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ABSTRACT

We adapt and extend the likelihood robust optimization method recently proposed by Wang, Glynn, and
Ye for the newsvendor problem to a more general two-stage setting. We examine the value of collecting
additional data and the cost of finding a solution robust to an ambiguous probability distribution. A
decomposition-based solution algorithm to solve the resulting model is given. We apply the model to
examine a long-term water allocation problem in the southeast area of Tucson, AZ under ambiguous
distribution of future available supply and demand and present computational results.

1 INTRODUCTION AND MOTIVATION

In practice, many optimization problems can be modeled by stochastic programs minimizing an expected
value of an uncertain objective function. However, if the distribution of the uncertain parameters used in the
model is incorrect, the stochastic program can give highly suboptimal results. Such problems have led to
the development of distributionally robust optimization, a modeling technique that replaces the probability
distribution by a set of distributions, and optimizes the expected cost relative to the worst distribution in the
uncertainty set. One approach to this has been recently proposed by Wang, Glynn, and Ye (2010) is to use
a set of distributions that are within a sufficiently high empirical likelihood for a given set of observations.
This is called the Likelihood Robust Optimization (LRO) method. In this paper, we adapt and extend LRO
to a more general setting of two-stage stochastic linear program with recourse and call this the two-stage
likelihood robust linear program (LRLP-2). We examine the properties of the resulting model and develop
a simple condition for assessing the value of collecting extra data. Finally, we present a modified Bender’s
Decomposition to solve the LRO and apply the above results to a water distribution planning problem.

LRLP-2 is an ambiguous stochastic program that is modeled on a two-stage minimax problem. Stochastic
programs with uncertain objective functions have long been studied by applying the minimax approach
to an expected cost; see, e.g., (Dupačová 1987). Shapiro and Kleywegt (2002) and Shapiro and Ahmed
(2004) developed methods for converting stochastic minimax problems into equivalent stochastic programs
with a certain distribution.

In recent years, there has been a growing interest in distributionally robust methods. Erdoğan and
Iyengar (2006) study chance-constrained stochastic programs where the set of distributions considered is
determined by the Prohorov metric. Calafiore and Campi (2005) develop a data-driven method for generating
feasible solutions to chance constrained problems, and later Calafiore and El Ghaoui (2006) develop a
method for converting distributionally robust chance constraints into second-order cone constraints. Jiang
and Guan (2013) develop an exact approach to solving data-driven chance constrained programs. Delage
and Ye (2010) provide methods for modeling uncertain distributions of a specific form (e.g., Gaussian,
exponential, etc.) or using moment-based constraints. Ben-Tal et al. (2013) studies distributionally robust
stochastic programs when the uncertainty region is defined by selecting distributions using a φ -divergence.
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The method of Likelihood Robust Optimization proposed in Wang, Glynn, and Ye (2010) that we
adapt in this paper is a special case of the φ -divergence measures of Ben-Tal et al. (2013). In particular,
it defines the uncertainty set of distributions by the Kullback-Leibler (KL) divergence (a special case of
φ -divergence) from a “nominal” distribution. The contributions of our work are that it provides (i) a simple
condition to determine if an additional observation will change the worst-case distribution used in the
optimal solution, (ii) asymptotic analysis to discuss conditions under which the optimal value and solution
set LRLP-2 will converge to the two-stage stochastic program with recourse under the true distribution,
(iii) a specialized decomposition-based algorithm to solve the resulting model, and (iv) application to water
allocation problem under ambiguous uncertainty.

The recent work of Hu and Hong (2013) studies similar problems with ambiguous uncertainty either in
the objective or the constraints where the uncertainty sets are defined by the KL-divergence. Hu and Hong
(2013) differs from this work by considering a continuous distributions, and doesn’t relate the nominal
distribution to observational data. They produce a similar dual problem using the nominal distribution,
which differs from this work by making use of the moment generating function. Our results also provide
one quantification of the value of additional data, and apply the LRO method specifically to a two stage
problem, and to water allocation.

The LRO is an attractive data-driven approach because it uses the data directly; and only those data
points or scenarios of interest are used in the calculations. These scenarios can come from direct observation,
results of simulation, from expert opinion regarding scenarios that the decision maker would especially
like to be robust against. Because the LRO depends only on these scenarios, the size of the problem is
polynomial in the sample size, making it computationally tractable.

