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ABSTRACT

Association rule-based tool commonality analysis (ARBTCA) is an effective approach to identifying tool
excursions for yield enhancement in semiconductor manufacturing. However, missing values which fre-
quently occurred will lead to high rates of false positive and false negative. Incorrect identification of root
cause of yield loss will lose engineer’s trust on TCA and delay the process improvement opportunity. In,
this paper, we proposed a Markov-chain based Missing Value Estimation (MCBMVE) method to im-
prove the effectiveness of ARBTCA, and demonstrate and explain why traditional methods dealing with
missing values for association rules cannot solve the problem. Comparing with traditional methods, the
real case study shows that MCBMVE is more accurate in recovering missing values so as to improve the
identification accuracy..

1 INTRODUCTION

In semiconductor manufacturing, there are hundreds of processing steps with multiple tools at most steps.
Any tool excursion in a processing step may result in product yield loss and decrease manufacturing profit.
Though various in-line inspections established to monitor individual tools, none of them is guaranteed to
successfully isolate all the root causes of product yield loss [1]. Some tool excursions related to yield loss
cannot be identified by in-line inspections but are only observable through end-of-line tests such as elec-
trical test (E-test) and circuit probing (CP) test. Once an end-of-line yield loss event is detected, how to
effectively identify a specific tool excursion from hundreds of processing steps as the root cause is a per-
manent challenge to a modern semiconductor manufacturing fab.

Tool commonality analysis (TCA) is an immerging topic for the effective identification of tool excur-
sions using end-of-line yield data. Given a yield loss event with affected wafer yield and associated tool
usage data, TCA iteratively conducts statistical hypotheses on individual equipment tools in production
line and pinpoints which tool causes the wafer yield loss. There are two types of wafer yield input to TCA,
continuous and Bernoulli. The continuous wafer yield is directly counted by the die yield on the wafer,
where as the Bernoulli wafer yield is calculated by comparing the spatial signature of the die yield on the
wafer to the pattern associated with the yield loss event. The TCA for continuous wafer yield adopts tradi-
tional statistical techniques such as ANOVA or contingency tables to search for fab tool commonalities.
As for the Bernoulli wafer yield, the association rule method is adopted [2] to the detection and discovery
of fab tool commonality for wafers with spatial signatures.

The soundness of TCA has a high impact on the effectiveness of product yield diagnosis. Unfortu-
nately, the TCA techniques applying traditional statistical methods often result in high rates of false posi-
tive and false negative in yield analysis [5], requiring much time of engineers to review and validate
commonality results (loop). Incorrect identification of root cause of yield loss not only loses engineer’s
trust on TCA, but also delays the process improvement opportunity. Many investigators try to solve the
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problem of high false positive and high false negative rates in TCA [5], but they didn’t address the impact
of missing values.

In our research, we focus on studying the treatment of missing values for the association rule-based
TCA with Bernoulli end-of-line input. We found that missing values also lead to high rates of false posi-
tive and false negative in association rule-based TCA. However, no literature of association rule-based
TCA has considered the missing values. Furthermore, we also found that traditional methods dealing with
missing values for association rule such as RAR [3] and MVC [4] are not suitable for TCA applications.

To cope with the problem of missing value, we adopt the Markov based probability model to evaluate
the probability of missing values passing through which tool and in which time period in previous re-
search [6]. In this paper, we compare with RAR and MVC method. First, we calculate conditional support
and confidence pair with probabilities. Finally, we show our Markov based simulation method can de-
crease false positive and false negative rates in TCA effectively.

2 METHODOLOGY SURVEY FOR TOOL COMMONALITY

The semiconductor manufacturing processes include several hundred of processing steps with multiple
tools at most steps. The total number of tools across all of the steps typically exceeds 1000. Each lot in-
cludes 25 wafers and is processed by a single tool at each processing step. Besides, each wafer can have
several thousands of die. Tool trajectories which are the sequence of tools at each step that processes a lot
are determined by a scheduling algorithm. We define an error which is a tool that processes lots different-
ly enough from other tools at the same step to impact performance of yield.

