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ABSTRACT

This work proposes an approximate Bayesian statistical model for predicting the win/loss probability
for a given price in business-to-business (B2B) pricing. This model allows us to learn parameters in
logistic regression based on binary (win/loss) data and can be quickly updated after each new win/loss
observation. We also consider an approach for recommending target prices based on the approximate
Bayesian model, thus integrating uncertainty into decision-making. We test the statistical model and the
target price recommendation strategy with synthetic data, and observe encouraging empirical results.

1 INTRODUCTION

The problem of business-to-business (B2B) pricing arises in high-volume commercial transactions between
businesses. For example, consider the problem faced by a supplier of raw materials negotiating a long-term
contract with a large manufacturing concern. After a period of negotiation, the seller quotes a price, which
can be accepted or rejected. If the pricing offer is rejected, the seller loses a substantial amount of revenue,
but it may not be clear exactly how much lower the offer should have been. If the offer is accepted, the
seller makes a profit, but is left wondering whether a somewhat higher offer would still have been accepted.
The seller’s goal is to maximize total revenue from a sequence of contracts, in the face of uncertainty about
buyer behavior.

Dynamic pricing in general is subject to uncertainty. Classic models in revenue management often
assume stochastic demand for a product (Gallego and Van Ryzin 1994, Feng and Gallego 1995), or uncertain
customer valuations of it (Lazear 1986). Recent work, however, has considered the additional dimension
that the uncertainty may be environmental, that is, the seller does not even know the distribution from
which customer valuations are drawn. In practice, this distribution must be estimated, and the estimate
must be adjusted over time as new transactions are observed. This gives rise to the problem of “learning
and earning,” in which the seller does not always prefer the decision that appears to be optimal based on the
current demand model (referred to as the “myopic” decision), but rather may engage in more exploratory
or experimental behavior. For example, an online retailer may increase or decrease some prices for a
period of time, simply to observe the effect on sales. Although this behavior may result in lost revenue, it
provides new information that produces a more accurate demand model, enabling better pricing decisions
in the future.

The literature has used Bayesian statistics to model environmental uncertainty (Cope 2007, Farias
and Van Roy 2010), and different pricing strategies have been proposed to optimize the balance between
revenue and information. For example, Carvalho and Puterman (2005) proposes a one-step look-ahead
strategy for problems with logistic revenue curves, while Chhabra and Das (2011) presents an approach
based on multi-armed bandit theory. A recent stream of work, represented by Besbes and Zeevi (2009),
den Boer and Zwart (2011), Harrison et al. (2012), and Broder and Rusmevichientong (2012), has focused
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on establishing long-run convergence rates for policies that are mostly myopic, with occasional periods of
exploration spaced increasingly further apart. However, in the specific context of B2B pricing, individual
transactions typically have high volume (for example, the seller may be negotiating the price of a year’s
supply of raw materials) and incur high costs (e.g. the time and money spent during negotiations), making
it important to obtain good performance quickly.

We consider an application where information arrives in the form of binary win/loss observations,
representing customers’ yes/no responses to the seller’s pricing offers (or “bids”). A common demand
model in this setting (used e.g. by Carvalho and Puterman 2005) assumes that these binary outcomes follow
a logistic distribution, which also allows us to relate the win probability to a set of regression features
representing additional information about the product or customer type. Although this is a fairly natural
choice of demand model (essentially just an instance of logistic regression), it is quite challenging to connect
to the Bayesian way of representing new information and using it to update the seller’s beliefs. While, for
linear regression, the multivariate normal distribution offers an intuitive and easy-to-use conjugate prior
(Minka 2000), no such model is available for logistic regression, making it difficult to represent a belief
over a continuous space of logistic curves.