We apply LRO to a generalized network model of Colorado River water allocation in Tucson, Arizona
motivated by the CALVIN (CALifornia Value Integrated Network) optimal water allocation model of
California created by Draper et al. (2003). Other models of Colorado River water distribution have also
been studied, such as the Colorado River Reservoir Model (Christensen et al. 2004) and the Colorado
River Budget Model (Barnett and Pierce 2009). Our model is modified to incorporate ambiguous future
uncertainty by using the LRO approach.

This paper is organized as follows. Section 2 presents the extension of LRO model to a two-stage
stochastic program with recourse. Section 3 describes basic properties of LRO and discusses how to select
the level of robustness; Section 4 discusses the value of collecting additional data; and Section 5 discusses
the asymptotic properties of LRO. In Section 6 we present a decomposition method for solving the LRO
model; and in Section 7 we present a generalized network water model and computational results for its
LRO model. Finally, we end in Section 8 with conclusions and future work.

2 LRLP-2 FORMULATION

We begin with a two-stage stochastic linear program with recourse (SLP-2). Let x be a vector of first
stage decision variables with cost vector c, constraint matrix A and right hand side b. We assume a finite
distribution given by probabilities pω of scenarios indexed by ω = 1, . . . ,n. The SLP-2 is

min
x

{
cx+

n

∑
ω=1

pωh†
ω(x) : Ax = b,x≥ 0

}
. (1)

where

h†
ω(x) = min

yω
{qωyω : Dωyω = Bωx+dω ,yω ≥ 0} (2)

We assume relatively complete recourse; i.e., the second-stage problems h†
ω(x) are feasible for every feasible

solution x of the first-stage problem.
The SLP-2 formulation assumes that the distribution {pω}n

ω=1 is known. However, in many applications,
including our water planning, the distribution is itself unknown. One technique to deal with this is to replace
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the known distribution with an ambiguity set of distributions; i.e., a set of distributions which is believed to
contain the true distribution. In the likelihood robust formulation, we assume scenario ω has been observed
Nω times, with N = ∑

n
ω=1 Nω total observations. In SLP-2, this would correspond to probability of scenario

ω to be p̂N
ω = Nω/N, which is the empirical distribution and also the maximum likelihood distribution. The

ambiguity set, however, is defined by the set of distributions with sufficiently high empirical likelihood
∏

n
ω=1 pNω

ω . By replacing the specific distribution in SLP-2 with a set of distributions with high empirical
likelihood, we create a model that we refer to as two-stage likelihood robust linear program with recourse
(LRLP-2).

To derive the LRLP-2, we begin by writing SLP-2 given in (1)–(2) in extensive form

minx,yω cx +∑ω pωqωyω

s.t. Ax = b
−Bωx +Dωyω = dω , ∀ω

x ≥ 0
yω ≥ 0, ∀ω.

The SLP-2 formulation is then augmented by the set of distributions with sufficiently high likelihood. To
be robust against all these possible distributions, the distribution that results in the maximum expected
cost is considered. Then, the objective function is minimized with respect to this worst-case distribution
selected from the ambiguity set of distributions. The resulting minimax formulation of LRLP-2 is

min
x,yω

max
p

cx+∑
ω

pωqωyω (3)

s.t. Ax = b, x≥ 0

−Bωx+Dωyω = dω , ∀ω

∑
ω

Nω log pω ≥ γ (4)

∑
ω

pω = 1 (5)

yω , pω ≥ 0, ∀ω. (6)

Following Wang, Glynn, and Ye (2010), we have introduced the likelihood parameter γ , and used it to
construct the ambiguity set of distributions {pω}n

ω=1 satisfying constraints (4), (5), and (6). Note that
constraint (4) is equivalent to ∏

n
ω=1 pNω

ω ≥ eγ , which explicitly states that the empirical likelihood should
be above a certain desired level dictated by eγ . Constraint (5), along with nonnegativity constraints on pω

given in (6), simply ensure that {pω}n
ω=1 constitutes a probability distribution. Let 0≤ γ ′ ≤ 1 be the relative

likelihood parameter that expresses γ as a proportion of the maximum likelihood; i.e., γ = log(γ ′∏ω(
Nω

N )Nω ).
Using γ ′, constraint (4) can be rewritten as

n

∑
ω=1

Nω log
(

pω

Nω/N

)
≥ logγ

′. (7)

Taking the dual of the inner maximization problem, with dual variables λ and µ , of constraints (4)
and (5), respectively, yields

min
λ ,µ

µ + N̄λ +∑
ω

Nωλ (logλ − log(µ−qωyω))

s.t. λ ≥ 0

µ ≥ qωyω , ∀ω,
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where N̄ = N(logN−1)− logγ ′. Combining the two minimizations gives LRLP-2 in extensive form

min
x,λ ,µ,yω

cx+µ + N̄λ +∑
ω

Nωλ (logλ − log(µ−qωyω))

s.t. Ax = b, x≥ 0

−Bωx+Dωyω = dω , ∀ω (8)

µ ≥ qωyω , ∀ω
λ ≥ 0, yω ≥ 0, ∀ω.

