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ABSTRACT

We describe a new software tool named Lattice Builder, designed to construct lattice point sets for quasi-
Monte Carlo integration via randomly-shifted lattice rules. This tool permits one to search for good lattice
parameters in terms of various uniformity criteria, for an arbitrary number of points and arbitrary dimension.
It also constructs lattices that are extensible in the number of points and in the dimension. A numerical
illustration is given.

1 INTRODUCTION

Estimating the expectation of a random variable using Monte Carlo (MC) simulation is achieved by averaging
independent realizations of that variable. Gaining a single significant digit in the MC estimate requires
increasing the number of independent realizations, and thus the simulation effort, by a factor of 100. This
factor can be considerably reduced by using randomized quasi-Monte Carlo (RQMC) simulation, which
generates realizations of the random variable that are not independent, in contrast to MC, but that sample the
probability space more evenly. In practice, with MC simulation, each realization of the random variable is
produced using a certain number (the dimension of the problem) of independent (pseudo)random numbers
uniformly distributed in the unit interval, or, equivalently, a point in the unit hypercube of the dimension
of the problem. With RQMC simulation, the independent MC points are replaced with points that are
structured to provide a better coverage of the unit hypercube, but that are uniformly distributed in that
region when taken separately.

Randomly-shifted lattice rules are one prominent class of RQMC methods, in which the points in the
unit hypercube are organized with a lattice structure dictated by a set of free defining parameters. For a given
problem, using a fixed number of points, the amount of variance reduction provided by a randomly-shifted
lattice rule depends on the choice of these parameters. The conventional approach is to consider a set of
candidate lattice rules (each defined by a distinct set of parameters) and to select the one that get the best
score in terms of a given uniformity criterion, that measures the quality of a lattice. Such criteria are, in
turn, usually defined in terms of a certain number of free parameters called weights, and, for that reason,
we call them weighted figures of merit. In practice, the choice of criterion and of its weights should be
adapted to the model that needs to be simulated.

In this paper, we introduce Lattice Builder, a software tool whose purpose is to find good lattice rules
according to a variety of uniformity criteria, and using different choices of construction methods. It allows
practitioners to find good lattice rules adapted to their problems, for any finite dimension and number of
points, at the moment they are needed. It can be used as an external program or as a software library. This
contrasts with resorting to tables of parameters that can be found on websites or in published papers, where
the criteria used are not necessarily adapted to one’s problem, and provide less flexibility in the number
of points or dimension.
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The paper is organized as follows. In Section 2, we formalize the above discussion and we present
Lattice Builder. In Section 3, we illustrate how it can be used for the simulation of the payoff of financial
options based on the Heston volatility model.

2 CHOOSING GOOD LATTICES RULES WITH LATTICE BUILDER

2.1 Lattice Rules

The context is the estimation of the expectation µ = E[X ] of a real-valued random variable X . The MC
simulation of one realization of X is generally performed by drawing (pseudo)random numbers uniformly
distributed in the interval (0,1) and by using these to compute the value of X . Let s denote the number
of these numbers required to produce one realization of X , and let us collect them into a random vector U
uniformly distributed in (0,1)s, such that X = f (U) for some f : (0,1)s→ R. The n-point MC estimator
for µ = E[ f (U)] is

µ̂ =
1
n

n−1

∑
i=0

f (Ui), (1)

where U0, . . . ,Un−1 are independent realizations of U. The RQMC estimator for µ using a randomly-shifted
lattice rule has the same form as (1), but with U0, . . . ,Un−1 taken from a randomly shifted rank-1 lattice
point set

Qn = {Ui = (ui +U) mod 1 : ui ∈ Q0
n},

where the modulo is applied coordinate-wise, U is called here the random shift, and where

Q0
n = {ui = (ia mod n)/n : i = 0, . . . ,n−1},

is the deterministic lattice point set specified by the generating vector a = (a1, . . . ,as) ∈ Zs. In that case,
(1) is called a randomly-shifted rank-1 lattice rule. For fixed n and f , the variance of µ̂ depends on the
choice of a and can be significantly reduced with respect to MC if a is well chosen.

