and DS system design documentation. Lower-
ing these barriers, and make these predictive methodologies cost- and time-effective, is therefore a key is-
sue to bring performance engineering practices into the DS system lifecycle. These barriers can be miti-
gated by reducing the required know-how—for example automating the derivation of performance
models—and by limiting the production of extra artifacts—for example reducing the design effort of the
DS system by reusing artifacts produced by engineering processes of the system to be simulated.

In this paper, we aim to achieve above mentioned objectives by introducing a model-driven method
for the derivation of predictive DS system performance models from SysML models of the system to be
simulated and from UML models of the DS system. As such, the method relieves simulation engineers
from the need of acquiring performance engineering know-how and from the effort related to the produc-
tion and validation of the performance model. The method is based on performance models specified in
the Extended Queuing Network (EQN) formalism (Boolch et al. 2006), and is originated from our previ-
ous work in the areas of model-driven simulation engineering (Bocciarelli et al. 2012) and simulation per-
formance engineering (Gianni et al. 2010). The method consists of a sequence of steps that, starting from
models of both the system to be simulated and the DS system, derive the topology and the parameters of
an EQN model representing the time-performance of the DS system. The EQN performance model is then
automatically implemented and executed to obtain predictions of the execution time of the DS system.

The paper is structured as follows. The background section recalls notions and concepts upon which
the methodology is defined. The method section outlines the steps for the derivation of the EQN perfor-
mance model. Finally, the example section presents the derivation of a predictive EQN performance mod-
el for a simplified manufacturing system and the model validation through comparison with a simulator
built on top of the HLA (High Level Architecture) distributed simulation technology (IEEE 2000).

2 BACKGROUND

The paper contribution is defined using concepts and principles from Model-driven engineering (MDE)
(Schmidt 2006), and in particular from Model-driven Architecture (MDA) (OMG 2003) and Model-
driven Performance engineering (MDPE) (Balsamo et al. 2004), as illustrated in the following two sub-
sections, respectively.

2.1 Overview of MDE and MDA

MDA is the most prominent implementation of MDE principles, which define an approach for developing
systems by use of formal abstract models that are decoupled from the peculiarities of the implementation
platforms, and the related technical complexity. The MDE approach is based on a set of iterative model
transformations between different levels of abstractions, from the abstract specification down to the im-
plementation into a specific platform. In line with this definition, MDA defines a set of standards that
support both model definition and model transformations (model-to-model and model-to-text, depending
on the abstraction level). Specifically, MDA consists of the following main standards: Meta Object Fa-
cility (MOF)—for specifying technology neutral metamodels (i.e., models used to describe other models)
(OMG 2004), XML Metadata Interchange (XMI)—for serializing MOF metamodels/models into XML
(OMG 2007) and Query/View/Transformation (QVT)—for specifying model transformations (OMG
2008).

2.2 Model-driven Performance Engineering

MDPE deals with the use of MDE principles and standards in the software performance engineering con-
text, with a specific focus on MDA standards. Software performance engineering methods are applied to
introduce the so-called lifecycle validation of software systems, i.e., the ability to predict the non-
functional behavior of the system before its implementation. The main idea behind MDPE is to exploit

3301

Gianni, Bocciarelli, and D’Ambrogio

the system models available at specification/design time not only to apply MDE-based system develop-
ment approaches but also to automatically derive the performance models that provide the required pre-
dictions in terms of efficiency, reliability and/or performability. The performance model building activity,
which can be time-consuming and error-prone if carried out manually, is carried out by specifying and
executing automated model transformations that take as input the standard (e.g. UML) software design
models and yield as output the corresponding prediction models specified by use of a given formalism
(e.g., queueing-based models, petri nets, process algebras, etc.). This provides an integrated approach that
can be effortlessly used to integrate lifecycle validation into MDE-based system development processes.
A comprehensive survey of MDPE methods can be found in (Balsamo et al. 2004), while specific contri-
butions related to the automated generation of queueing-based performance models can be found in
(D’Ambrogio et. al 2007; Bocciarelli et. al 2008).
 Specifically, in this paper both the UML and the Performance Model (PM) are instances of their re-
spective metamodels, which are defined using MOF constructs. At metamodel level, model transfor-
mations are defined using QVT for the derivation of a PM from a UML model. Both these models are se-
rialized in XMI documents by means of pre-defined XMI rules, which with XMI schemas, allow the
validation of the respective XMI documents.

