
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

EFFICIENT SIMULATION OF VIEW SYNCHRONY

Frej Drejhammar

Swedish Institute of Computer Science

Box 1263

SE-164 29 Kista, SWEDEN

Seif Haridi

Swedish Institute of Computer Science

Box 1263

SE-164 29 Kista, SWEDEN

ABSTRACT

View synchrony is a communications paradigm for building reliable distributed systems. Testing a protocol
using view synchrony with a simulated implementation of view synchrony allows the tested protocol to be
exposed to the full timing range allowed by the view synchrony model. This both reduces the complexity of
the test environment and increases the confidence in the tested protocol. This paper outlines an algorithm
for efficiently simulating view synchrony, including failure-atomic total-order multicast in a discrete-time
event simulator.

1 INTRODUCTION

This paper outlines how view synchrony including failure-atomic total-order multicast in a partitionable
network environment can be implemented efficiently in a discrete-time event simulator. View synchrony (Bir-
man and Joseph 1987) is a communications paradigm for building reliable distributed systems (Birman
2006), it is provided by middleware such as JGroups (JGroups 2008), Spread (Amir and Stanton 1998)
and FTM (Ventura Networks Inc. 2009). To the best of our knowledge, this is the first description of a
view synchrony protocol tailored for a simulated environment.

Testing and debugging a complex application using view synchrony is hard and typically requires a
network-level test environment. Using a custom view synchrony implementation, intended for use in a
simulated environment, reduces the complexity of the test environment and can be made to exhibit the full
timing range allowed by view synchrony instead of the subset occurring in a particular implementation
and testing environment.

View synchrony can be implemented concisely by keeping track of view and partition states and using
this information to schedule delivery of application messages and middleware events.

2 VIEW SYNCHRONY

View synchrony is a group communications abstraction in which message delivery is uniform1 within a
particular system configuration, called a view, and was first introduced by Birman in (Birman and Joseph
1987). The semantics of view synchrony as a group communications abstraction in partitionable systems
has been formalized by Babaoglu et al. (Babaoglu, Davoli, and Montresor 2001). Friedman and van
Renesse (Friedman and van Renesse 1995) extended the model to guarantee that messages are delivered
in the same view as they were sent in or not at all. Practical implementation such as the Spread (Amir and
Stanton 1998), FTM (Ventura Networks Inc. 2009) and JGroups (JGroups 2008) middleware extend the
model with unicast messages, total order broadcasts and FIFO message delivery.

Intuitively the semantics of the view synchrony as a group communications abstraction can be summarized
as follows: a view is a set of nodes. Communication occurs between nodes in a view. Message delivery
within a view is uniform, meaning that all non-faulty nodes in the view will see the same set of messages,

1If a node delivers a message, all non-faulty nodes deliver the message.

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Drejhammar, and Haridi

in the same order. When a node fails or enters the system, message sending is halted and the view is said
to be blocked, after which all messages currently “in flight” are delivered to the non-faulty nodes. When
delivery is complete a new view is installed and message sending is resumed. For the full formal semantics,
the reader is referred to Babaoglu et al. (Babaoglu, Davoli, and Montresor 2001) and Friedman and van
Renesse (Friedman and van Renesse 1995).

3 VIEW SYNCHRONY SIMULATION

In a production-quality view synchrony middleware, FIFO ordering of point-to-point messages is handled
implicitly by underlying network layers or by an explicit sequence numbering scheme. View synchronous
total order broadcast is implemented by a consensus implementation agreeing on the delivery order of the
messages. In a simulated environment, where the global system state is available, simpler mechanisms can be
used to ensure message ordering guarantees. This section gives an outline of the simulator implementation,
a complete description is available in a technical report (Drejhammar and Haridi 2012).

With the global knowledge available in a simulated environment it is no longer necessary to implement
distributed consensus, instead we can schedule view generation and message delivery as soon as an event
occurs in the discrete-time event simulator. When an event is scheduled it is placed randomly within a
time window allowed by the semantics of view synchrony.

Our view synchrony simulator is split into two parts: one part that tracks message delivery within
a view, and one part that coordinates views. To track messages within a view we use a simple network
simulator. The main purpose of the network simulator is to track network connectivity and provide reliable
message delivery and atomic broadcasts to correct nodes within a network partition.

When the network connectivity is changed, due to merging or partitioning, the availability of global
state allows the simulator to schedule the generation of a new view at a point in time when all messages
currently “in flight” have been delivered. Partitioning is handled by cloning the simulator state to create
two new states in which the nodes belonging to the other partition are treated as if they have crashed.
Merging is handled similarly by first blocking the view in the respective partition and, when all messages
have been delivered, generating a new view.

4 BENEFITS OF VIEW SYNCHRONY SIMULATION

The main advantage of simulating view synchrony instead of implementing one of the several known
algorithms on top of a network simulator is that it reduces the complexity of the testing environment.
Additionally, simulated view synchrony allows an application/protocol to be exposed to all timing behaviours
allowable under view synchrony and not just those exhibited by a particular middleware implementation.

REFERENCES

Amir, Y., and J. Stanton. 1998. “The Spread Wide Area Group Communication System”. Technical Report
CNDS-98-4, Johns Hopkins University.

Babaoglu, O., R. Davoli, and A. Montresor. 2001, April. “Group Communication in Partitionable Systems:
Specification and Algorithms”. IEEE Transactions on Software Engineering 27 (4): 308–336.

Birman, K. 2006. Reliable Distributed Systems Technologies, Web Services, and Applications. Springer.
Birman, K. P., and T. A. Joseph. 1987. “Reliable communication in the presence of failures”. ACM Trans.

Comput. Syst. 5 (1): 47–76.
Drejhammar, F., and S. Haridi. 2012. “Efficient Simulation of View Synchrony”. Technical Report T2012:07,

Swedish Institute of Computer Science.
Friedman, R., and R. van Renesse. 1995. “Strong and Weak Virtual Synchrony in Horus”. Technical Report

TR95-1537, Cornell University.
JGroups 2002-2008. “http://www.jgroups.org”.
Ventura Networks Inc. 2009. “http://www.venturanetworksinc.com/”.