Lattice Builder also supports the construction of extensible lattice rules. In that case, we can consider
a sequence of lattice point sets Q0

b0 ⊂ ·· · ⊂Q0
bp , for a given prime base b and a maximum level p, all with

the same generating vector a. Thus, one can start estimating an integral using the bk lattice points of Qbk

for some 0≤ k ≤ p−1, and then refine the estimate as needed by evaluating the next bk lattice points of
Qbk+1 \Qbk , and so on.

2.2 Uniformity Criteria

Lattice Builder supports a variety of uniformity criteria, appropriate for different uses. One of them is the
weighted P2 discrepancy (Hickernell 1998a; Sloan and Joe 1994):

P2(Q0
n) = ∑

/0 6=u⊆{1,...,s}
γu

1
n

n−1

∑
i=0

∏
j∈u

2π
2B2((ia j/n) mod 1) (2)

where B2(x) = x2− x+ 1/6 is the second-degree Bernoulli polynomial, and the non-negative constants
γu for the coordinate subsets (or projections) u ⊆ {1, . . . ,s} are the projection-dependent weights, which
are left to be chosen. The criterion (2) is more sensitive to a bad distribution of the points of Q0

n along
projections u associated with larger weights γu. So, when minimizing (2), the quality of these projections
will likely be better than that of projections with smaller weights. Intuitively, this indicates that larger
weights should be assigned to projections along which f shows more variability.

More rigorously, f (x)−µ can be decomposed into a sum of functions fu(x) over non-empty subsets
u⊆ {1, . . . ,s}, where each fu integrates to zero and depends only on the components of x whose indices are
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in u. This is the functional ANOVA decomposition (see Owen 1998 and Liu and Owen 2006 for details)
of f :

f (x)−µ = ∑
/06=u⊆{1,...,s}

fu(x).

It follows that (2) is a uniformity criterion in the sense that, if the first-order partial derivatives of the
integrand f are square integrable, then the RQMC variance Var[µ̂n] is bounded by V 2

2 ( f )P2(Q0
n), where

V 2
2 ( f ) = ∑

/06=u⊆{1,...,s}
γ
−1
u (4π

2)|u|
∫
[0,1)|u|

∣∣∣∣∂ |u| fu(x)∂xu

∣∣∣∣2 dx,

is the weighted square variation of f (Hickernell 1998a; Dick, Sloan, Wang, and Wozniakowski 2004;
L’Ecuyer 2009), and where |u| is the cardinality of u, and ∂ |u| fu(x)/∂xu denotes the mixed partial
derivative of fu to first order with respect to x j for each j ∈ u, which, for example, is equal to
∂ 3 f{1,2,3}(x1,x2,x3)/(∂x1 ∂x2 ∂x3) if u= {1,2,3}. We remark that an increase of γu puts a higher premium
on reducing V 2

2 ( f ) significantly when f shows relatively important variability along u. Thus, from a
practical standpoint, the weights γu should be chosen to reflect the variability of f along their respective
projections u, in order to make (2) a better predictor of the RQMC variance. We also remark that the
values of the weights for projections of order |u|= 1 are irrelevant, because, for fixed n and s, all rank-1
lattices have identical one-dimensional projections consisting of n points equally spaced by a distance of
1/n, with the first point at the origin, so their quality cannot be improved by changing a.

The P2 discrepancy can be generalized as Pα with associated variation Vα , with α > 1, which provide
a bound on the RQMC variance for integrands with different smoothness properties. Larger values of α

correspond to smoother integrands in the sense that, for Vα( f ) to remain finite, f must be smoother in
some sense. Lattice Builder implements the Pα criterion for α = 2,4,6,8, for which it takes forms similar
to (2) but involving Bernoulli polynomials of degree α and different constant factors. Lattice Builder also
supports the Rα criterion (Niederreiter 1992; Hickernell and Niederreiter 2003) and uniformity criteria
based on the spectral test (L’Ecuyer and Lemieux 2000).