3 METHOD FOR PERFORMANCE PREDICTION OF DS SYSTEMS

The proposed method takes into account the following types of models:
 system model: the model of the system to be simulated by use of a DS approach, specified as a

SysML model;
 DS model: the design model of the DS system to be implemented, specified as a UML model;
 performance model: the performance model of the DS system, specified as an EQN model (to-

pology and parameters).
The method introduces a set of steps for the derivation of a performance model from both the system

model and the simulation model.
Figure 1 illustrates the proposed method, which consists of the following steps:
1) system model partitioning: a manual step that partitions the system model to identify which SysML

blocks are to be transformed into simulation components of the DS model (Bocciarelli et al. 2012);
2) DS model building: a manual, but potentially automated, step that takes as input the partitioned sys-

tem model and derives the DS model. This model is specified as a UML model consisting of a Com-
ponent Diagram, a Deployment Diagram and a set of Activity Diagrams, one for each federate of the
DS system;

3) performance model building: an automated step that takes as input the DS model and yields as output
the performance model, specified according to the metamodel introduced in (Bocciarelli et al. 2012),
specifically for what concerns the EQN topology;

4) performance model parameterization: an automated step that takes as input the DS model and yields
as output the parameters of the EQN-based performance model obtained at step 3;

5) performance model implementation: an automated step that transforms the EQN-based performance
model into the corresponding implementation, by use of EQN implementation technologies – e.g.,
jEQN (D’Ambrogio et al. 2006; Gianni et. al 2008) or OMNET++ (www.omnetpp.org/);

6) performance model evaluation: an automated step that executes the model implementation obtained at
step 5 to yield the indices for the prediction of the DS system performance, in terms of execution
time.

 In the rest of the paper, we focus the attention on step 3 (performance model building) and step 4
(performance model parameterization). The remaining steps are briefly discussed in the example applica-
tion (see Section 4) as they are either application specific or of more conventional MDA nature.

3302

Gianni, Bocciarelli, and D’Ambrogio

Figure 1: Overview of the method for performance prediction of DS systems.

 The main objective of the following sections is to illustrate the knowledge that is embedded into the
transformation patterns required to automatically obtain an EQN-based performance model from a system
model specified in SysML and a DS model specified in UML. The specification of such transformation
patterns into a standard MDA-based transformation language (e.g., QVT) and their serialization into
XML is not covered here. The interested reader may refer to existing MDPE contributions to get a grip on
how to translate the proposed transformation into a formal specification defined by use of the languages
described in Section 2.2.

3.1 Performance Model Building

This step yields to the definition of the EQN-based performance model from a DS model consisting of: 1)
a Component Diagram, a Deployment Diagram and a set of DS Activity Diagrams for the HLA-based
time conservative federates.
 The step is developed in two sub-steps: a) derivation of the EQN horizontal schema, which identifies
the HW resources and their high-level interconnections, and b) derivation of the EQN performance mod-
el, which uses EQN primitives (service centers, queues, fork, join, etc.) to detail the interconnections de-
pending on the interactions defined in the DS Activity Diagram of the generic federate.

3.1.1 Derivation of the EQN Horizontal Schema

The HW execution platform of the DS system consists of a set of hosts interconnected by a LAN, MAN
or WAN infrastructure. In UML, such platform is specified by use of a Deployment Diagram annotated
with the standard MARTE (OMG 2009) profile for representing the performance characteristics, such as
CPU speed, network latency and bandwidth. Let's assume that the reference HW platform is described by
the Deployment Diagram in Figure 2.
To complete the full specification of the HW execution platform, the diagram also indicates the software
allocation of federate components (stereotyped as <<artifact>>) onto the above defined hosts, by use of
dependency associations stereotyped as <<deploy>>. We limit the presentation of our method to a DS
system consisting of a RTI Server, a Federation Manager and two federates (Federate 1 and Federate 2).
The allocation on the individual hosts is arbitrary and is also presented to show the reasonable assumption
that no host is running more than one federate.
RTI implementations, such as pRTI 1516 (www.pitch.se/pRTI1516), are commonly based on decentral-
ized architectures, which offer improved performance with respect to the centralized ones. In decentral-
ized architectures, the RTI Server participates actively only in the initialization phase when direct TCP/IP
connections are established among the participating RTI Locals, which are incorporated into each feder-
ate. As a consequence, the RTI Server can be safely omitted for a performance analysis that aim to deter-
mine the steady-state performance of a DS system. Analogous observations can be made on Host 4 which
runs the Federation Manager — a special type of federate that coordinates the federation execution (Kuhl
et al. 1999).