Though various in-line inspections established to monitor individual tools, none of them is guaranteed
to successfully isolate all the root causes of product yield loss [1]. Some tool excursions related to yield
loss cannot be identified by in-line inspections but are only observable through end-of-line tests such as
electrical test (E-test) and circuit probing (CP) test. Once an end-of-line yield loss event is detected, engi-
neers face the challenge of locating steps from hundreds of processing steps with yield losing with little
data and many possibilities.

The yield analysis flow includes two parts, wafer pattern recognition and tool commonality analysis.
In semiconductor manufacturing, current methodology for the detection and discovery of good/bad wafer
is a manual process by checking the special patterns (a.k.a. spatial signatures) called wafer pattern recog-
nition. Typically, wafers maps are reviewed by engineers. A score indicating the degree to which a wafer
demonstrates the pattern is calculated. The wafer pattern recognition exist testing error because of manual
process by engineers.

Discovering which factory tool is causing the problem is the ultimate goal of tool commonality analy-
sis (TCA) using end-of-line yield data. Given a yield loss event with affected wafer yield and associated
tool usage data, TCA iteratively conducts statistical hypotheses on individual equipment tools in produc-
tion line and pinpoints which tool causes the wafer yield loss. Unfortunately, the TCA techniques apply-
ing traditional statistical methods often result in high rates false positive and false negative in yield analy-
sis [5], requiring much time of engineers to review and validate commonality results (loop). Incorrect
identification of root cause of yield loss not only loses engineer’s trust on TCA but also delays the pro-
cess improvement opportunity. To discuss TCA problem in semiconductor manufacturing, we first define
some notations as following:

Table 1: Notations

i Operation id

j Tool id

k Time period

Ng Number of bad wafers

Np; Number of bad wafers passing through operation i
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Ng: Number of observed bad wafers passing through tool i

Ng;™ Number of missing bad wafers passing through operation i

Nijk Number of wafers passing through operation i, tool j and time period k

Npij Number of bad wafers passing through operation i and tool j

Npijk Number of bad wafers passing through operation i, tool j and time period k

Nijk © Number of observed wafers passing through operation i, tool j and time pe-
riod k

Niji ™) Number of missing wafers passing through operation i, tool j and time peri-
od k

Naijk © Number of bad observed wafers passing through operation i, tool j and time
period k

Niijk ) Number of bad missing wafers passing through operation i, tool j and time
period k

S; Conditional support of tool j

G Confidence of tool j

Naiji © Number of good observed wafers passing through operation i, tool j and
time period k

Naijk ™) Number of good missing wafers passing through operation i, tool j and time
period k

2.1 Association Rules

In this paper, we adopt association rules for tool commonality analysis with Bernoulli end-of-line input;
the key idea is to efficiently search for the commonality data and look for fab tools and time periods
where many of the affected wafers were processed and where only affected wafers were processed. we
consider records of wafers which include passing through operation i, and tool j at time period k. we use
association rule algorithm to calculate basic statistics of fab tool usages consisting of conditional support
of tool j and confidence of tool j as following:

Nb’['

SN,
' (M

C = NBi/k
N 2

Accordingly, the conditional support of root cause is necessarily equal to 1. However, because of the

false identification in wafer pattern recognition, the conditional support (C.S.) cannot be equal to 1, but
still it must be close to 1. For the necessary condition, we will define a minimal conditional support (in
our scenario, we set min C.S = 0.6) and minimal confidence (in our scenario, we set min C = 0.6) to
screen the tool if it is not root cause.
In addition, when C.S. is the same, the higher confidence value is the more suspected root cause. If pass-
ing the min conditional support and confidence thresholds, we rank the remaining rules based upon their
distance from the Peroto frontier on the conditional support-confidence plane and generate a ranking ta-
ble. Each point at the line is the non-dominated solution which has the highest rank. Furthermore, we rank
other points by the distance to the Peroto frontier. For example, the left side of Fig.1 shows that points A,
B, C, D and E are on the Peroto frontier, and they are the non-dominated solutions. The point F is the lat-
est rank because it is not on the Peroto frontier. In addition, the point C is the highest rank because of the
longest distance to the red line (right side of Fig. 1).
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Figure 1: Ranking Rules on Peroto frontier