We approach this problem with approximate Bayesian inference, using the technique of density projection
to create a multivariate normal posterior distribution that is “approximately conjugate,” in the sense of
minimizing the Kullback-Leibler divergence from the actual posterior. See e.g. Qu et al. (2012) for an
application of this technique to the problem of learning unknown correlation structures in ranking and
selection. In the context of logistic regression, our approach is similar to the variational approximation by
Jaakkola and Jordan (2000), but involves an additional optimization step using infinitesimal perturbation
analysis (see e.g. Fu 2006 or Fu 2008) to further improve the quality of the approximation. Using this
statistical technique to efficiently update a multivariate normal prior on the parameters of the logistic
demand curve, we then apply a policy that optimizes a myopic estimate of the expected revenue curve (see
e.g. Ch. 11 of Powell and Ryzhov 2012). Our numerical experiments provide evidence in favor of both
the approximate Bayesian learning model and the Bayes-greedy pricing policy. Although our Bayesian
model has numerous applications outside pricing, in this particular context it enables the seller to compactly
model a set of beliefs about win probabilities for a wide range of customer and product segments, and then
quickly update this belief in real time.

The paper is organized as follows. Section 2 develops a scheme for Bayesian learning in logistic
regression using the framework of approximate Bayesian inference. Section 3 describes the Bayes-greedy
pricing policy that works together with this learning model, as well as some related structural properties.
Section 4 presents simulation results, and Section 5 concludes.

2 PROBLEM FORMULATION AND LEARNING MODEL

Section 2.1 introduces the demand and revenue curves optimized by a seller in the B2B pricing problem.
In Section 2.2, we discuss the challenge of developing a Bayesian model for learning the parameters of the
demand curve. Then, Sections 2.3 and 2.4 outline our proposed approach for overcoming this challenge.

2.1 Problem Formulation

Consider a seller who must quote prices for a sequence of corporate clients. The (n+1)st client will
accept a price offer pn ≥ 0 with probability ρ , which may also depend on additional properties of the
client or product. The function ρ is called the demand curve, and is not known exactly to the seller.
However, the seller does observe the client’s response, modeled as a binary variable Y n+1, where Y n+1 = 1
with probability ρ , representing a sale (or “win”), and Y n+1 = 0 represents a “loss.” The seller’s expected
revenue from the client is

R(pn) = pn
ρ, pn ≥ 0, (1)
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where the demand curve ρ usually depends on the price pn. In most applications, we need to consider the
marginal cost c for the product, and work with the expected profit

Π(pn) = (pn− c)ρ, pn ≥ c. (2)

We assume that Y n follows a logistic distribution, allowing us to write the demand curve as

ρ(xn) = P(Y n+1 = 1) =
1

1+ e−µµµᵀxn , (3)

where xn is a vector of features, observed by the seller, providing relevant information for the (n+1)st pricing
decision. In the simplest possible model, the customers are assumed to be homogeneous, xn = [1, pn]ᵀ, and
the parameter vector µµµ consists only of an intercept and a slope term. We use this simple model in our
examples throughout this paper. However, our analysis is readily applicable to the general case, where xn

may also contain information about the product (type or volume) and the client (region, industry, history
with the seller).

In all of these cases, the parameter vector µµµ is unknown to the seller and must be inferred using a
combination of prior knowledge and incoming win/loss results. The shape of the demand curve is extremely
sensitive to the parameter values, making it important to obtain accurate estimates of the parameters as
quickly as possible. We now propose a Bayesian framework for learning the demand curve.

2.2 Bayesian Model For Dynamic Pricing

We adopt the Bayesian view, and represent our uncertainty about the vector µµµ using a multivariate normal
prior distribution, that is,

µµµ ∼N (θθθ ,ΣΣΣ). (4)

The multivariate normal distribution offers a compact and powerful way to model correlations between
our beliefs about different components of µµµ . Because the observation Y n+1 provides information about
an entire vector xn, our beliefs about different components of this vector should become correlated due to
their dependence on the same observations. A second convenience of the multivariate normal distribution
(important for computational purposes) is that the linear combination µµµᵀxn follows a univariate normal
distribution.