3303

Gianni, Bocciarelli, and D’Ambrogio

Figure 2: DS Deployment Diagram.

The Federation Manager heavily participates in the initial phase and in the final phase, which can be safe-
ly omitted from our analysis. During the federation execution, the Federation Manager also regulates the
advancement of the global time in the DS. However, this operation has minimal impact on the DS system
performance if the Federation Manager is run by a dedicated host that 1) is also physically located be-
tween Federate 1 and Federate 2, and 2) presents an identical delay time with respect to Host 1 and Host
2. Differently, Host 1 and Host 2 are central to the performance prediction and can be characterized at
several levels of details. Each host is provided with its own resources: CPUs, main memory and data stor-
age devices. For the sake of simplicity, the CPU can be assumed to be the only local resource used in each
host. Main memory blocks can be reasonably assumed to be of infinite capacity, implying that the simula-
tor would never incur in execution suspension while waiting for the release of memory locations. Moreo-
ver, the main memory can be assumed to introduce a delay that can be seamlessly incorporated in the
CPU performance modeling. Similarly, data storage devices can also be omitted for simulation systems
that do not store any intermediate data during the simulation execution. However, it is important to re-
mark that these assumptions are only simplifications useful to ease the illustration of the method, which
can be easily extended to incorporate additional resources. Basing on such considerations, the Deploy-
ment Diagram is transformed into a horizontal schema that defines the resources of interest and their
high-level interconnections, that in this case is constituted by two computational nodes (e.g., Host1 and
Host2) interconnected by a node that represents the network.
 The interconnections can be further detailed depending on the characteristics of the interactions
among the federates. As afore mentioned, we restrict our analysis to the IEEE HLA Standard and to the
case of conservative execution using DS implementation technologies in which only safe events are pro-
cessed, such as the SimArch technology (https://sites.google.com/site/simulationarchitecture/simarch)
(Gianni et al. 2011).

3.1.2 Derivation of the EQN Performance Model

The horizontal schema can be further detailed by use of the Activity Diagrams to determine the complete
EQN topology in which the detailed interconnections and the jobs flow are illustrated. Considering the
decentralized architecture of the RTI, and the marginal role of the Federate Manager in the federation ex-
ecution, we focus on the definition of the Activity Diagrams for Federate 1 and for Federate 2. Both fed-
erates share the same algorithmic structure for the conservative synchronization, and therefore we only
illustrate Federate 1 Activity Diagram (see Figure 3).
 Before detailing the diagram, it is important to remark that this Activity Diagram represents the soft-
ware statements flow in the form of a generic template that can be further refined to incorporate applica-
tion-specific simulation and multi-resolution modeling of the simulation software. As a consequence,
both Federate 1 and Federate 2 are illustrated by Activity Diagrams that are structurally equivalent and
that differ only in terms of parameters annotated by use of the UML MARTE profile. Moreover, the dia-
gram assumes that the RTI Server is already running and that the Federation Manager has been already
launched and is waiting for the federates to join (Kuhl et al. 1999).

Host1 Host2

Host4

<<GaExecHost>>
{throughput = $TH1}

<<GaExecHost>>
{throughput = $TH2}

<<GaExecHost>>
{throughput = $TH3}

<<GaExecHost>>
{throughput = $TH4}

Federate1

<<artifact>>

Federate2

<<artifact>>

<<artifact>>

RTI

<<artifact>>

<<deploy>> <<deploy>>

<<deploy>><<deploy>> FederationManager

<<GaCommHost>>
{capacity = $capacity
blockT = $latency}

Host3WAN

3304

Gianni, Bocciarelli, and D’Ambrogio

Figure 3: DS Activity Diagram.