Finally, we wish to return the LRLP-2 to two-stage formulation. All terms inside the sum over ω will
be put into the second stage. To make the formulation as similar to SLP-2 as possible, we choose to express
the second stage as an expected value using the maximum likelihood distribution Nω

N . The formulation
becomes

min
x,λ ,µ

cx+µ + N̄λ +∑
ω

Nω

N
hω(x,λ ,µ)

s.t. Ax = b, x,λ ≥ 0 (9)

where

hω(x,λ ,µ) = min
yω

Nλ (logλ − log(µ−qωyω)) (10)

s.t. −Bωx+Dωyω = dω

µ−qωyω ≥ 0 (11)

yω ≥ 0.

3 BASIC PROPERTIES OF LRLP-2

In this section, we list some basic properties of LRLP-2. Many of these have also been noted in Wang,
Glynn, and Ye (2010) in the newsvendor setting and Ben-Tal et al. (2013) in the phi-divergence setting
and in (Hu and Hong 2013) in KL-divergence setting, but we list them here for completeness. We also
provide slight additions and point to when these properties help with our special solution method.

3.1 Coherent Risk Measure and Convexity

As noted in Wang, Glynn, and Ye (2010), the LRLP-2 problem can be viewed as minimizing a coherent
risk measure. It is well known that coherent measures of risk can be interpreted as worst-case expectations
from a set of probability measures and LRLP-2 is one such example. A coherent risk measure (in the basic
sense), as defined in Rockafellar (2007), is a functional R : L2→ (−∞,∞] defined on random variables
such that

1. R(C) =C for all constants C,
2. R((1−λ )X +λX ′)≤ (1−λ )R(X)+λR(X ′), i.e., R is convex,
3. R(X)≤R(X ′) when X ≤ X ′, i.e., R is monotonic,
4. R(X)≤ 0 when ||Xk−X ||2→ 0 with R(Xk)≤ 0, i.e., R is closed,
5. R(λX) = λR(X) for λ > 0, i.e., R is positively homogeneous.

Proposition 1 LRLP-2 is equivalent to minimizing a coherent risk measure.

Proof. Rockafellar (2007) shows that R is a coherent risk measure if and only if it can be written using
a risk envelope. We will show that LRLP-2 can be written in the form of a risk envelope in the primal form
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(3) with the change of variables Qω = pω

1/n . Throughout the proof, all expectations are taken with respect to
the discrete uniform distribution. First, probability constraint (5) can be written as E [Q] = 1, where Q is
the random variable taking values Qω with equal probability. Then the likelihood constraint (4) becomes
∑

n
ω=1 Nω logQω ≥ γ −N logn. Combining these yields the set Q = {Q : E [Q] = 1,∑n

ω=1 Nω logQω ≥
γ −N logn}, a closed and convex risk envelope. Finally, we can rewrite the inner maximization of (3)
as maxQ∈QE

[
Qh†(x)

]
, which defines a coherent risk measure, where h†(x) denotes the random variables

defined by {h†
ω(x)}n

ω=1. Thus we see that LRLP-2 can be written to minimize a coherent risk measure.

LRLP-2 is a convex problem. This immediately follows from minimizing a coherent risk measure over
a polyhedron.

3.2 Time Structure

LRLP-2 preserves the same time structure as SLP-2. Since log is uniformly increasing, we can rewrite the
second stage problem (10) as hω(x,λ ,µ) = (−Nλ ) log(µ−minyω∈Y ω qωyω) with Y ω = {yω : −Bωx+
Dωyω = dω ,µ−qωyω ≥ 0,yω ≥ 0}. Thus we can state the second stage of LRLP-2 in terms of the second
stage of SLP-2, hω(x,λ ,µ) = Nλ

[
logλ − log(µ−h†

ω(x))
]

with µ ≥ h†
ω(x),∀ω . This preservation of the

time structure allows us to easily convert (sub-)derivatives of h†
ω(x) to (sub-)derivatives of hω(x,λ ,µ). We

will use this in the decomposition method provided in Section 6.

