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ABSTRACT 

Association rule-based tool commonality analysis (ARBTCA) is an effective approach to identifying tool 
excursions for yield enhancement in semiconductor manufacturing. However, missing values which fre-
quently occurred will lead to high rates of false positive and false negative. Incorrect identification of root 
cause of yield loss will lose engineer’s trust on TCA and delay the process improvement opportunity. In, 
this paper, we proposed  a Markov-chain based Missing Value Estimation (MCBMVE) method to im-
prove the effectiveness of ARBTCA, and demonstrate and explain why traditional methods dealing with 
missing values for association rules cannot solve the problem. Comparing with traditional methods, the 
real case study shows that MCBMVE is more accurate in recovering missing values so as to improve the 
identification accuracy.. 

1 INTRODUCTION 

In semiconductor manufacturing, there are hundreds of processing steps with multiple tools at most steps.  
Any tool excursion in a processing step may result in product yield loss and decrease manufacturing profit. 
Though various in-line inspections established to monitor individual tools, none of them is guaranteed to 
successfully isolate all the root causes of product yield loss [1].  Some tool excursions related to yield loss 
cannot be identified by in-line inspections but are only observable through end-of-line tests such as elec-
trical test (E-test) and circuit probing (CP) test. Once an end-of-line yield loss event is detected, how to 
effectively identify a specific tool excursion from hundreds of processing steps as the root cause is a per-
manent challenge to a modern semiconductor manufacturing fab. 
 Tool commonality analysis (TCA) is an immerging topic for the effective identification of tool excur-
sions using end-of-line yield data. Given a yield loss event with affected wafer yield and associated tool 
usage data, TCA iteratively conducts statistical hypotheses on individual equipment tools in production 
line and pinpoints which tool causes the wafer yield loss. There are two types of wafer yield input to TCA, 
continuous and Bernoulli. The continuous wafer yield is directly counted by the die yield on the wafer, 
where as the Bernoulli wafer yield is calculated by comparing the spatial signature of the die yield on the 
wafer to the pattern associated with the yield loss event. The TCA for continuous wafer yield adopts tradi-
tional statistical techniques such as ANOVA or contingency tables to search for fab tool commonalities. 
As for the Bernoulli wafer yield, the association rule method is adopted [2] to the detection and discovery 
of fab tool commonality for wafers with spatial signatures.  
 The soundness of TCA has a high impact on the effectiveness of product yield diagnosis. Unfortu-
nately, the TCA techniques applying traditional statistical methods often result in high rates of false posi-
tive and false negative in yield analysis [5], requiring much time of engineers to review and validate 
commonality results (loop). Incorrect identification of root cause of yield loss not only loses engineer’s 
trust on TCA, but also delays the process improvement opportunity. Many investigators try to solve the 
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problem of high false positive and high false negative rates in TCA [5], but they didn’t address the impact 
of missing values. 
 In our research, we focus on studying the treatment of missing values for the association rule-based 
TCA with Bernoulli end-of-line input. We found that missing values also lead to high rates of false posi-
tive and false negative in association rule-based TCA. However, no literature of association rule-based 
TCA has considered the missing values. Furthermore, we also found that traditional methods dealing with 
missing values for association rule such as RAR [3] and MVC [4] are not suitable for TCA applications. 
 To cope with the problem of missing value, we adopt the Markov based probability model to evaluate 
the probability of missing values passing through which tool and in which time period in previous re-
search [6]. In this paper, we compare with RAR and MVC method. First, we calculate conditional support 
and confidence pair with probabilities. Finally, we show our Markov based simulation method can de-
crease false positive and false negative rates in TCA effectively. 