The diagram begins with the “DS Initialization” action node, which represents the computations

needed for the initialization of the local environment and for the HLA environment, respectively. Depend-
ing on the specific characteristics of the federate, such action node can incorporate one or more local and
HLA statements. Specifically, adopting the federation lifecycle defined in (Kuhl et al. 1999), the “DS Ini-
tialization” action node embeds the invocation of RTI services to join the federation, to set the data pub-
lishing and subscription preferences, and to register for the synchronization points (populating and ready-
to-run). However, such invocations are carried out at initialization time only, and therefore do not affect
the steady-state performance analysis.

After completing the initialization activity, Federate 1 proceeds with the execution of the simulation
logic and reaches a fork control node. This node creates two threads: the Main Thread (MT), representing
Federate 1 initiated computations, and the Listener Thread (LT), representing Federate 2 initiated compu-
tations.

The MT block consists of a cycle of local computations, exit test decision node, and RTI services in-
vocations. Using conservative time advancement, the MT proceeds with the “Retrieve Next Event” action
node, which retrieves the next event time. Such a time is used to issue a service request to the RTI Am-
bassador, by use of the "RTIAmb send service request" send signal action node. The request enquires the
RTI for delivering all the distributed events scheduled at any time lesser than the one retrieved or a
TimeAdvanceGrant notification if no event is available before the retrieved time. While waiting for this
notification, the MT suspends on the "From Listener Thread" accept event action node. The MT resumes
when the LT issues the "To Main Thread" send signal action node. If the event received is the simulation
end event, the MT terminates the cycle and proceeds to the execution of the “Local/HLA Postprocessing”
action node, which leads the entire DS system to the original state before the activation of the DS execu-
tion, including the resignation and destruction of the federation. Differently, if the received event is not
the simulation end event, the MT proceeds with the "Process Event and Schedule Next Event" action
node. In the reference DS implementation technology, i.e., SimArch, distributed events are transparently
scheduled into the local event list, and therefore this event is guaranteed to be the one with the least time
stamp. The event processing requires internal computation, such as the event retrieval from the list as well
as the execution of the associated logic. In turn, the simulation logic may require scheduling internal
events, which can be obtained with statements performed internally to Host 1, or distributed events, which
can be obtained invoking the "RTIAmb send service request" send signal action node.

The LT block consists of a cycle for the listening of incoming RTI Callbacks. The cycle starts with
the activation of a listening thread that remains suspended on the "FedAmb receive service response" ac-
cept event action node. Such a response may be either a NextEventRequestAvailable signal or a TimeAd-

3305

Gianni, Bocciarelli, and D’Ambrogio

vanceGrant signal. The former is received upon delivery of an HLA interaction containing an event from
Federate 2. Differently, the latter is received when no HLA events are available until the specified time,
and therefore the Federate is granted the right to safely advance to the specified time. In both cases, the
handling of the callback requires a local processing, which has been identified with the “Callback Local
Processing” action node. Once the callback is handled, the LT proceeds towards a decision node that
evaluates whether the “To Main Thread” send signal action node needs to be delivered to the MT.

The nodes of the Activity Diagram are annotated by use of the MARTE profile to specify the feder-
ate-specific parameters, such as the number of iterations (rep tag of the <<PAStep>> and
<<PACommStep>> stereotypes), the service demand (HostDemand tag of the <<PAStep>>) and the sizes
of messages exchanged (msgSize tag of the <<PACommStep>> stereotype). Such parameters are used to
obtain the parameters of the EQN-based performance model, as illustrated in Section 3.2.

The structural properties of the Activity Diagram are instead used to generate the detailed EQN to-
pology according to the UML-to-EQN model transformation illustrated in (Bocciarelli and D'Ambrogio
2012). The original transformation has been here revised and extended to introduce a novel mapping rule,
which has been specified to properly manage the asynchronous communications among federates. More
specifically, in its execution, each federate interacts with other federates according to a communication
paradigm based on signal (e.g., events) exchange. In this respect, a federate may stop its execution until it
receives from the RTI the notification of events occurred at other federates side. Similarly, a federate may
need to notify, via RTI, an event to other federates that wait for its occurrence.

Figure 4: EQN Topology.