3.3 KKT Conditions

Since LRLP-2 is a convex optimization problem, the KKT conditions for (8) give the relation between
primal and dual variables

pω =
λNω

µ−h†
ω(x)

. (12)

This is essentially the same condition identified in Wang, Glynn, and Ye (2010) for the newsvendor problem
but for the more general case we consider here.

3.4 Relation to KL Divergence and Level of Robustness

The likelihood (4) and relative likelihood (7) constraints can be written in the form of a Kullback-Leibler
divergence condition, i.e., (4) can be rewritten as

n

∑
ω=1

Nω

N
log
(

Nω/N
pω

)
≤ 1

N
log

1
γ ′
,

where ∑
n
ω=1 qω log qω

pω
is the KL divergence DKL(q, p) of distributions p = {pω}n

ω=1 and q = {qω}n
ω=1. So

the LRO constraint (4) essentially restricts the set of distributions to be sufficiently close to the empirical
(or maximum likelihood) distribution in terms of the KL divergence.

We have introduced the relative likelihood parameter γ ′, but have not yet made any recommendations
on how to choose it. Remark 3.1 of Pardo (2005) shows that 2NDKL(p̂N , ptrue)⇒ χ2

n−1, where ptrue is
the true distribution from which the empirical distribution p̂N is sampled, ⇒ indicates convergence in
distribution, and χ2

n−1 is a χ2 distribution with n−1 degrees of freedom. Thus, to choose γ ′ to generate a
100(1−α)% confidence region on the true distribution, select the asymptotic value

γ
′ = exp

(
−

χ2
n−1,1−α

2

)
. (13)

Note that keeping γ ′ constant asymptotically produces constant-size confidence regions.
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Wang, Glynn, and Ye (2010) suggest a Bayesian interpretation of the likelihood constraint (4) which
yields a Monte Carlo method for establishing a value for γ ′. Our computational test indicate that this Monte
Carlo estimate converges to γ ′ given in (13) as more data is collected.

4 THE VALUE OF DATA

With a data driven formulation such as LRLP-2, it is natural to ask how the behavior changes as more
data is gathered. In particular, for robust formulations like LRLP-2 one might be concerned about being
overly conservative in the problem formulation and thus missing the opportunity to find a better solution
to the true distribution. For LRLP-2, this means that the initial model is likely to be more conservative
in an effort to be robust, while the new information could make the model less conservative because new
information removes the current worst case distribution from the ambiguity set. In this section, we present
a simple condition to determine if taking an additional sample will eliminate the old worst-case distribution
and allow for better optimization; i.e., a lower-cost solution. We also provide a computationally simple
way to estimate a lower bound on the probability of sampling such an observation.
Proposition 2 An additional sample of scenario ω̂ will result in a decrease in the worst-case expected
cost of the LRLP-2 if the following condition is satisfied

Nω̂

N
>

(
N +1

N

)
pω̂ , (14)

where pω̂ is the probability of scenario ω̂ in the worst-case distribution found by solving LRLP-2 using
N total observations.

Proof. Consider again the deterministic equivalent formulation of LRLP-2 in (8). Let fN(x,µ,λ ) =
cx+µ + N̄λ +∑ω Nωλ (logλ − log(µ−h†(x))) be the objective function, and zN = minx,µ,λ fN(x,µ,λ ).
We wish to find a simple estimate of the decrease in the optimal cost associated with taking an additional
sample, zN− zN+1, looking in particular for a condition under which zN− zN+1 > 0.

Let x∗N ,µ∗N ,λ ∗N ∈ argmin fN(x,µ,λ ) be optimal solutions to the N-sample problem. Then zN −
fN+1(x∗N ,µ∗N ,λ ∗N) is a lower bound on the decrease in optimal cost zN − zN+1. Let ω̂ be the scenario
that is selected with the additional sample, then

zN− fN+1(x∗N ,µ
∗
N ,λ

∗
N) =

[
N−N +1− logλ

∗
N + log(µ∗N−h†

ω̂
(x∗N))

]
λ
∗
N .