2.2 Association Rules with missing Value

With missing values, the association rules of conditional support of tool j and confidence of tool j are cal-
culated as following:

N(O)_,'_N(M) N(0)+N(J‘4) N‘;(;)+0 N(O)

S;iirect — Bij Bij Bij Bij Bij

’ NB NB NB NB (3)
o Nap NS NE NGO N

! Ni/'k Ni(/;c)) + N:(/i/l) Ni(/'l(f)) +0 Ni(/'l(:‘) (4)

We can see that the conditional support and confidence calculating with missing values will be lower
than the calculating without missing values. Also, it's possible that the conditional support and confidence
value is lower than real situation. It is not desirable because the conditional support and confidence are
lower than the conditional support threshold significantly. The tool which is a root cause would be
screened out easily. This phenomenon will lead to false identification.

2.3 Robust Association Rule to deal with missing Value

To deal with missing values, the Robust Association Rule (RAR) approach is one of the popular ap-
proaches used in association rules. The key idea of the Robust Association Rule (RAR) approach [3] is
using the association rules method to partially discard the missing values. Based on this concept, the con-
ditional support & confidence values are calculated by the RAR method as following:

@)
SRR _ NBI/'
7N, -NUD

2= Nay §)

(0) (M) (0) @

CRAR _ NBijk +NBijk _ NBz'jk +0 _ NBijk

VAN (@) (M)~ A7(0) NG
Ny + Ny Ny +0 Ny (6)

In TCA, the RAR method can obtain the new conditional support values, but cannot adjust the confi-
dence value. We can see that the conditional support value by RAR calculating will be higher than by
association rules calculating. Also, it's possible that the conditional support value is higher than real situ-
ation. It's not good because the conditional supports are higher than the conditional support threshold sig-
nificantly. The tool which is not a root cause would be identified as a root cause easily. The phenomenon
will lead to false identification.

2.4 Missing Values Completion to deal with missing Value

To deal with missing values, the Missing Values Completion (MVC) approach is another popular ap-
proach used in association rules. The key idea of the Missing Values Completion (MVC) approach [3] is
to apply association rules to fill in missing values. In the MV C method, only association rules with a high
confidence value (more than 95%) can be used to deal with the missing value problem. Thus, the condi-
tional support and confidence values are calculated by the MVC method as following:
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N(O) +N(M,MVC)

mvc _ <V Bij Bij
S/‘ — J N J
? (7)
,where Ng; (MMVC) s the evaluation value of missing bad wafer which pass thorough tool j and operation
i by the MVC method
e N NG+ NGO
j - - (0) (M ,MVC)
Nijk Nijk + Nijk (8)

In TCA, the MVC method is not always useful, because the confidence value is always less than 95%.
Also, even if the MVC method can obtain the new conditional support values, the conditional support
calculation via MVC becomes higher than that without missing value consideration. The tool which is not
a root cause would be identified as a root cause easily. Also, the conditional support and confidence value
varies depending on the minimal confidence threshold value. Many tools often got the lower confidence
without missing value consideration

3 MARKOYV CHAIN BASED MISSING VALUE ESTIMATION (MCBMVE) ALGORITHM

The main concept is to model whether the wafer passes the machine as Bernoulli distribution, and then
based on the observed data, we can estimate whether the wafer with missing values passed the machine.
Since the ratio of semiconductor wafer passing the machine should not very much, we assume the missing
value follows the same Bernoulli distribution. Because error must be present following this assumption,
we deal with the effect of error through iteration. Therefore, we adopt the Markov model to deal with
missing values, and the core is state transition.