The rationale of the novel mapping rule can be summarized as follows: in the source UML Activity

Diagram, send signal and accept event action nodes are used to represent the notification of an event and

3306

Gianni, Bocciarelli, and D’Ambrogio

the execution suspension while waiting for an event occurrence, respectively. For each pair of send signal
and accept event action nodes related to the same event, the novel UML-to-EQN mapping rule introduces
in the corresponding target EQN model a pair of allocate-release nodes and a token pool.

A federate that waits for an external event is thus mapped to an allocate node that forces a job to wait
until the related token is available in the token pool. Similarly, a federate that notifies an event is mapped
to a job that passes through a release node, making the corresponding token available in the token pool.

The so extended UML-to-EQN model transformation has been executed to obtain the topology of the
EQN-based performance model illustrated in Figure 5.

The model is split into two sub-models, one for each federate, and includes three job classes for each
federate, one for the MT (Ci.MT), one for the LT (Ci.LT) and one for RTI service requests (Ci.HLA). The
routing of jobs of a given class is directly mapped from the sequence of nodes that are visited in the corre-
sponding Activity Diagram.
 The next section illustrates how to derive the numerical parameters that are to be associated to the re-
sources (i.e., service times) and routers (i.e., routing probabilities) of the EQN in Figure 5. The derivation
consists in a standard procedure illustrated in (Schmidt 2006).

3.2 Performance Model Parameterization

The performance model parameters are obtained by use of the MARTE annotations specified on both the
Deployment Diagram and the Activity Diagram of each federate. In particular, the following parameters
are to be determined: tCPU1, tCPU2, tNet12, tNet21, p1QUIT, p2QUIT, p1SYNC-FA, and p2SYNC-FA.
 The tCPU1 and tCPU2 times can be evaluated using statistical inference methods on existing prototypes
of the DS software. Their direct estimation from the statement description and the CPU performance may
require advanced statistical approaches that are outside the scope of this paper. Basing on previous expe-
rience and considering the large number of CPU operations that concern insertion and retrieval of ele-
ments in event list, it can be safely assumed that the tCPU1 and tCPU2 are normally distributed, with
µ1=TCPU1 and µ2=TCPU2, respectively, and σ1= σ2=1. In our approach, TCPU1 and TCPU2 are to be expressed
as multiple of the reference processing unit TCPU, which identifies the computation needed for executing
the base processing unit (e.g., inserting or extracting an event in the events list). With this simplification,
the statistical representation of the CPU service time is obtained as a stochastic function of the TCPU pa-
rameter, according to what annotated by use of the HostDemand tag of the <<PAStep>> in the Activity
Diagram. The annotated values are given as input to a standard graph reduction algorithm that obtains the
composite service demand value for each identified job class.

The tNet12 and the tNet21 parameters can be assumed to be distributed with a k-Pareto distribution of
probability, where k=4 (Wei and Jingsha 2007). For these distributions, the TNet12 and the TNet21 parame-
ters can be determined by use of the following formulas:

TNet12= delayTime12 + averagePacketLength12/bandwidth12
 TNet21= delayTime21 + averagePacketLength21/bandwidth21
where the delayTime is obtained from the blockT tag of the <<GaCommHost>> stereotype in the De-
ployment Diagram, the averagePacketLength from the msgSize tags of the <<PACommStep>> stereotype
in the Activity Diagram and the bandwidth from the capacity tag of the <<GaCommHost>> stereotype in
the Deployment Diagram.
 The probabilities piQUIT (i=1..2) and piSYNC-FA (i=1..2) are derived from the Activity Diagrams of Fed-
erate 1 and Federate 2. The probability piSYNC-FA can be computed using the expression: piSYNC-FA =
$n2/nHLAR, where $n1 is the number of repetitions annotated onto the initial "RTIAmb send service re-
quest" send signal action node and nHLAR is the number of all HLA service request invocations, i.e.,
nHLAR=$n1+$n2. This definition of piSYNC-FA inherently assumes that the lookahead value is chosen opti-
mally from the system model specification, and therefore the number of suspensions of main thread coin-
cides with the number of time advance requests. Variations of the lookahead value will directly affect the
value of piSYNC-FA. However, it is important to note that the steady-state conditions, in which the DS sys-
tem is assumed to operate, contribute to reduce the dependency of the aforementioned parameters from

3307

Gianni, Bocciarelli, and D’Ambrogio

the DS performance variability deriving from the lookahead value, due to the uniform characteristics of
the workload on the individual hosts.
 piQUIT is similarly computed from the Activity Diagram as piQUIT = 1/$ntot, where $ntot is the number of
repetitions annotated onto the "Retrieve Next Event" action node, i.e., the total number of iterations in the
MT. piQUIT represents the stochastic condition for the simulation termination and should not be confused
with the steady-state assumption for the DS system.