Specifying the projection-dependent weights γu for /0 6= u⊆{1, . . . ,s}means specifying 2s−1 parameters.
The number of these input parameters can be reduced by using special cases of the projection-dependent
weights. One possibility is to specify constants γ1, . . . ,γs, where γ j is the weight associated to the j-th
coordinate, and set γu = ∏ j∈u γ j. These are known as product weights (Hickernell 1998a; Hickernell 1998b;
Sloan and Woźniakowski 1998). Alternatively, one can specify the s constants Γ1, . . . ,Γs and set γu = Γ|u|,
so that the weights depend only on the order of the projection, and are known as order-dependent weights.
A particular case is the order-dependent weights truncated at order k (Wang 2007), where Γk > 0 and
Γ j = 0 for all j > k. Lattice Builder evaluates the Pα and Rα criteria using efficient algorithms based on
specific types of weights; see, for example, Cools, Kuo, and Nuyens (2006) or Nuyens and Cools (2006a).

2.3 Selection Algorithms

Lattice Builder implements a collection of algorithms for searching for good lattice rules given a uniformity
criterion with its weights. To give but a few examples, a popular choice is the component-by-component
(CBC) construction (Kuo and Joe 2002), which consists in incrementally selecting the generating vector
one coordinate at a time. Starting with j = 1 up to s, this algorithm keeps a1, . . . ,a j−1 fixed and selects
1≤ a j ≤ n−1 coprime with n that minimizes the chosen uniformity criterion of the lattice in dimension j
defined by the generating vector (a1, . . . ,a j). A randomized variant of this algorithm (Sinescu and L’Ecuyer
2009; Wang and Sloan 2006), which considers only a given number of randomly chosen values of a j, is
also supported. Lattice Builder also implements the fast CBC algorithm (Nuyens and Cools 2006a; Nuyens
and Cools 2006c; Nuyens and Cools 2006b; Cools, Kuo, and Nuyens 2006) for the case where the number
of points is an integer power of a prime base. Other possibilities include exhaustive search, fully random
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search, Korobov constructions and random Korobov constructions (Korobov 1959; L’Ecuyer and Lemieux
2000; Sinescu and L’Ecuyer 2012).

2.4 Using the Software

The following example illustrates how Lattice Builder can be called from the command line to perform a
CBC construction of an ordinary lattice point set with n = 216 = 65,536 points in dimension s = 8, based
on the P2 discrepancy with order-dependent weights truncated at order 3, with Γ1 = 1, Γ2 = 0.1 and
Γ3 = 0.01:

latbuilder --lattice-type ordinary --size 2ˆ16 --dimension 8 \
--figure-of-merit sum:P2 --weights order-dependent:0:1,0.1,0.01 \
--construction CBC

A trailing backslash indicates that the command continues on the next line. The first token, latbuilder,
is the name of the executable program. The next three arguments are straightforward to interpret: they
specify, respectively, the type of lattice (ordinary), the number of points n = 216 and the dimension s = 8.
The --figure-of-merit sum:P2 indicates that we want to use the P2 discrepancy as the uniformity
criterion. The sum: token that precedes P2 correspond to the ∑ /06=u⊆{1,...,s} operator in (2); Lattice Builder
also supports the maximum operator instead of the sum. The next argument specifies the weights for the P2
discrepancy, and consists of three colon-separated tokens: the first is the type of weights (order-dependent),
the second is the default weight Γ|u| for projection orders |u|> k where k is the maximum projection order
for which a weight is explicitly specified by the third token, which is a comma-separated list of values
of Γ1, . . . ,Γk. In the above example, k = 3, and we set Γ|u| = 0 for |u| > k with Γ1 = 1, Γ2 = 0.1 and
Γ3 = 0.01. The last argument, --construction CBC indicates that we want to use the CBC method.
The output of the above command would contain the following:

BEST LATTICE: lattice(2ˆ16, [1, 19463, 17213, 14627, 24339, 21007,
18925, 12671]): 8.38924e-06

which indicates that Lattice Builder found a good lattice rule with n = 216, with the components of a
listed between [ and ], and whose P2 value with the specified order-dependent weights is approximately
8.39×10−6.

In simulation software, there are situations where the dimension of the problem or the required number of
points, or even the appropriate weights, are not known in advance, because they are dynamically computed.
In these cases, one cannot expect to find any potential combination of n, s and γu in tables of good lattice
parameters computed in advance. Lattice Builder can be directly executed by the simulation software to
construct good lattice rules of the appropriate number of points and dimension, at the moment they are
needed. We give an example of that in Section 3.7 below. Lattice Builder also offers a C++ application
programming interface, and thus can be used as a C++ software library by other programs. It can further be
extended to support different uniformity criteria, types of weights and construction methods. The software
package’s web page can be found from the web site of the first author.