In linear regression, where a continuous response variable is related to a linear combination of features,
the multivariate normal prior possesses the property of conjugacy. That is, if the residual errors are i.i.d.
normal, the posterior distribution of the regression parameters, conditional on a sequence of observations,
will remain normal (Minka 2000). This model makes the learning process highly efficient computationally,
as one only needs to recursively update the mean vector and covariance matrix of the belief distribution
after each observation. Unfortunately, in logistic regression, there is no known prior distribution that is
conjugate with logistic observations. To see this, we first assume that µµµ ∼N (θθθ n,ΣΣΣn), and write the
likelihood function of Y n+1 as

P(Y n+1) = g(Hn+1(µµµ)), (5)

where g(z) = (1+ e−z)−1 and Hn+1(µµµ) = (2Y n+1− 1)(µµµᵀxn). Equation (5) allows us to represent the
win/loss probability in a concise form. Applying Bayes’ rule, the posterior distribution, given the bidding
price pn and the observation Y n+1, can be written as

p(µµµ|pn,Y n+1) ∝ g(Hn+1(µµµ))|ΣΣΣn|−1/2 exp
{
−1

2
(µµµ−θθθ

n)ᵀ(ΣΣΣn)−1(µµµ−θθθ
n)

}
, (6)

which is clearly non-normal.
We would like to retain the multivariate normal prior due to its power in modeling correlated beliefs.

However, we are now required to use the techniques of approximate Bayesian inference to develop a
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multivariate normal posterior that is “approximately conjugate.” Several such approaches have been
proposed, including approximation methods based on Laplace approximation (Spiegelhalter and Lauritzen
1990) and variational bounds (Jaakkola and Jordan 2000). We take a variational Bayesian approach to
approximate the posterior distribution by minimizing the Kullback-Leibler divergence between the true
posterior distribution and a multivariate normal distribution.

2.3 Variational Bayesian Approximation

Suppose that, after observing n responses, our beliefs about µµµ are multivariate normal with parameters
(θθθ n,ΣΣΣn). Let P(µµµ|pn,Y n,θθθ n,ΣΣΣn) be the likelihood function of this distribution. The variational Bayesian ap-
proach approximates the posterior distribution of µµµ , given Y n+1, with a normal distribution Q(µµµ|θθθ n+1,ΣΣΣn+1)
by minimizing the Kullback-Leibler (KL) divergence. The KL divergence between P(µµµ|pn,Y n+1,θθθ n,ΣΣΣn)

and Q(µµµ|θθθ n+1,ΣΣΣn+1) is defined as

D(Q q P) := EQ

(
log

Q(µµµ|θθθ n+1,ΣΣΣn+1)

P(µµµ|pn,Y n+1,θθθ n,ΣΣΣn)

)
, (7)

where the expectation is taken with respect to Q. This definition can be partially simplified, as stated in
the following result.
Proposition 1 The KL divergence can be written as

D(Q q P) = EQ

[
log
(

1+ e−Hn+1(µµµ)
)]

+h(θθθ n,ΣΣΣn,θθθ n+1,ΣΣΣn+1), (8)

with the second component specified as

h(θθθ n,ΣΣΣn,θθθ n+1,ΣΣΣn+1) =
1
2

[
tr
(
(ΣΣΣn)−1

ΣΣΣ
n+1)+(θθθ n−θθθ

n+1)ᵀ(ΣΣΣn)−1(θθθ n−θθθ
n+1)− k− ln

|ΣΣΣn+1|
|ΣΣΣn|

+C

]
,

where C is a constant that does not depend on θθθ
n+1 and ΣΣΣ

n+1.
To minimize the KL divergence, the first step is to take the gradient of D(Q q P) with respect to its

parameter θθθ
n+1 and ΣΣΣ

n+1. Unfortunately, a closed-form expression for the gradient is not available, because
the expectation in equation (8) is intractable. However, if our goal is to minimize an expected value, a
connection to gradient-based stochastic search (Kim 2006) comes naturally to mind. The work by Blei et al.
(2012) uses such an approach, where a likelihood ratio estimate (Spall 2005) of the gradient is constructed.
However, this approach leads to a noisy simulation optimization problem, whose dimensionality is quadratic
in the number of features, presenting substantial computational difficulties.