4 EXAMPLE APPLICATION

This section illustrates the application of the above defined method to the derivation of a performance
model for a DS system of a manufacturing system, including the parameterization. The considered exam-
ple is simple but effective enough to illustrate the application of the proposed method.

4.1 System Model

The manufacturing system receives raw materials and produces processed goods. The system consists of
three Service Stations: Station 1 is the main service machine implementing the production chain; Station
2 and Station 3 are support machines for the maintenance of the production tools in Station 1. The system
internal structure that can be specified by use of a SysML Internal Block Diagram, has been omitted for
the sake of brevity.
In our scenario, we assume a continuous and constant incoming flow of raw materials which are pro-
cessed by a set of tools within the Service station. These tools need occasional maintenance, which can be
of two types: engine or belt maintenance. In the case of engine maintenance, the tool is routed towards
Station 2. Differently, in the case of belt maintenance, the tool is routed towards Station 3.
 The system specification includes the details of all the procedures needed for the maintenance of a
tool, in both cases of engine and belt maintenance. In the real system, Stations 2 and 3 operate according
to a FIFO enqueuing policy. For each incoming tool, a number of maintenance operations may be re-
quired depending on unpredictable conditions. The operations can be identified by performing a set of test
procedures on the tool. In the system model, these procedures are represented with a detailed SysML Ac-
tivity Diagrams describing all the activities that are to be performed on the tool, appropriately annotated
to specify the required times. However, in our case study, the procedures specification can be safely omit-
ted and the related operations can be represented in terms of the required maintenance time, which can be
synthesized by random distributions.

4.2 DS Model

The DS platform is specified by use of a Deployment Diagram illustrating the properties of the distributed
platform and the allocation of the system components onto the individual nodes. In line with the method
description, the Deployment Diagram of Figure 2 has been annotated with the properties of the actual
hosts and network, as described in Table 1.

Table 1: Deployment Parameters.

Parameter MARTE parameter Value
Bandwidth $capacity 94 KB/s
Delay Time $latency 20 ms

TCPU1 1/$TH1 10 ms per processing unit
TCPU2 1/$TH2 10 ms per processing unit

In addition, we have partitioned the system model into two federates: Federate 1, which simulates Station
1, and Federate 2, which simulates Stations 2 and 3, with Federate 1 allocated onto Host 1 and Federate 2
allocated onto Host 2. In line with the aforementioned consideration on the lookahead value, we have de-
rived the maximum lookahead by identifying the critical path in the event chains across the simulation

3308

Gianni, Bocciarelli, and D’Ambrogio

components on Federate 1 and Federate 2, in particular considering the truncated exponential and normal
distributions that simulate the delays introduced by the service stations.

4.3 Example Performance Model

The performance model is derived by use of what we defined in Section 3.1 and Section 3.2. TCPU1 and
TCPU2 can be assumed to be equivalent to the processing time for an individual processing unit, which
from previous experiments has been set to TCPU1=TCPU2=10 ms (Gianni et al. 2010).

In SimArch and pRTI 1516 simulations, measurements have yielded to an average packet size of ca
90 bytes, which combined with the deployment parameters in Table 1, leads to TNet12= TNet12=21.5 s.

Finally, the routing probabilities are determined by identifying the values of the $n1, $n2 and $n3 pa-
rameters for each federate. The values of such variables can be statically determined using established
practices for the determination of average arrival rates at each center. More empirical techniques can use
SysML model animations which can either incorporate counters or generate simulation traces for offline
analysis. For an operational period of 60 months, estimations yielded to the values in Table 2.

Table 2: Values of the n-variables.

MARTE Parameter Federate 1 Federate 2
$n1 163 208
$n2 741 580
$n3 208 163
$ntot 949 743

From the values in Table 2, the routing probabilities are calculated and their values are shown in Table 3,
for each federate.