3 SIMULATION OF THE HESTON MODEL

3.1 Description of the Problem

Giles and Waterhouse (2009) applied QMC to the multilevel path simulation (Giles 2008) of financial
options using the Milstein discretization. We do the same here, but for the Heston volatility model, defined
by the following two-dimensional stochastic differential equation (SDE):

dS(t) = rS(t)dt +V (t)1/2S(t)dB1(t), (3)

dV (t) = λ (σ2−V (t))dt +ξV (t)1/2dB2(t), (4)

for t ≥ 0, where S(t) andV (t) are, respectively, the value and the (always positive) instantaneous variance of an
asset price, where (B1,B2) is a pair of standard Brownian motions with correlation ρ between them and where
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the risk-free rate r, the long-term average variance σ2, its rate of return to the mean λ and its volatility ξ are
positive constants. Our goal is to estimate the expectation of a payoff P = f ({(S(t),V (t)) : 0≤ t ≤ T}) ,
which is a function f of the process trajectory over the time interval [0,T ]. More specifically, we
consider two different payoff functions, namely the (discounted) payoff function for a European call option,
P = e−rT max(0, S(T )−K), where r > 0 is the risk-free rate and K is the strike price (a constant), and for an
Asian call option, P = e−rT max(0, S̄−K), where S̄ = (1/T )

∫ T
0 S(t)dt is the continuous-time average of the

process S over the time interval [0,T ]. Our purpose is to illustrate the application of randomly-shifted lattice
rules for multilevel path simulation, so we assume that P cannot be generated from its exact distribution. In
our computations, we use T = 1, K = 100, S(0) = 100, V (0) = 0.04, r = 0.05, σ = 0.2, λ = 5, ξ = 0.25,
and ρ =−0.5.

3.2 Discretization

We discretize the time and use Euler’s method with time step h to generate an approximate skeleton
{(S(t),V (t)) : t = 0,h,2h, . . . ,dh} of the process {(S(t),V (t)) : t ∈ [0,T ]}, with d time steps of length
h = T/d, and we compute a corresponding approximate payoff. More precisely, to reduce the bias, we
apply Euler’s method to (S,W ) instead of (S,V ), where W (t) = eλ t(V (t)−σ2). This gives dW (t) =
eλ tξV (t)1/2dB2(t). The Euler scheme with step size h becomes

W̃ (( j+1)h) = W̃ ( jh)+ eλ jh
ξṼ ( jh)1/2

√
hZ j,2,

and then, using the identity V (t) = σ2 + e−λ tW (t),

Ṽ (( j+1)h) = max
[
0, σ

2 + e−λh
(

Ṽ ( jh)−σ
2 +ξṼ ( jh)1/2

√
hZ j,2

)]
, (5)

S̃(( j+1)h) = S̃( jh)+ rhS̃( jh)+ [Ṽ ( jh)]1/2S̃( jh)
√

hZ j,1, (6)

where the vectors Z j = (Z j,1,Z j,2) are normal with mean 0 and covariance matrix ΣΣΣ whose elements are
1 on the diagonal and ρ elsewhere. The “max[0, ...]” is to make sure that the approximation of V never
becomes negative.

To generate Z j, we use the components of indices 2 j− 1 and 2 j of the input random vector U =
(U1, . . . ,Us), where s = 2d, uniformly distributed in (0,1)s, as follows:

Z j =

(
Z j,1
Z j,2

)
=

(
1 0
ρ
√

1−ρ2

)
︸ ︷︷ ︸

Aρ

(
Φ−1(U2 j−1)
Φ−1(U2 j)

)
=

(
Φ−1(U2 j−1)

ρΦ−1(U2 j−1)+
√

1−ρ2Φ−1(U2 j)

)
, (7)

where Aρ is the Cholesky factorization of the variance-covariance matrix ΣΣΣ = AρAT
ρ and Φ−1 is the inverse

of the standard normal distribution function.
For the Asian payoff, we also approximate S̄ with its discretized average

S̄ = h

(
S̃(0)

2
+

S̃(T )
2

+
d−1

∑
j=1

S̃( jh)

)
.