2 METHODOLOGY SURVEY FOR TOOL COMMONALITY 

The semiconductor manufacturing processes include several hundred of processing steps with multiple 
tools at most steps. The total number of tools across all of the steps typically exceeds 1000. Each lot in-
cludes 25 wafers and is processed by a single tool at each processing step. Besides, each wafer can have 
several thousands of die. Tool trajectories which are the sequence of tools at each step that processes a lot 
are determined by a scheduling algorithm. We define an error which is a tool that processes lots different-
ly enough from other tools at the same step to impact performance of yield.  
 Though various in-line inspections established to monitor individual tools, none of them is guaranteed 
to successfully isolate all the root causes of product yield loss [1]. Some tool excursions related to yield 
loss cannot be identified by in-line inspections but are only observable through end-of-line tests such as 
electrical test (E-test) and circuit probing (CP) test. Once an end-of-line yield loss event is detected, engi-
neers face the challenge of locating steps from hundreds of processing steps with yield losing with little 
data and many possibilities.  
 The yield analysis flow includes two parts, wafer pattern recognition and tool commonality analysis. 
In semiconductor manufacturing, current methodology for the detection and discovery of good/bad wafer 
is a manual process by checking the special patterns (a.k.a. spatial signatures) called wafer pattern recog-
nition. Typically, wafers maps are reviewed by engineers. A score indicating the degree to which a wafer 
demonstrates the pattern is calculated. The wafer pattern recognition exist testing error because of manual 
process by engineers.  
 Discovering which factory tool is causing the problem is the ultimate goal of tool commonality analy-
sis (TCA) using end-of-line yield data.  Given a yield loss event with affected wafer yield and associated 
tool usage data, TCA iteratively conducts statistical hypotheses on individual equipment tools in produc-
tion line and pinpoints which tool causes the wafer yield loss. Unfortunately, the TCA techniques apply-
ing traditional statistical methods often result in high rates false positive and false negative in yield analy-
sis [5], requiring much time of engineers to review and validate commonality results (loop).  Incorrect 
identification of root cause of yield loss not only loses engineer’s trust on TCA but also delays the pro-
cess improvement opportunity. To discuss TCA problem in semiconductor manufacturing, we first define 
some notations as following: 

 

Table 1:  Notations 

i Operation id 
j Tool id 
k Time period  
NB Number of bad wafers 
NBi Number of bad wafers passing through operation i 
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NBi 
(O) Number of observed bad wafers passing through tool i  

NBi 
(M) Number of missing bad wafers passing through operation i 

Nijk Number of wafers passing through operation i, tool j and time period k 
NBij Number of bad wafers passing through operation i and tool j 
NBijk Number of bad wafers passing through operation i, tool j and time period k 
Nijk 

(O) Number of observed wafers passing through operation i, tool j and time pe-
riod k 

Nijk 
(M) Number of missing wafers passing through operation i, tool j and time peri-

od k 
NBijk 

(O) Number of bad observed wafers passing through operation i, tool j and time 
period k 

NBijk 
(M) Number of bad missing wafers passing through operation i, tool j and time 

period k 
Sj Conditional support of tool j 
Cj Confidence of tool j 
NGijk 

(O) Number of good observed wafers passing through operation i, tool j and 
time period k 

NGijk 
(M) Number of good missing wafers passing through operation i, tool j and time 

period k 
 

2.1 Association Rules  

In this paper, we adopt association rules for tool commonality analysis with Bernoulli end-of-line input; 
the key idea is to efficiently search for the commonality data and look for fab tools and time periods 
where many of the affected wafers were processed and where only affected wafers were processed. we 
consider records of wafers which include passing through operation i, and tool j at time period k. we use 
association rule algorithm to calculate basic statistics of fab tool usages consisting of conditional support 
of tool j and confidence of tool j as following: 

  

B ij
j

B

N
S

N


 (1) 

  

B i j k
i

i j k

N
C

N


   (2)  
Accordingly, the conditional support of root cause is necessarily equal to 1. However, because of the 

false identification in wafer pattern recognition, the conditional support (C.S.) cannot be equal to 1, but 
still it must be close to 1. For the necessary condition, we will define a minimal conditional support (in 
our scenario, we set min C.S = 0.6) and minimal confidence (in our scenario, we set min C = 0.6) to 
screen the tool if it is not root cause. 
In addition, when C.S. is the same, the higher confidence value is the more suspected root cause. If pass-
ing the min conditional support and confidence thresholds, we rank the remaining rules based upon their 
distance from the Peroto frontier on the conditional support-confidence plane and generate a ranking ta-
ble. Each point at the line is the non-dominated solution which has the highest rank. Furthermore, we rank 
other points by the distance to the Peroto frontier. For example, the left side of Fig.1 shows that points A, 
B, C, D and E are on the Peroto frontier, and they are the non-dominated solutions. The point F is the lat-
est rank because it is not on the Peroto frontier. In addition, the point C is the highest rank because of the 
longest distance to the red line (right side of Fig. 1). 
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( ) ( , )O M MVC
Bij BijMVC