Table 3: Routing probabilities.

Variable Federate 1 Federate 2
pQUIT 0,001 0,001

1-pQUIT 0,999 0,999
pSYNC-FA 0,82 0,74

1-pSYNC-FA 0,18 0,26

4.4 Preliminary Validation

The validation process has been carried out in four steps: 1) the implementation of the EQN-based per-
formance model to get the numerical solution; 2) the development of a DS for the system model; 3) the
identification of the metrics for the numerical comparison; and 4) the comparison among predictive anal-
ysis results and measures taken on the DS system.
 Step 1 has been implemented by use of a model-to-text transformation that directly maps the EQN el-
ements with the language primitives of jEQN, a domain-specific language for the specification, imple-
mentation and execution of EQN models (Gianni and D’Ambrogio 2008). In Step 2, we have used the
above mentioned SimArch technology for the rapid prototyping of the DS model (Gianni et al. 2011). At
Step 3 we have identified the total execution time as the metric for the numerical comparison between the
results provided by the actual DS system and the predictions obtained from the execution of the perfor-
mance model. Finally, Step 4 consisted of two substeps: 4.1) DS execution and measurements collection
in the deployment settings defined in Table 1 and Figure 2; 4.2) evaluation of the performance model ex-
periment, including the sampling of the predicted total execution time. To minimize the impact of correla-
tion among the samples, we have reiterated Step 4.1 and step 4.2 for ten times, obtaining an average actu-

3309

Gianni, Bocciarelli, and D’Ambrogio

al execution time of 880 sec (Step 4.1) against an average predicted time of 850 sec (Step 4.2). These re-
sults are also within reasonable margins with our previous experiments (Gianni et al. 2010), and therefore
confirms the preliminary validation of the proposed model-driven method for the DS performance predic-
tion.

CONCLUSIONS

Designing distributed simulation (DS) systems that meet the specified requirements is a complex activity.
Specialized know-how on software performance engineering is required and an extra effort is often need-
ed to develop and validate ad-hoc performance models. In this paper, we have mitigated the effects of the
above issues with the introduction of a method for the model-driven performance prediction of DS sys-
tems. The method defines a mechanical derivation of performance models of DS systems from model-
based systems specification, thus reducing the specialized know-how, effort and time required to manual-
ly apply software performance engineering techniques. Moreover, the method fully integrates with system
specifications in SysML, thus minimizing the need of developing ad-hoc artifacts for performance engi-
neering purposes. The proposed method produces predictive performance models based on the EQN for-
malism. In the paper, we have shown an example application of the methodology to the derivation of a
predictive performance model for a HLA-based distributed simulation of a manufacturing system. Work
is in progress to fully automate the proposed method by specifying additional model transformations to
produce the UML-based DS model from the SysML-based system model. Future work will also include a
generalization of the method for a higher number of federates. Besides new EQN elements in the perfor-
mance model, a number of additional functions may be required for a model parameterization that takes
into account the implementation of the HLA synchronization and communication.

REFERENCES

Balsamo S., Di Marco A., Inverardi P, Simeoni M. 2004. Model-Based Performance Prediction in Soft-
ware Development: A Survey. IEEE Transactions on Software Engineering, vol. 30, n. 5, pp. 295-
310.

Bocciarelli P., D'Ambrogio A. 2008. Model-Driven Performability Analysis of Composite Web Services.
In Proceedings of SPEC International Performance Evaluation Workshop (SIPEW 2008). June 27-28
2008, Darmastadt, Germany.

Bocciarelli P., D'Ambrogio A., Fabiani G. 2012. " A Model-driven Approach to Build HLA-Based Dis-
tributed Simulations from SysML Models". In Proc. of the 2nd International Conference on Simula-
tion and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012). July 28-30
20012, Rome, Italy.

Bocciarelli P. and D’Ambrogio. A. 2012. “Automated Performance Analysis of Business Processes”. In
Proceedings of the Symposium On Theory of Modeling and Simulation, DEVS-TMS ’12.