Based on above reasons, we implement a methodology based on the Markov chain model using tradition-
al association rules to deal with the missing value problem. the inputs of algorithm are tool-time usage
and good/bad information. If exist missing value in tool-time usage data, then evaluate the tool-time us-
age in step 1. In step 2, the algorithm recalculates conditional support, which is the percent of bad wafers
captured by the rule. By requiring a minimal conditional support, many tools and time periods are re-
moved. After calculating confidence, we can further filter the number of rules needed to be ranked by re-
quiring a minimum confidence. If passing the min conditional support and confidence thresholds, then we
rank the passing rules based on their distance to the Peroto frontier on the conditional support-confidence
plane and generate a ranking table.

Step 1 tool-time usage evaluation

The goal of step 1 is to evaluate tool usage for improvement of conditional support and evaluate tool-time
usage to improve confidence. To evaluate tool usage, we first consider operation i and tool j. Suppose tool
j* in operation i is the root cause, the number of missing bad wafers passing through tool j* in operation i

. o) o . . 0SS NYD < NGO
is denoted as N« ~, and it's satisfied following the equation: Bij 5 We adopt the Markov

Chain model to evaluate the missing bad wafers of operation i & tool j.

We create a Markov chain as follows: We have a set of states, S = {810:85,85.05, . In our model, states
are defined as the number of missing bad wafers passing through tool j in operation i (Ny; ™)y "and the all
the states are depicted as following:

S :NU) reN,0<r<N"

Bij* >

(€))

The process starts in one of these states and moves successively from one state to another. Each move
is called a step. If the chain is currently in state s, then it moves to state s, at the next step with a proba-
bility denoted by pm. , and this probability does not depend upon which states the chain was in before the
current state. Thus, we define transition probability(p.,) which is the transition probability from state m at
iteration t to state n at iteration t+1. Based on tool time information, transition probability (p.,) can be
calculated as the following equation:
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(M) _

_ VR s\ A NN -m)
P _CnB (pBij*) (l_pgij*) ? (10)
Ng.;l+m

133,'/*: 0) (M)
NEi +NEi

where , and m is the state at iteration t, n is the state at iteration t+1.

We now consider the long-term iteration of a Markov chain when it starts in a state chosen by a prob-
ability distribution on the set of states, which we will call a probability vector. If u is a probability vector
which represents the initial state of a Markov chain, then we think of the t-th component of u as represent-
ing the probability that the chain starts in state s;,. Let P be the transition matrix of a Markov chain, and
let u be the probability vector which represents the starting distribution. Then the probability that the
chain is in state s, after n steps is the ith entry in the vector

u® =yp" (11)

In this model, the initial states of transition matrix can be inferred by initial p Bi* " and the conver-
gence conditions is pr(state')=Pr(state""). we use the model to estimate the missing value of bad wafer in
operation j and tool j, while the states and conditional support follow the probability distribution. As the
same, we can use the same concept to evaluate tool-time usage.

Step 2 recalculate the conditional support and confidence

And then we consider the missing value, the number of bad wafer equal to number of bad wafer passing
through operation j which includes observable and missing, and the statistics of conditional support of
tool j and confidence of tool j are revised as following:

NB:NBi:Né(i))"'Néy):zNgf)j)"'le(?[;”
J J (12)
o - Nuy _ N+ Ng»
4 NB NB (13)
o Moy NN
N, NO4LNUD
ik ik ik (14)

4 SIMULATION EXAMPLE TO COMPARE THE RESULT BETWEEN METHODS

The objective of our simulation study is to demonstrate the effect between different methods in
ARBTCA. We use a simple case which consists of 20 wafers and 2 operations including 2 tools per oper-
ation to demonstrate the result between different algorithms.