3.3 Dimensional Structure of the Problem

Before we start constructing good lattice rules, we need to decide how to set the weights γu. Our previous
experimentations (L’Ecuyer and Munger 2012) suggested that, as long as projections with very little
variability are not given too much weight and that relevant projections are given enough weight, the
variance of the RQMC estimator is not too sensitive to the exact distribution of the weights. Thus, we
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Figure 1: Distribution of the ANOVA variances across projections, for the European (top) and Asian
(bottom) payoff functions with d = 4, for the 32 projections with the largest estimated variance. The
horizontal axis lists the projection u by decreasing order of estimated MC variance σ2

u , plotted along the
vertical axis in units of the estimated total MC variance Var[ f (U)], in log scale. The span of each vertical
bar corresponds to a normal confidence interval at 95 % on the variance estimate.

need to assess, at least roughly, the distribution of the variability of the integrand f across the different
subsets of coordinates u.

We calculated the estimates σ2
u of the MC variances Var[ fu(U)] of the ANOVA components of f for

all nonempty subsets u⊆ {1, . . . ,s}. We computed these estimates using the algorithm proposed by Sobol’
and Myshetskaya (2007), with a lattice rule with n = 216 +1 = 65,537 constructed with Lattice Builder,
and using 30 independent random shifts. We decided to only allow a limited computational budget for
estimating the σ2

u ’s, so we estimated them for a discretization with d = 4 time steps or, equivalently, for an
integrand of dimension s = 8, assuming that the dimensional structure of the problem is similar for other
values of d. The results are shown in Figure 1 for the European and Asian payoff functions. We see that
projections involving only odd coordinates generally account for a larger portion of the variance than other
projections of the same order. This can be explained from (7), where odd coordinates are used to generate
Z j,1 and Z j,2, whereas even coordinates are involved only in generating Z j,2. With only this observation, it
would be tempting to use product weights with larger weights for odd coordinates than for even coordinates.
But, in fact, some projections involving even coordinates hold much more variance than others of the same
order. This can be explained as follows. We first recall that, in (5) and (6), Z j,1 and Z j,2 are directly used
to generate increments of S̃ and Ṽ , respectively. Because the computation of S̃(( j+1)h) directly depends
on the values of Z j,1 and Ṽ ( jh), joint variations both in Z j−1,2, which contributes to Ṽ ( jh), and in Z j,1 are
expected to have a significant impact on the value of S̃(( j+1)h). Therefore, projections containing pairs
of coordinates {2 j−2,2 j−1} for any j = 2, . . . ,d are expected to account for more variance than other
projections involving even coordinates, as confirmed by Figure 1. Such projections would not be given
enough weight by product weights as considered above.
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3.4 Numerical Experiments

We performed experiments with the model and parameters from Section 3.1 and the method described in
Section 3.2. Given the observations from Section 3.3, we rule out product weights, but we focus on the
fact that projections of lower order generally contribute a larger portion of the total variance than those
of higher order. Therefore, we examine a few choices of order-dependent weights truncated at order k,
of the geometric form γu = Γ|u| if |u| ≤ k, and γu = 0 otherwise. We consider k = 2,3,4 and k = ∞ (not
truncated).