Bolch G., Stefan Greiner, Hermann de Meer, Kishor S. Trivedi: Queueing networks and Markov chains -
modeling and performance evaluation with computer science applications; 2nd Edition. Wiley 2006
L. Chu-Cheow, L. Yoke-Hean, G. Boon-Ping, J. Sanjay, C. Wentong, H. Wen Jing, and H. Shell Ying

1999. "Performance prediction tools for parallel discrete-event simulation," In Proceedings of the
thirteenth workshop on Parallel and distributed simulation Atlanta, Georgia, United States. IEEE.

D’Ambrogio A., Iazeolla G. 2003. Steps towards the automatic production of performance models of web
applications, Computer Networks Journal, vol. 41(1):29–39.

D'Ambrogio A., D. Gianni and G. Iazeolla. 2006. “jEQN: a Java-based Language for the Distributed
Simulation of Queueing Networks”, LNCS vol. 4263/2006, In Proceedings of the 21st International
Symposium on Computer and Information Sciences (ISCIS'06), Istanbul, Turkey, Nov.

3310

Gianni, Bocciarelli, and D’Ambrogio

D’Ambrogio A., Bocciarelli P. 2007. “A Model-driven Approach to Describe and Predict the Perfor-
mance of Composite Services”. In Proceedings of the Sixth International Workshop on Software and
Performance (WOSP 2007), Buenos Aires, Argentina, February 5-8.

Ewald R., Himmelspach J., Uhrmacher A., Chen D., Theodoropoulos G. 2006. "A Simulation Approach
to Facilitate Parallel and Distributed Discrete-Event Simulator Development," in Proceedings of the
10th IEEE international symposium on Distributed Simulation and Real-Time Applications: IEEE
Computer Society.

Gianni D. and D’Ambrogio, A. 2008. “A Domain Specific Language for the Definition of Extended
Queueing Networks Models”, Proceedings of the 2008 IASTED Software Engineering Conference
(SE08), Innsbruck, Austria, February.

Gianni D., D’Ambrogio A., Iazeolla G. 2010. "A Methodology to Predict the Performance of Distributed
Simulations". In Proceedings of the 24th ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS 2010). Atlanta, GA (USA), May 17-19.

Gianni D., D’Ambrogio A., Iazeolla G. 2011. "A Software Architecture to Ease the Development of Dis-
tributed Simulation Systems". Simulation, June.

IEEE. 2000. Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - frameworks
and rules. IEEE 1516.

Lavenberg S. 1983. Computer Performance Modeling Handbook, Academic Press, New York, 1983.
OMG. 2003. MDA Guide, version 1.0.1. 2003.
OMG. 2004. Meta Object Facility (MOF) Specification, version 2.0.
OMG. 2007. XML Metadata Interchange (XMI) Specification, version 2.1.1.
OMG. 2008. Meta Object Facility (MOF) 2.0 Query/View/Transformation, version 1.0.
OMG. 2009 UML profile for Modeling and Analysis of Real Time Embedded Systems, 1.0.
Perumalla K., Fujimoto R., Thakare P., S. Pande, Karimabadi H., Omelchenko Y., Driscoll J. 2005. "Per-

formance prediction of large-scale parallel discrete event models of physical systems," in Proceed-
ings of the 37th conference on Winter simulation Orlando, Florida.

Schmidt, Douglas C. 2006. Model-driven engineering. IEEE Computer, 39(2), February 2006.
Smith C. 1992. Performance Engineering of Software Systems, Addison Wesley, Reading, MA, 1992.
Wei Z. and Jingsha H. 2007. “Modeling End-toEnd Delay Using Pareto Distribution”, in Proceedings of

the Second International Conference on Internet Monitoring and Protection, IEEE Computer Society.

AUTHORS BIOGRAPHIES

DANIELE GIANNI is an internal research fellow at the European Space Agency. He received a PhD in
computer and control engineering from the University of Rome Tor Vergata (Italy) and held research ap-
pointments at Imperial College and the University of Oxford (UK). His research interests are in the area
of modeling and simulation.

PAOLO BOCCIARELLI is a postdoc researcher at the University of Rome Tor Vergata. His research
interests include software and systems engineering and business process management, specifically with
regards to the areas of modeling and simulation and model-driven development.

ANDREA D'AMBROGIO is associate professor at the Enterprise Engineering Department of the Uni-
versity of Roma TorVergata (Italy). His research interests are in the fields of model-driven software engi-
neering, performance engineering, distributed and web-based simulation.

3311