4.1 Direct Calculation

In this case, the root cause is Tool A1, and red word marks missing values as shown in Fig.2. The missing
values include tool wafers passing through and the time period in which wafers passed through.
GGGBEGBBGG GGGBGBEGGBG

Figure 2: Simple Example for comarison between methods

Without missing value consideration, the conditional support & confidence values are directly calcu-

2223



Chen and Fan

lated as following:

N 3
Sjt]'ew _ By _ 2 _ 0.5
oo _NLENED NGLHO 3 (19
direer _ i L - ==—=0.75
Nf(/k)+Ni(/}f) Ni(/'k)+0 4

Besides tool A1, we use another tool which is not a root cause as example. We consider the data set in
tool B1, which consists of 20 wafers with 3 missing. The missing values include tool wafers passing
through and the time period in which wafers passed through. Without considering missing values, the
conditional support & confidence values of tool B1 by a direct method as following:

‘ N2

S;lllrefl — #: —_= 033
N, % (17)
0) M) (o

CZ;V”@I _ NB(xjk"'Nl(s;Ik _ NB(I'/’:+O —3:0,66 (18)

NP +NW NP +0 3
We can see that Both Al and B1 will be screen out because the conditional support value is less than the
minimal conditional support.

4.2 Calculation by RAR and MVC

We compare the results of our method with two existing methods to deal with missing values, the RAR
approach and the MVC approach.

The result of tool A1 & B1 are shown in Table 2. We can see that the RAR method can obtain the new
conditional support values, but cannot adjust the confidence value. Besides, the conditional support of B1
become higher than conditional support of Al. It is not desirable because the conditional supports of tool
B1 is higher than the conditional support threshold and root cause tool significantly.

The same phenomenon is found in the MVC method. We can see the MVC method can obtain the new
conditional support values, but the conditional support of B1 becomes higher than tool A1l. MVC is not
suitable for dealing with missing values in this case. In root cause diagnosis, both RAR method & MVC
methods present high risk of false identification. For example, tool B1 is not the root cause, but the condi-
tional support and confidence values are increased highly through RAR & MVC methods. It will cause a
higher rank than the real root cause.

Table 2: Result of RAR, MVC method of tool A1& B1

N3 N ©) 5 )
SHE_ZH _Z_06 SHE_ZH - % _0.66
N; 5 . N, 6-3 )
. N34 e N33
S¥re =2 T~ 0.66 shve - % _ -1
N, 6 . N, 6 .,
AT (0 AT (M) AT (O AT (0 AT (M) AT (0
CHE = 'Njgf;"? - 'N"T\ = 'm"gfjf 03 015 CHE = Aﬁg’f i 'N'Sf. = 'N,Sf;"? 0 2 066 |
N +Ng» N +0 4 N +NGD N +0 3
L L i ] b b W +
e VNG N1 4| e NSNS N3 s
CONPeNy NP5 CONP N NP3 6

SETEN
1 S0

4.3 Calculation by MCBMVE

We go through the MCBMVE algorithm to complete the missing value of tool B1 100 times, and then re-
calculate conditional support and confidence as following:
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(0)

S;\/IICBMVC,uve — Bij — 3 + 1 — 06
N 6 (19)
¢ MCBMVC ave _ Nli’zlz + N;;;k) _ 3+1 — i: 0.80 (20)
Al :

SN ENGD 441 S
In addition, the re-calculated conditional support & confidence values of tool H1 and tool H2 by
MCBMVE method, and the expected value of conditional support & confidence are calculated as follow-

ing:

Spemmre = Niy’ _3+1_ 4 495

N, 6 (21)
cweswve _ Mo+ Nild Nt +0 3 (22)
B1 - - .

NOENGD TN 0 6
We found that the conditional support-confidence pair of tool Al has the highest conditional support

(1) and confidence value (1). It leads the ranking of tool A1 to rank 1.

We also found that the tool B1 will be screened out by the minimal conditional support. After using

SBMVC algorithm to complete missing values, the tool that is not the root cause may not have largely

changed in conditional support and confidence.

5 REAL CASE STUDY

The objective of our case study is to demonstrate the effect of missing values in semiconductor data.
Without consideration of missing values, traditional tool commonality renders higher false identification
rates. It will require engineers to spend extra time checking. We use a real case which consists of 73 wa-
fers and 50 operations including several tools per operation to demonstrate the accuracy and efficiency of
MCBMVE algorithm. On average, each operation contains five tools, with a maximum of 8 and mini-
mum of 1. The total tool count is 57. In this case, we analyze the 22 suspected tools that were selected by
engineers’ domain knowledge.