We can bound N−N +1 = N logN− (N + 1) log(N + 1)+ 1 by using the tangent lines logx+ 1 ≤ (x+
1) log(x+1)−x logx≤ log(x+1)+1 to get N−N +1≥− log(N+1). Combining these results gives the
condition

zN− fN+1(x∗N ,µ
∗
N ,λ

∗
N)≥

[
− log(N +1)− logλ

∗
N + log(µ∗N−h†(x∗N))

]
λ
∗
N > 0.

Note that λ ∗N > 0, so to guarantee a drop in optimal cost we must show that the first term is positive. This
then simplifies to

µ∗N−h†(x∗N)
λ ∗N(N +1)

> 1.

Using the KKT condition (12), this can be rewritten as (14).

We can interpret (14) as follows. If an additional sample is taken from the unknown distribution and the
resulting observed scenario ω̂ satisfies (14), then the (N +1)-sample problem will have a lower cost than
the N-sample problem that was already solved. This is equivalent to saying that an additional observation
of ω̂ will rule out the computed worst-case distribution given by {pω}n

ω=1 given in (12).
Next, we would like a lower bound on the probability that the next sample will decrease the optimal cost.

Let L =
{

ω : Nω

N >
(N+1

N

)
pω

}
, where pω is the worst-case distribution discussed above and NL = ∑ω∈L Nω .
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That is, L gives the set of scenarios that, if sampled one more observation, would result in a decrease in
the optimal cost in LRLP-2 and NL gives the current number of observations in set L. While we would
like to estimate a probability of sampling from set L, we do not know the distribution. However, we
can find an approximate lower bound on this probability by using the ambiguity set; that is, by solving
min{∑ω∈L qω : ∑ω Nω logqω ≥ γ,∑ω qω = 1,qω ≥ 0, ∀ω}, where we introduced qω to distinguish from
the worst-case distribution calculated in LRLP-2. Note that NL/N provides an upper bound to this problem
as the maximum likelihood estimator is always in the ambiguity set. More details on this probability
estimation can be found in Love and Bayraksan (2013).

5 ASYMPTOTIC ANALYSIS OF LRLP-2

We now wish to discuss conditions under which the optimal value and solution of LRLP-2 converges to the
optimal value and solution of the corresponding SLP-2 with the (unknown) true distribution ptrue. In the
discussion below, p̂N

ω = Nω

N denotes the empirical distribution and pω denotes the worst-case distribution
found by solving the LRLP-2.

We begin by showing that the worst-case distribution converges weakly to the true distribution as
N → ∞. Let γ ′ be fixed and probability space (Ξ,F ,P∞) be the space associated with taking infinitely
many random samples from the distribution ptrue. We know from the Strong Law of Large Numbers (SLLN)
that pN

ω → ptrue
ω with probability one (wp1) for all ω = 1, . . . ,n. Let Ξ′ ⊆ Ξ be a measure 1 set such that

p̂N
ω(ξ )→ ptrue

ω for all ω = 1, . . . ,n.

Proposition 3 For all ε > 0 and ξ ∈ Ξ′ there exists N ′ such that for all N ≥ N′ DKL(p̂N , p)≤ 1
N log

(
1
γ ′

)
implies maxω |pω − ptrue

ω | ≤ ε .

Proof. Without loss of generality, we assume that ptrue
ω > 0 for all ω . This is valid because ptrue

ω = 0
implies p̂N

ω = 0, which implies pω = 0 in the worst-case distribution by (12). For simplicity, we additionally
assume ε is chosen so that ptrue

ω > ε

2 for all ω . Note that KL divergence can be written as

DKL(p̂N , p) =
n

∑
ω=1

p̂N
ω

(
− log

pω

p̂N
ω

+
pω

p̂N
ω

−1
)
,

where each term in parentheses φ(t) = − log t + t − 1 is convex, nonnegative for t ≥ 0, and attains its
minimum at φ(1) = 0.