Instead of optimizing with respect to
(

θθθ
n+1,ΣΣΣn+1

)
, we utilize a dimension reduction technique and

propose the following form for θθθ
n+1 and ΣΣΣ

n+1:

θθθ
n+1 = ΣΣΣ

n+1
(
(ΣΣΣn)−1

θθθ
n +

(
Y n+1− 1

2

)
xn
)

(9)

ΣΣΣ
n+1 =

(
(ΣΣΣn)−1 +λxn (xn)ᵀ

)−1
(10)

Applying the Sherman-Morrison formula to (9) and (10), we obtain

θθθ
n+1 = θθθ

n +
Y n+1−1/2

λ
− (xn)ᵀθθθ

n

1
λ
+(xn)ᵀΣΣΣ

nxn
ΣΣΣ

nxn, (11)

ΣΣΣ
n+1 = ΣΣΣ

n− ΣΣΣ
nxn(xn)ᵀΣΣΣ

n

1
λ
+(xn)ᵀΣΣΣ

nxn
. (12)
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In this form, there is only one parameter λ to be determined. We minimize the KL divergence with respect
to λ to find the optimal multivariate normal posterior distribution from the parametrized family in (11)-(12).
Aside from the computational convenience of reducing the size of the problem, we choose precisely this form
because it resembles the Kalman-filter-like equations used for Bayesian linear regression; the parameter λ

is analogous to the precision of the residuals, while Y n+1−1/2
λ

stands in for the continuous observation. In
this way, our learning model for logistic regression makes an intuitive connection to the well-understood
linear setting. Moreover, previous work on logistic regression, including Jaakkola and Jordan (2000) and
Spiegelhalter and Lauritzen (1990), has derived updating rules with very similar form, based on different
approximation techniques for the posterior likelihood function.

For additional convenience, we apply the transformation v = 1
λ

and find

v∗ = argmin
v

D(Q q P). (13)

The parameter v is analogous to the variance of the residuals in a linear regression model. Since no such
explicit parameter is given in logistic regression, we simply find the value that produces the most accurate
approximation.

2.4 Minimizing the Kullback-Leibler Divergence

We now propose a stochastic approximation method to solve the minimization problem in (13), which
requires estimations of the gradient of D(Q q P) with respect to the single parameter v. This results in

∇vD(Q q P) = ∇vEQ

[
log
(

1+ e−Hn+1(µµµ)
)]

+∇vh(θθθ n,ΣΣΣn,θθθ n+1,ΣΣΣn+1). (14)

Since we do not have a close-form expression for ∇vEQ

[
log
(

1+ e−Hn+1(µµµ)
)]

, we propose to use infinitesimal
perturbation analysis (IPA) to obtain noisy samples of the gradient (see e.g. Kim 2006 or Fu 2008 for
an introduction). First, we transform the expectation in (14) into an integration with respect to a standard
univariate normal distribution, E[ f̄ (Z)], where Z ∼N (0,1) and

f̄ (z) = log
(

1+ exp
{
−(2Y n+1−1)

[(
xn(pn(µµµ))ᵀΣΣΣ

n+1xn(pn)
)1/2

z+(θθθ n+1)ᵀxn(pn)
]})

.

The next result shows that the conditions for IPA (L’Ecuyer 1995) hold.
Proposition 2 ∇vE

[
f̄ (Z)

]
= E

[
∇v f̄ (Z)

]
.

The IPA estimator itself is given as

E
[
∇v f̄ (Z)

]
≈ 1

N

N

∑
i=1

∇v f̄ (Z(i)),

where Z(i) are independent samples from a standard normal distribution. We denote the gradient estimator
by ∇̂vEQ

[
log
(

1+ e−Hn+1(µµµ)
)]

and plug it into (14) for ∇vEQ

[
log
(

1+ e−Hn+1(µµµ)
)]

. This produces an

estimator of ∇̂vD(Q q P), and we can apply the Robbins-Monro stochastic approximation algorithm

vn+1 = vn−an∇̂vD(Q q P),

for some suitably chosen stepsize an, to find the optimal v∗ and thus the optimal λ ∗. Then we can apply
the updating rules in (11) and (12) to determine the approximate posterior distribution after collecting each
observation Y n.
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3 DYNAMIC PRICING POLICY

We have shown a way in which the seller’s beliefs can be updated after observing customer response to
a price. It remains to address how that price can be chosen in the first place. In this section, we expand
upon the notion of a “Bayes-greedy” pricing policy introduced in Ch. 11 of Powell and Ryzhov (2012).
Greedy and semi-greedy policies have been widely studied in the literature on dynamic pricing under
environmental uncertainty (see e.g. Harrison et al. 2012), and our policy may also be viewed as part of that
realm. However, in the setting of Bayesian logistic regression, the concept of “greedy” admits important
nuances.