j
B

N N
S

N




  (7) 
,where NBij 

(M,MVC) is the evaluation value of missing bad wafer which pass thorough tool j and operation 
i by the MVC method  

 

 

( ) ( , )

( ) ( , )

O M M VC
Bijk Bijk BijkM VC

j O M M VC
ijk ijk ijk

N N N
C

N N N


 

   (8) 
  In TCA, the MVC method is not always useful, because the confidence value is always less than 95%. 

Also, even if the MVC method can obtain the new conditional support values, the conditional support 
calculation via MVC becomes higher than that without missing value consideration. The tool which is not 
a root cause would be identified as a root cause easily. Also, the conditional support and confidence value 
varies depending on the minimal confidence threshold value. Many tools often got the lower confidence 
without missing value consideration 

3 MARKOV CHAIN BASED MISSING VALUE ESTIMATION (MCBMVE) ALGORITHM 

The main concept is to model whether the wafer passes the machine as Bernoulli distribution, and then 
based on the observed data, we can estimate whether the wafer with missing values passed the machine. 
Since the ratio of semiconductor wafer passing the machine should not very much, we assume the missing 
value follows the same Bernoulli distribution. Because error must be present following this assumption, 
we deal with the effect of error through iteration. Therefore, we adopt the Markov model to deal with 
missing values, and the core is state transition. 
Based on above reasons, we implement a methodology based on the Markov chain model using tradition-
al association rules to deal with the missing value problem.  the inputs of algorithm are tool-time usage 
and good/bad information. If exist missing value in tool-time usage data, then evaluate the tool-time us-
age in step 1. In step 2, the algorithm recalculates conditional support, which is the percent of bad wafers 
captured by the rule. By requiring a minimal conditional support, many tools and time periods are re-
moved. After calculating confidence, we can further filter the number of rules needed to be ranked by re-
quiring a minimum confidence. If passing the min conditional support and confidence thresholds, then we 
rank the passing rules based on their distance to the Peroto frontier on the conditional support-confidence 
plane and generate a ranking table. 

 
Step 1 tool-time usage evaluation 
The goal of step 1 is to evaluate tool usage for improvement of conditional support and evaluate tool-time 
usage to improve confidence. To evaluate tool usage, we first consider operation i and tool j. Suppose tool 
j* in operation i is the root cause, the number of missing bad wafers passing through tool j* in operation i 

is denoted as NBij*
(M), and it's satisfied following the equation: 

( ) ( )
*0 M M

Bij BiN N  . We adopt the Markov 
Chain model to evaluate the missing bad wafers of operation i & tool j.  

 We create a Markov chain as follows: We have a set of states, S =  1 3 2, , ... rs s s s . In our model, states 
are defined as the number of missing bad wafers passing through tool j in operation i (NBij 

(M)), and the all 
the states are depicted as following:  

 
( ) ( )

*: , , 0M M
r Bij BiS N r N r N    (9) 

 The process starts in one of these states and moves successively from one state to another. Each move 
is called a step. If the chain is currently in state sm, then it moves to state sn at the next step with a proba-
bility denoted by pmn , and this probability does not depend upon which states the chain was in before the 
current state. Thus, we define transition probability(pmn) which is the transition probability from state m at 
iteration t to state n at iteration t+1. Based on tool time information, transition probability (pmn) can be 
calculated as the following equation:  

2222



 

 

where 
ˆ Bijp

 We no
ability dis
which rep
ing the pr
let u be t
chain is in

 

 

In thi
gence con
operation 
same, we 
 
Step 2 rec
And then 
through o
tool j and 

 

 

 
 