5.1 MCBMVE Demonstration on Root Cause

In this case, the root cause is Tool Blof operation B, which is a single tool. In tool B1, it exists missing
values as shown in Fig.3. We can see that the missing values include tool wafers passing through and the
time period in which wafers passed through. However, the operation B only contains one single tool B1,
so we can identify the missing value of the tool easily.

OPA OoPrB
3Tools 1Tool. — =
il '
A1 e — .
-—) (A2 - | Bl i

Figure 3: Missing Value in Tool B1

Without missing value consideration, the result of association rules is shown on the left side of Fig.4.
The x axis represents conditional support, and the y axis represents the confidence, and each point repre-
sents the conditional support- confidence pair of tool. The red line is Peroto frontier; each point at the line
is the non-dominated solution which has the highest ranking level. Furthermore, the conditional support-
confidence pair will gain higher rank by higher support values. In addition, we rank other points by the
distance to the Peroto frontier. The green color is the root cause (B1); the conditional support & confi-
dence values are directly calculated as following:
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) N,
Sg,lrm:N_BU:%:O,57
: .(24)
N,
Cgtlrecl :%:521
. (25)

we can see that B1 will be screen out because the conditional support value is less than the minimal
conditional support. In addition, there are 6 tools’ conditional supports higher than the tool B1 such as
tool A2. In this case, the blue circle highlights the most suspected tool (A2). The conditional support &
confidence values are calculated as following:

Sdizrect — NBU — ﬂ: 0 91
¢ B .
o 2 (26)
¢ e _ % - %: 1 (27)
ijk

We can see that only 21 bad wafers passing through tool A2, but considering false identification in
wafer pattern recognition, it is not the real root cause.

On the contrary, we go through the MCBMVE algorithm to complete the missing value of tool B1 100
times, and then re-calculate conditional support and confidence as following:

GMCBMVE _ NB,-,»+N1(;':7) _ 13+10 -
Bl

N, 23 (28)
CMCBMVE _ NB:_‘/k +Nz(§?;[k) _ 13+10 _
Bl on
Ny + Ny 13+10 (29)

The conditional support-confidence pair is shown on the right side of Fig.4. We found that the condi-
tional support-confidence pair of tool B1 is at Peroto frontier and tool B1 has the highest conditional sup-
port (1) and confidence value (1). It leads the ranking of tool B1 to rank 1.

confidence confidence
1.2 1.2

Peroto frontier Peroto frontier
1 e e * [: ] 1 o * —_—
* * * *
08 - : 08 . t
06 P o 2 v
» st ’ > *e
Y *
. 3 ¢ o

08 1 1.2
conditional support ;-.\:nﬂu.m.n! support

Figure 4: Result of Pareto Frontier

In this case, we compare the results with the traditional methods: RAR method and MVC method as
shown in Table 3. We can see the results of the RAR method, both the conditional support and confidence
values are revised to 1. The same phenomenon occurred in the MVC method, when both the conditional
support and confidence values are revised to 1. These phenomenon show that our SBMVC method has
the same performance as the two traditional methods in a single tool.
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Table 3: Result of RAR, MVC Method of Op. B

oo

Method+ | Results "
. ()] -
rar _ NVay Nz 13
Si SN TN, NGO 23-10 ©
B B YR -
CRaRZNB;sk ZN‘éC:i :EZLJ N
i N, N 13
ifk ik
MVCe M NE:‘;‘ 13+10 +
Sy = L= =1«
Ny 23
Cg}?t :NB?’#C _ 13+10 1. +
N;r.k 13+10

MCBMVE Demonstration on non-Root Cause

Besides operation B, we use another real case in semiconductor fabs to compare the accuracy and effi-
ciency with RAR and MVC algorithm. We consider the data set in operation H, which consists of two
tools and a total of 73 wafers. In operation H, there are 23 bad wafers, of which 12 are observed and 13
bad wafers are missing. The missing values include tool wafers passing through and the time period in
which wafers passed through. Because the operation H is not a single tool, we cannot identify missing
values of the tool. Without considering missing values, the conditional support & confidence values of
tool H1 and tool H2 are calculated by a direct method as following:

S;ilrlm’t" = —NBU = 25—3 =0.21
: (30)
cfer = St %: 0.38
31)
o Ny 7
S;i[z;ect — Bij =—=03
R (32)
irect N, ik 7
ng — ]\fﬂ‘ =—=0.46

w15 (33)

We can see that tool H1 and tool H2 are less than the minimal conditional support, so they will be
screened out.