Ideally, the seller would like to choose the price that maximizes the true revenue curve,

p∗ = argmax
p

p
1+ e−(µµµᵀx(p))

, (15)

where we emphasize that x depends on p since p is typically one component of the vector of features.
A simple “greedy” policy will simply replace µµµ in (15) by the current posterior mean vector θθθ

n. This is
typically the approach used in frequentist models (e.g. in Broder and Rusmevichientong 2012) where an
MLE estimator is used in place of θθθ

n.
In the Bayesian setting, however, this approach will under-perform, because it does not use all of the

available information. In particular, it does not account for the uncertainty in our beliefs, expressed by
ΣΣΣ

n. The covariance matrix is important because it specifies a whole family of possible revenue curves,
parametrized by µµµ ∼N (θθθ n,ΣΣΣn). Thus, a Bayes-greedy policy will still myopically optimize the expected
single-period revenue, but the expectation will be over the entire space of revenue curves. That is,

pn = argmax
p

E [R(p)] = argmax
p

E
[

p
1+ e−(µµµᵀxn(p))

]
, (16)

where the expectation is taken with respect to the (approximate) posterior joint distribution of the parameters.

3.1 Computation of the Bayes-Greedy Policy

In order to use the Bayes-greedy policy, we require the ability to compute the expectation in (16). The
approximate Bayesian model suggests that the posterior distribution is multivariate normal, which leads to
another convenient dimension reduction. If µµµ ∼N (θθθ n,ΣΣΣn) after collecting n observations, then

µµµ
ᵀx∼N ((θθθ n)ᵀx,xᵀΣΣΣ

nx)

for arbitrary x. Therefore, let W = µµµᵀx, noticing that W is actually a function of p, and rewrite (16) as

pn = argmax
p

E
[

p
1+ e−W

]
, (17)

where the expectation is now taken with respect to a univariate normal distribution with appropriately
chosen mean and variance.

The expectation in (17) is known as the logistic-normal integral (Demidenko 2005), which plays an
important role in statistics. However, this integral is impossible to compute analytically. It may be computed
using Monte Carlo simulation, in particular using IPA (it can be shown that the relevant conditions hold).
However, Crooks (2009) offers a tractable approximation

E
[

1
1+ e−W

]
≈ 1

1+ e−
E(W )

γ

,

where

γ =

√
1+

π

8
Var(W ).
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This leads to an approximate Bayes-greedy policy that can be written as

pn = argmax
p

p

1+ e−
(θθθn)ᵀxn(p)

γn(p)

, (18)

where

γ
n(p) =

√
1+

π

8
xn (p)ᵀ ΣΣΣ

nxn (p).

This approximation gives us a closed-form expression for the expected revenue function, so that making
a pricing decision using (18) is computationally easier.

3.2 Analysis of the Bayes-Greedy Policy

It can be easily shown that the objective function optimized by the point-estimate policy,

RPE(p) =
p

1+ e−(θθθ
n)ᵀxn(p)

,

is log-concave (but not concave). As a consequence, this function has a single globally optimal price. We
show that the Bayes-greedy objective function in (16) possesses the same property, whence it follows that
the idea of a “Bayes-greedy price” is well-defined.
Theorem 3 The Bayes-greedy objective function

RBG(p) = E[R(p)] = E
[

p
1+ e−(µµµᵀxn(p))

]
is quasi-concave in p when p > 0.