To measure the efficiency of estimators and compare their efficiencies, we will use the work-normalized
variance WNVar[µ̂] = C(µ̂)Var[µ̂], where C(µ̂) = dn represents the computing cost, taken here as the
product of the number n of realizations of the sample path by the number d of time steps per realization.
We estimate Var[µ̂] by the unbiased sample variance using r = 1000 independent random shifts. We
take r large enough to obtain reasonable precision on the estimates in order to be able to compare the
performance of different methods together. Table 1 shows the results obtained with standard MC and with
rank-1 lattice rules constructed by Lattice Builder with n = 217 = 131,072 for the European payoff and
n = 216 = 65,536 for the Asian payoff, with d = 25 = 32 in both cases. (These particular values of n and
d are chosen to facilitate comparison with results from Section 3.7 below.) Note that, as opposed to MC,
the rate of decrease of the RQMC variance as a function of n generally depends on n, so the associated
work-normalized variance may also vary with n. Results are also shown for Korobov constructions with
a = (1,a,a2 mod n, . . . ,as mod n) taken from L’Ecuyer and Lemieux (2000), based on the spectral criterion
M32, which considers the uniformity of projections consisting exclusively of successive coordinates. We
set n = 131,071 with a = 29803 for the European payoff and n = 65,521 with a = 2469 for the Asian
one. These Korobov lattices do not perform as well as rank-1 lattices constructed by Lattice Builder with
more appropriate uniformity criteria. The European payoff seems more sensitive to the choice of lattice
parameters than the Asian payoff. We also tried to vary n in the experiments and we observed that it is
not always the same choice of weights that yields the smallest or the largest work-normalized variances.
However, the lattice rules with Γ = 0.1, which give more weight to high-dimensional projections than the
other choices of weights, the lattice rules with Γ = 0.01 and k = 2, which give no weight to projections of
dimension 3 or more, as well as the selected Korobov rules, which were constructed while ignoring many
relevant projections, consistently yielded significantly larger variances in all cases.

3.5 Multilevel Formulation

To reduce the bias on an estimator for P based on this approximate process, h should be made as small
possible, but the computing cost of generating {(S(t),V (t)) : t = 0,h,2h, . . . ,dh} is usually proportional to
the number of time steps d = T/h. Giles (2008) developed a method, based on multigrid ideas in numerical
analysis, to obtain an estimator with the same low bias and almost the same variance as an estimator based
on a very fine grid (small h), with a computing effort comparable to that required with a coarse discretization
(large h). The idea is to generate a basic low-variance estimator for the expectation of the approximate
payoff based on a very coarse discretization by averaging a large number of realizations, then to refine the
estimator by applying a series of corrections based on finer discretizations. Because the corrections are
small in magnitude compared to the basic estimator, they can reach a variance comparable to that of the basic
estimator using much fewer realizations. Formally, let the step sizes be h` = m−`T , `= 0, . . . ,L, for some
integers m≥ 2 and L≥ 0. Let P̀ denote the (random) payoff based on {(S(t),V (t)) : t = 0,h`,2h`, . . . ,d`h`}
with time step h` and d` = T/h` = m`. Then,

E[PL] = E[P0]+
L

∑
`=1

E[P̀ − P̀ −1].

The multilevel method estimates E[P0] by the average Y0 of n0 realizations of P0, and estimates E[P̀ − P̀ −1]
by the average Y` of n` realizations of P̀ − P̀ −1, for each `. The overall estimator of E[P] is Y = ∑

L
`=0Y`.
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Table 1: Estimated WNVar[µ̂] for d = 25 = 32, for the European and Asian payoffs with n = 217 = 131,072
and n = 216 = 65,536, respectively. Under the (incorrect) assumption that µ̂ is normally distributed, the
relative half-width of confidence intervals at 95 % is of approximately 9 %. The column labels SL and ML
stand for the single-level and multilevel cases from Sections 3.4 and 3.7, respectively. Note that µ̂ = Y in
the multilevel case. In the single level case, the line labeled Korobov corresponds to ordinary Korobov
rules with n = 131,071 and a = 29803 for the European payoff and with n = 65,521 and a = 2469 for the
Asian payoff. In the multilevel case, it corresponds to embedded Korobov rules with a = 1267. The line
labeled MC shows the work-normalized variances obtained using MC instead of lattice rules.

Γ k European Asian
SL ML SL ML

0.1 ∞ 510 1770 150 222
0.01 ∞ 451 396 101 124
0.001 ∞ 347 451 104 169
0.01 2 524 653 124 213
0.01 3 378 387 104 148
0.01 4 356 378 110 128
Korobov 1560 586 714 216

MC 12348 3012 3635 1347

One important feature is that each realization of P̀ − P̀ −1 is simulated with common random numbers
across the two terms. For this, we first simulate the process with time step h` to obtain P̀ . This requires
2m` random numbers to simulate the increments of the two-dimensional process over the m` time steps.
We denote here by Z`

j rather than by Z j, defined in (7), the intermediate two-dimensional normal vector
generated using the j-th pair of these random numbers. Then, to simulate the process with time step
h`−1 = mh`, we set Z`−1

j = m−1/2
∑

m
k=1 Z`

( j−1)m+k, hence Z`−1
j is produced with common random numbers

with Z`
( j−1)m+1, . . . ,Z

`
jm and also has the same distribution as Z j. However, independent random numbers

are used across different values of `, so that Var[Y ] = ∑
L
`=0 Var[Y`].