In addition, the re-calculated conditional support & confidence values of tool H1 and tool H2 by

MCBMVE method, and the expected value of conditional support & confidence are calculated as follow-

ing:

SMCBMVEA,ave _ & =041
H1 - -
s (34)
CgZCBMVE,ave — NB(/'k zi =043
N, 13 (35)
Sﬁ]xlgBMVE,ave — NBij =0.49
8 (36)
CMCBMVE,ave _ NBijk _ i =0.39
H2 - - -
w13 (37)

We can found that the tool H1 and tool H2 will be screened out by the minimal conditional support.
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After using MCBMVE algorithm to complete missing values, the tool that is not the root cause may not
have largely changed in conditional support and confidence.

We compare the results of our method with two existing methods to deal with missing values, the
RAR approach and the MVC approach. The result of tool H1 & H2 are shown in Table 4. We can see that
the RAR method can obtain the new conditional support values, but cannot adjust the confidence value.
Besides, the conditional support calculation via RAR become higher than that without missing value con-
sideration. It is not desirable because the conditional supports are higher than the conditional support
threshold significantly. Also, in semiconductor manufacturing, there are many cases for yield diagnosis
with few wafers.

The same phenomenon is found in the MVC method. We can see the MVC method can obtain the
new conditional support values, but the conditional support calculation via MVC become higher than that
without missing value consideration. Besides, the conditional support and confidence value highly vary
depending on the minimal confidence threshold value. Many tools often got the lower confidence without
missing value consideration. MVC is not suitable for dealing with missing values in semiconductor be-
cause all the values are missing such as tool information and tool-time information. There are not enough
rules to tell us how to obtain above information by MVC. In root cause diagnosis, both RAR method &
MVC methods present high risk of false identification. For example, neither tool H1 nor tool H2 is the
root cause, but the conditional support and confidence values are increased highly through RAR & MVC
methods. It will cause a higher rank than the real root cause.

Table 4: Result of RAR, MVC Method of Op. H

+

Method~ Resulte @
) rax _ NVay _ Né?) _ 5 rz_ Ny N,(e?} 7T
Sy = = an = =042 | Sy = = an = =0.64
N, N,-NO23-11 PUN, N,-NSD T 23-11
E o
Ny N Ny N2
C}f;‘i’R _ Bk _ ?E:; — i —0.38. Cg.ik _ Bk _ fg; — l —0.46
N, N2 13 TN, NO 15
i i ji j .
MVC- Ny 5411 o Nz T+11
Sae =" = =0.7 St ="t = =0.78 i
N, 23 * TN, 23
confidence > threshold, N3*"© =11 | confidence > threshold, N&*7© =1 1
cure Mo _ S+ _ 5 cire Nape _ THIL i
N, 13+15 > N, 15+15
- + -
confidence > threshold, NG =15 | confidence > threshold, N =15 .

6 CONCLUSION

In industry practice, the association rule-based TCA is believed to be an effective approach to identifying
tool excursions for yield enhancement. However, we found that missing values lead to high rates of false
positive and false negative in association rule-based TCA. Thus, the recovery of missing values is an im-
portant issue to address before conducting TCA. The MCBMVE method proposed applies the Bernoulli
distribution to derive the transition probabilities for updating the state probabilities of missing values until
the convergence criterion is met. Comparing MCBMVE with the RAR or MVC method, this study found
that the MCBMVE method has the same performance as RAR and MVC methods in root cause tools, and
has better performance in non-root cause tools. The real case study shows that MCBMVE is more accu-
rate in recovering missing values so as to improve the identification accuracy in TCA.
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