An important consequence of Theorem 3 is that, if we apply IPA to optimize RBG, we are guaranteed
to converge to the optimal price. In general, IPA is only guaranteed to find a local optimum. However,
in this case, we can apply stochastic approximation to solve the problem directly instead of using the
approximation in (18). However, we are still interested in understanding the approximate problem, since it
is easier to solve. One can observe that (18) resembles the point-estimate objective, but with an additional
factor γn (p) incorporating our uncertainty about the regression coefficients. The following proposition
summarizes structural properties of this factor.
Proposition 4 The factor γn(p)≥ 1 is convex in p.

The variance factor can be viewed as the risk we have to take when choose a price. In most problem
instances that we have observed, the factor γn(p) is not only a convex function, but also an increasing
function within the domain of bidding prices. This suggests that the risk is higher when we take a higher
price, but the possible reward is also higher. Moreover, the probability of success decreases when we
choose a higher price. However, since the factor γn(p) is greater than 1, the Bayes-greedy policy tends to
explore higher prices than the point-estimate policy, leading to possible higher profit.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments using the approximate Bayesian learning model with
stochastic approximation proposed in Section 2 and the Bayes-greedy policy proposed in Section 3. We
compare this with several alternative approaches, described as follows:

1. The standard frequentist logistic regression approach with the point-estimate policy. In this approach,
logistic regression is reapplied after collecting each observation to estimate parameters in the demand
function. Then, a pricing decision is made using the point-estimate policy mentioned in Section 3.
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2. The variational lower bound approach in Jaakkola and Jordan (2000), using the point-estimate
policy to make pricing decisions.

3. The variational lower bound approach in Jaakkola and Jordan (2000), with the proposed Bayes-
greedy policy. This is used to show the advantage of choosing the parameter λ optimally using
IPA.

Suppose that we are running a computer company, and one of our standard desktop computer models
has production cost c. When we set a price for selling, we restrict the prices to be within the range [pl, pu],
where the lower bound pl ≥ c. This means that we never set a price that is lower than the cost, and it is
very unlikely that we will make a sale if the selling price is above pu. Our objective is to maximize the
profit function as in (2). In our experiment, we choose c = 300, pl = 300 and pu = 500. We consider a
finite number of possible bidding prices from 300 to 500 in increments of 10.

For the purposes of this example, we use a two-parameter model, that is, µµµ = (µ1,µ2) and x(p) = [1, p]ᵀ.
We begin with a prior mean θθθ

0 = [500,−1]ᵀ. The corresponding demand and profit curves, based on this
prior, are shown as the solid green lines in Figure 1. The figure also shows three different realizations of µµµ

in which the maximum possible profits are “low,” “medium,” and “high.” Minor changes in the regression
parameters can significantly alter the shape of the profit curve. From Figure 1a, we see that the prior is
essentially telling us that any customer is highly likely to purchase the computer for prices between $300
and $500. Considering the upper and lower bounds we have chosen for our price, this type of prior can
be understood as uninformative (since our belief suggests that a customer will buy the product for almost
any price in the range).

The prior covariance matrix we choose for one specific setting is given by

ΣΣΣ
0 =

[
100 0
0 0.01

]
.

Instead of interpreting this as our uncertainty about the parameters in the prior belief, it may be more
meaningful to consider ΣΣΣ

0 as the uncertainty about possible prices that buyers will pay. Notice that the
magnitudes of the two variances are quite different, again due to the extreme sensitivity of the profit curve
to small changes in the regression parameters, particularly the price sensitivity µ2. If the variance of µ2 is
too large, this essentially means that µ2 has a high probability of being positive, which is quite unlikely
to occur in practice. Furthermore, in a practical application of the Bayes-greedy policy, we may have
x(p) = [x̃, p]ᵀ, where x̃ contains product and customer attributes unrelated to the price. For the purpose
of myopically optimizing the price, this model is equivalent to a two-parameter model where multiple
features are embedded into µ1, in which case the variance of µ1 actually represents the variance of a sum
of random variables, and should be much larger than the variance of µ2.

We compare the performances, including pricing decisions, single-period profit and cumulative profit,
of the approach proposed in this paper (referred to as “IPA-Bayes”) and three alternative approaches. The
results are reported for the first 20 iterations and averaged over 1000 sample paths, with the true value of µµµ

fixed according to the three scenarios shown in Figure 1. In all numerical experiments, the Bayes-greedy
policy refers to the approximate policy in equation (18). We briefly discuss each of the three scenarios
below.