The idea from Giles and Waterhouse (2009) is to choose L and n0, . . . ,nL in order to obtain a mean
square error on Y of at most ε2, which can be achieved by requiring that both the square bias and the
variance be smaller than ε2/2 (the mean square error is defined as their sum). The authors estimate the
bias on Y with (m−1)−1 max{m−1|YL−1|, |YL|} (see Giles 2008 for the details), and the variance with the
unbiased sample variance. To simulate Y , the maximum level L is incremented iteratively until the bias
estimate is smaller than ε/

√
2, and the numbers of points n0, . . . ,nL are chosen in such a way to try to

minimize the work-normalized variance WNVar[Y ] =C(Y )Var[Y ], with C(Y ) = ∑
L
`=0C(Y`) = ∑

L
`=0 m`n`.

For MC, n` can be chosen in advance. It is known that the MC variance of Y` decreases as n−1
` and it

can be shown that taking n` proportional to h` minimizes WNVar[Y ], under mild conditions, which hold for
example if we use the Euler discretization and if the payoff function is Lipchitz continuous. For RQMC,
the convergence rate of Var[Y`] in terms of n` is not known precisely, so n` is chosen adaptively as follows.
Until Var[Y ] < ε2/2, the estimator Y` is refined by doubling n` for the level ` ∈ {0, . . . ,L} that has the
largest potential of reduction of variance per unit cost of increasing the number of points by a factor of
b. The authors measure this potential as Var[Y`]/C(Y`), assuming that most of the variance of Y` can be
eliminated by increasing n` by a factor b. This adaptive refinement of Y0, . . . ,YL is performed every time
L is incremented. The use of embedded lattice rules Q0

b0 ⊂ ·· · ⊂ Qbp in base b = 2 allows for reusing the
realizations of P̀ − P̀ −1 for `≥ 1, or of P0 for `= 0, already summed into Y` before doubling n` (this also
means that the r independent realizations of Y` must be stored). As we increase L, we use Lattice Builder
to construct good embedded lattice rules Q0

b0 ⊂ ·· · ⊂Qbp in base b = 2 with p = 16 and in dimension mL.
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3.6 Dimensional Structure of the Multilevel Problem

In this section, we repeat the analysis from Section 3.3, but for the integrand used to compute the estimator
Y2 of E[P2−P1] based on replicates of P2−P1, instead of for the integrand used to compute the estimator of
E[P2] as was done in Section 3.3. The results are shown in Figure 2. Most of the remarks from Section 3.3
also hold here. In general, RQMC works best if the bulk of the variance is held by projections of low
orders. However, here, and especially for the European payoff function, a much smaller portion of the
variance is contributed from projections of order 1, compared to the single-level case of Section 3.3.
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Figure 2: Distribution of the ANOVA variances across projections of P2−P1, for the European (top) and
Asian (bottom) payoff functions, for the 32 projections with the largest estimated variance. See Figure 1.

3.7 Numerical Experiments with the Multilevel Problem

Here we apply the multilevel approach described in Section 3.5 to the discretization from Section 3.2 of the
problem of Section 3.1. Because the maximum value of L that will be used is not known in advance, every
time L is increased, our simulation software calls Lattice Builder as illustrated in Section 2.4 to construct
new good embedded lattice rules in dimension s = 2L+1.

For ε = 0.01, the estimation of the European and Asian payoff converged at L = 5, with Y ≈ 10.46 and
5.76, respectively. The ML columns of Table 1 give the work-normalized variances of Y using different
types of weights, and also with embedded Korobov lattices with a = 1267, taken from Hickernell et al.
(2001). In Section 3.4, we chose d = 2L where L is the highest level reached by the multilevel algorithm,
and we selected n such that the total computational cost is the same as with the multilevel algorithm.
The results here are qualitatively very similar to those from Section 3.4. What is surprising is that the
multilevel approach consistently yields larger values of WNVar[Y ] than those from the single-level method.
To understand this, we examine the allocation of the computational effort across the different levels.