4 SIM

The obje
ARBTCA
ation to de

4.1 Di

In this cas
values inc

Withou

( )
*

* ( ) ( )

O
Bij

j O M
Bi Bi

N m

N N






ow consider t
stribution on t
presents the in
robability that
the probabilit
n state sm afte

is model, the 
nditions is pr(

j and tool j, 
can use the s

calculate the
we consider 

operation j wh
confidence o

MULATION 

ctive of our
A. We use a si
emonstrate th

irect Calcula

se, the root ca
clude tool waf

ut missing va

mn np C

)

, and m is th
the long-term
the set of stat

nitial state of 
t the chain st
ty vector whi
r n steps is th

 

initial states 
(statet)=Pr(sta
while the sta
ame concept 

e conditional 
the missing v
hich includes

of tool j are re

BN N

B
j

N
S

N


B
i

N
C

N


EXAMPLE 

r simulation 
imple case wh

he result betw

ation 

ause is Tool A
fers passing th

Figure 2: Sim

alue considera

Ch

( ) ( )
*ˆ( ) (

M
BiN n

n Bijp

he state at itera
m iteration of a

tes, which we
a Markov cha
tarts in state s
ich represent

he ith entry in 
u(n) 

of transition
atet+1). we use
ates and condi
to evaluate to

support and
value, the num
s observable 
evised as follo

( )O
Bi BiN N 

( )O
B ij B ij

B B

N N

N




( )

( )

O
Bijk Bijk

O
ijk ijk

N

N






TO COMPA

study is to 
hich consists 

ween different 

A1, and red w
hrough and th

mple Exampl

ation, the con

hen and Fan 

( )(
*ˆ(1 )

M
BiN

Bijp

ation t, n is th
a Markov cha
e will call a p
ain, then we t
sm. Let P be t
ts the starting
the vector 
= uPn   

n matrix can b
e the model to
itional suppo
ool-time usag

d confidence 
mber of bad w
and missing,

owing: 
( ) (M
Bi B

j

N N 
( )M
B ijN

( )

( )

M
Bijk

M
ijk

N

N

ARE THE RE

demonstrate
of 20 wafers 
algorithms. 

word marks m
he time period

le for comaris

nditional supp

)n

he state at iter
ain when it st
probability ve
think of the t-
the transition 
g distribution

be inferred b
o estimate the

ort follow the 
ge. 

 
wafer equal t
 and the stat

( ) ( )O M
Bij B ij

j

N 

ESULT BET

e the effect 
 and 2 operat

missing values 
d in which wa

 

son between m

port & confid

ration t+1.  
arts in a state

ector. If u is a
-th componen

matrix of a M
n. Then the p

by initial 
ˆBijp

e missing val
probability d

to number of 
tistics of cond

)

TWEEN ME

between diff
tions includin

as shown in 
afers passed t

methods  

dence values 

e chosen by a 
a probability v
nt of u as repre
Markov chain

probability th

*j , and the co
lue of bad wa
distribution. A

f bad wafer pa
ditional supp

ETHODS 

ferent metho
ng 2 tools per 

Fig.2. The m
through.  

are directly c

(10) 

prob-
vector 
esent-
n, and 

hat the 

(11) 

onver-
afer in 
As the 

assing 
port of 

(12) 

(13) 

(14) 

ods in 
oper-

missing 

calcu-

2223



Chen and Fan 
 
lated as following: 
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Besides tool A1, we use another tool which is not a root cause as example. We consider the data set in 
tool B1, which consists of 20 wafers with 3 missing. The missing values include tool wafers passing 
through and the time period in which wafers passed through. Without considering missing values, the 
conditional support & confidence values of tool B1 by a direct method as following: 
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B ijd irect
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 (17) 
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  (18) 

We can see that Both A1 and B1 will be screen out because the conditional support value is less than the 
minimal conditional support. 

4.2 Calculation by RAR and MVC 

We compare the results of our method with two existing methods to deal with missing values, the RAR 
approach and the MVC approach.  

The result of tool A1 & B1 are shown in Table 2. We can see that the RAR method can obtain the new 
conditional support values, but cannot adjust the confidence value. Besides, the conditional support of B1 
become higher than conditional support of A1. It is not desirable because the conditional supports of tool 
B1 is higher than the conditional support threshold and root cause tool significantly.  