Low-truth scenario. The parameters of the low truth setting are µ1 = 40 and µ2 =−0.115. With
pre-specified values for µ1 and µ2, the optimal bidding price is 340. As shown in Figure 2, all four methods
start with the same bidding price initially and converge after 6 iterations, but the values they converge to are
different. All methods converge to prices below the optimal selling price, but the prices from IPA-Bayes
and the logistic regression method are closer to optimal, and produce similar profits. IPA-Bayes adjusts
more quickly to new information than the other three methods, without the volatile behavior observed for
frequentist logistic regression. Additionally, IPA-Bayes shows advantages in single-period profit during
the first 5 iterations, resulting in higher cumulative profit.
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Figure 1: Probability of success and corresponding profit curve as a function of the price under three
different scenarios

(a) Bidding prices (b) Single-period profit (c) Cumulative profit

Figure 2: Plots of bidding prices, single-period profit and cumulative profits over time under the low-truth
scenario

Medium-truth scenario. The true parameters are µ1 = 32.5 and µ2 = −0.08, and the optimal
bidding price is 380. Figure 3 shows that all four methods converge to a price close to optimal. Both the
single-period profit and the cumulative profit from the IPA-Bayes method dominate those from the other
three methods. Note that, while the frequentist method explores higher prices than IPA-Bayes for some
time, this behavior is actually too aggressive, and produces lower profits.

High-truth scenario. The parameters of the high-truth setting are µ1 = 55 and µ2 =−0.125, with
the optimal price being $420. As shown in Figure 4, both IPA-Bayes and Bayes-greedy start from a lower
bidding price than the other methods, due to the effect of the uncertainty factor γn (p). However, IPA-Bayes
quickly adjusts and increases the bidding price, eventually getting close to optimal, and dominating the
other methods in terms of single-period profit. After 10 iterations, frequentist logistic regression catches
up and produces similar single-period profit, at the expense of volatile behavior and smaller profits in the
early iterations.

Discussion. Frequentist logistic regression generally performs well after a few iterations. However,
in the sequential setting, we have to refit a new logistic regression model after every observation, which
becomes more time-consuming as the number of observations increases. The Bayesian learning model,
while less accurate (due to the approximation of conjugacy), provides a quick and efficient way to update
parameters, and generally produces a “smoother” sequence of prices; essentially, the uncertainty encoded in
the covariance matrix smooths the pricing decision, compared to the volatile prices chosen by the frequentist
method in the early iterations. Among the methods using approximate Bayesian inference, IPA-Bayes is
consistently the best.
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(a) Bidding prices (b) Single-period profit (c) Cumulative profit

Figure 3: Plots of bidding prices, single-period profit and cumulative profits over time under the medium-truth
scenario

(a) Bidding prices (b) Single-period profit (c) Cumulative profit

Figure 4: Plots of bidding prices, single-period profit and cumulative profits over time under the high-truth
scenario

In these examples, some competing policies tend to perform very similarly to IPA-Bayes after about
10 iterations. However, in the specific context of B2B pricing, the early iterations are especially important
because each individual contract tends to have much higher value, and the opportunity cost of pricing
suboptimally is more severe. To give some perspective, if the value of every contract is on the order of
hundreds of thousands, or millions, of dollars, the overall planning horizon will be shorter, and the first
5−10 iterations will become very significant.

5 CONCLUSION

We have presented an approximate Bayesian approach for learning the parameters in a logistic regression
model, with specific application to learning revenue curves in B2B pricing problems. We use infinitesimal
perturbation analysis and stochastic search to improve the quality of the approximation. We also consider
a pricing policy that incorporates uncertainty about the parameters into the estimated expected revenue
curve, and chooses a price that optimizes this aggregated function. The proposed model and pricing policy
show encouraging results in our empirical experiments. Future work will test the proposed approach on
real-world pricing data, where the underlying statistical model can be high-dimensional.
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