The multilevel approach relies on the decreasing magnitude of P̀ − P̀ −1 (and its variance) to maintain
a low value of Var[Y`] while decreasing n` with `. This permits one to maintain the total variance under
a target threshold ε2/2 while reducing the total computational effort. With MC, the optimal allocation of
work consists in taking C(Y`) constant across all levels `. With RQMC, in contrast, we do not know in
advance what the optimal allocation of work across the different levels is. Table 2 shows the estimates of
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Var[Y`] for the European and Asian payoffs, for MC and for lattice rules with Γ = 0.01 and k = ∞. The
numbers displayed for MC are adjusted to correspond to the same total cost C(Y ) as obtained with lattice
rules. For the case of lattice rules, the values of C(Y`) resulting from the adaptive selection of n` are also
given in parentheses, and tend to increase with `. The explanation for this is twofold. First, the adaptive
multilevel RQMC algorithm, as originally formulated, estimates the potential of reduction of variance per
unit cost in exactly the same way for lower and higher levels. However, the RQMC variance generally
converges more slowly with n` in high dimension (higher levels) than in low dimension (lower levels).
It follows that the adaptive algorithm overestimates the potential of reduction of variance per unit cost at
higher levels, relative to that at lower levels, which results in a shift of the computational effort towards the
more demanding higher levels. The second part of the explanation is that, as we have seen in Section 3.6,
P̀ − P̀ −1 has a larger portion of its variance contributed by projections of dimension larger than unity than
just P̀ , which makes RQMC less profitable when computing P̀ − P̀ −1 than when computing P̀ . Thus,
shifting much of the RQMC computational effort toward higher levels appears to be counterproductive in
the end.

Table 2: Var[Y`] as a function of ` for ε = 0.01, for the European and Asian payoffs, using MC and rank-1
lattice rules with Γ = 0.01 and k = ∞ (not truncated). C(Y`) is given in parentheses for the case of lattice
rules; for MC, C(Y`) is the same for all `.

` European Asian
MC Γ = 0.01 MC Γ = 0.01

0 2.3×10−4 8.2×10−7 (218) 1.5×10−4 7.4×10−7 (217)
1 5.4×10−6 7.9×10−7 (218) 8.8×10−5 1.6×10−6 (217)
2 8.0×10−6 3.6×10−6 (219) 5.6×10−5 3.4×10−6 (218)
3 2.3×10−5 1.3×10−5 (220) 4.2×10−5 7.9×10−6 (219)
4 4.0×10−5 1.7×10−5 (221) 4.3×10−5 9.6×10−6 (220)
5 5.2×10−5 1.2×10−5 (222) 4.6×10−5 1.6×10−5 (220)

4 CONCLUSION

Lattice Builder is useful to construct lattice rules on the fly, as they are needed. In our examples, the
performance of RQMC was generally sensitive to the choice of criterion and weights, and it was profitable
to construct our own lattice rules instead of using parameters (for the Korobov rules) obtained without
targeting a specific application. Besides, we have seen that the multilevel RQMC algorithm proposed by
Giles and Waterhouse (2009) did not perform as well for RQMC for our examples, possibly because of
the way it allocates the computational effort across the different levels, and because the structure of the
multilevel integrands is less RQMC-friendly.
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at the Université de Montréal, Canada. He holds the Canada Research Chair in Stochastic Simulation
and Optimization. He is a member of the CIRRELT and GERAD research centers. His main research
interests are random number generation, quasi-Monte Carlo methods, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete-event stochastic systems, and discrete-event
simulation in general. He is currently Editor-in-Chief for ACM Transactions on Modeling and Computer
Simulation, and Associate/Area Editor for ACM Transactions on Mathematical Software, Statistics and
Computing, International Transactions in Operational Research, and Cryptography and Communications.
More information and his recent research articles are available at http://www.iro.umontreal.ca/∼lecuyer.
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