The same phenomenon is found in the MVC method. We can see the MVC method can obtain the new 
conditional support values, but the conditional support of B1 becomes higher than tool A1. MVC is not 
suitable for dealing with missing values in this case. In root cause diagnosis, both RAR method & MVC 
methods present high risk of false identification. For example, tool B1 is not the root cause, but the condi-
tional support and confidence values are increased highly through RAR & MVC methods. It will cause a 
higher rank than the real root cause. 

Table 2:  Result of RAR, MVC method of tool A1& B1

 

4.3 Calculation by MCBMVE 

We go through the MCBMVE algorithm to complete the missing value of tool B1 100 times, and then re-
calculate conditional support and confidence as following: 
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Table 3:  Result of RAR, MVC Method of Op. B 

 

5.2 MCBMVE Demonstration on non-Root Cause 

Besides operation B, we use another real case in semiconductor fabs to compare the accuracy and effi-
ciency with RAR and MVC algorithm. We consider the data set in operation H, which consists of two 
tools and a total of 73 wafers. In operation H, there are 23 bad wafers, of which 12 are observed and 13 
bad wafers are missing. The missing values include tool wafers passing through and the time period in 
which wafers passed through. Because the operation H is not a single tool, we cannot identify missing 
values of the tool. Without considering missing values, the conditional support & confidence values of 
tool H1 and tool H2 are calculated by a direct method as following: 
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We can see that tool H1 and tool H2 are less than the minimal conditional support, so they will be 
screened out. 
 In addition, the re-calculated conditional support & confidence values of tool H1 and tool H2 by 
MCBMVE method, and the expected value of conditional support & confidence are calculated as follow-
ing: 
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 We can found that the tool H1 and tool H2 will be screened out by the minimal conditional support. 
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After using MCBMVE algorithm to complete missing values, the tool that is not the root cause may not 
have largely changed in conditional support and confidence. 
 We compare the results of our method with two existing methods to deal with missing values, the 
RAR approach and the MVC approach. The result of tool H1 & H2 are shown in Table 4. We can see that 
the RAR method can obtain the new conditional support values, but cannot adjust the confidence value. 
Besides, the conditional support calculation via RAR become higher than that without missing value con-
sideration. It is not desirable because the conditional supports are higher than the conditional support 
threshold significantly. Also, in semiconductor manufacturing, there are many cases for yield diagnosis 
with few wafers.  
 The same phenomenon is found in the MVC method. We can see the MVC method can obtain the 
new conditional support values, but the conditional support calculation via MVC become higher than that 
without missing value consideration. Besides, the conditional support and confidence value highly vary 
depending on the minimal confidence threshold value. Many tools often got the lower confidence without 
missing value consideration. MVC is not suitable for dealing with missing values in semiconductor be-
cause all the values are missing such as tool information and tool-time information. There are not enough 
rules to tell us how to obtain above information by MVC. In root cause diagnosis, both RAR method & 
MVC methods present high risk of false identification. For example, neither tool H1 nor tool H2  is the 
root cause, but the conditional support and confidence values are increased highly through RAR & MVC 
methods. It will cause a higher rank than the real root cause. 

Table 4:  Result of RAR, MVC Method of Op. H 

 

6 CONCLUSION 

In industry practice, the association rule-based TCA is believed to be an effective approach to identifying 
tool excursions for yield enhancement. However, we found that missing values lead to high rates of false 
positive and false negative in association rule-based TCA. Thus, the recovery of missing values is an im-
portant issue to address before conducting TCA. The MCBMVE method proposed applies the Bernoulli 
distribution to derive the transition probabilities for updating the state probabilities of missing values until 
the convergence criterion is met. Comparing MCBMVE with the RAR or MVC method, this study found 
that the MCBMVE method has the same performance as RAR and MVC methods in root cause tools, and 
has better performance in non-root cause tools. The real case study shows that MCBMVE is more accu-
rate in recovering missing values so as to improve the identification accuracy in TCA. 
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