First, note that maxω |pω − ptrue
ω | ≤ maxω |pω − p̂N

ω |+maxω |p̂N
ω − ptrue

ω |. For each ξ ∈ Ξ′, let N′′

be such that maxω |p̂N
ω − ptrue

ω | ≤ ε

2 for all N ≥ N ′′. Suppose maxω |pω − ptrue
ω | > ε . This implies that

maxω |pω − p̂N
ω |> ε

2 . To complete the proof, we will show that for each ξ ∈ Ξ′ one can choose N′ ≥ N′′

such that ∀N ≥ N′, maxω |pω − p̂N
ω |> ε

2 implies DKL(p̂N , p)> 1
N log

(
1
γ ′

)
. First, bound the KL divergence

by

DKL(p̂N , p) =
n

∑
ω=1

p̂N
ωφ

(
pω

p̂N
ω

)
≥min

ω
{p̂N

ω} ·max
ω

{
φ

(
pω

p̂N
ω

)}
≥min

ω
{p̂N

ω} ·min
{

φ

(
1+

ε

2

)
,φ
(

1− ε

2

)}
≥min

ω

{
ptrue

ω − ε

2

}
·min

{
φ

(
1+

ε

2

)
,φ
(

1− ε

2

)}
,

where the second inequality is true because φ

(
pω

p̂N
ω

)
≥min

{
φ

(
p̂N

ω+
ε

2
p̂N

ω

)
,φ

(
p̂N

ω−
ε

2
p̂N

ω

)}
for at least one ω ,

and applying the inequalities a+η

a ≥ 1+η and a−η

a ≤ 1−η for 0 < a ≤ 1. This follows from the fact
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that φ(t) is a convex function that attains its minimum at 1 over t > 0. Then choose N′ ≥ N′′ to satisfy
minω

{
ptrue

ω − ε

2

}
·min

{
φ
(
1+ ε

2

)
,φ
(
1− ε

2

)}
≥ 1

N′ log
(

1
γ ′

)
.

Proposition 3 implies that the worst-case distributions of (3) converge weakly to ptrue. Let f (x,ω) =

cx+h†
ω(x) and let Eptrue [ f (x,ω)] and Ep [ f (x,ω)] denote the expectation of f (x,ω) under the true and worst-

case distributions, respectively. Then, using Proposition 3, we can establish epiconverenge of Ep [ f (x,ω)]
to Eptrue [ f (x,ω)] under the conditions that the objective function (under the worst-case distribution) is
continuous with respect to ω and lower semicontinuous and locally lower Lipschitz with respect to x by
using Theorem 3.7 of Dupacová and Wets (1988). The type of problems that satisfy these conditions can
be found in (Ruszczyński and Shapiro 2003). This can then be used to establish for a class of problems, as
N→ ∞, all limit points of optimal solutions of LRLP-2 solve SLP-2 that uses ptrue and the optimal value
of LRLP-2 converges to that SLP-2 with ptrue.

6 DECOMPOSITION-BASED SOLUTION METHOD

As the model gets larger, as in our water application presented in Section 7, a direct solution of LRLP-2
becomes computationally expensive. Decomposition-based methods could significantly reduce the solution
time and allow for larger problems to be solved efficiently. In this section, we briefly discuss a specialized
Bender’s decomposition-based method for solving LRLP-2. The algorithm removes constraint (11) from
the second-stage problem (10) and exchanges it with a series of linear feasibility constraints (or cuts)
in the first-stage problem. Making this change ensures that the second-stage problems are solved using
the formulation of h†

ω(x) for SLP-2 given in (2), and is more efficient. As a result, both the master and
subproblems solved are linear.

The master problem is given by

min
x,λ ,µ

cx+µ + N̄λ +θ (15)

s.t. Ax = b
θ ≥ Tj(x,λ ,µ)T + t j, j ∈ J

µ ≥Mkx+mk, k ∈ K

x,λ ≥ 0,

where Tj(x,λ ,µ)T + t j are the objective cuts, Mkx+mk are the feasibility cuts on constraint (11), and J and
K are the sets of objective and feasibility cuts, respectively. The proposed algorithm is shown in Figure 1.
For details on the derivation of optimality and feasibility cuts, see Love and Bayraksan (2013).

In order to enhance the performance of the above decomposition-based algorithm, we made some
adjustments. First, we included an L∞-norm trust region which is scaled up (by a factor of 3) or down
(by a factor of 1

4 ) when the trust region inhibits finding the optimal solution or when the polyhedral lower
approximation is far from the second-stage expected cost, respectively. The trust region is an implementation
of Algorithm 4.1 in (Nocedal and Wright 1999). Because we are also interested in the worst-case LRO
probabilities given in the primal variables and not computed directly, we include a second tolerance as a
stopping condition, ensuring that |1−∑

n
i=1 pω | < TOL2 when the algorithm is completed. This must be

satisfied in addition to the original condition zu− zl < TOLmin{|zu|, |zl|}.

7 APPLICATION TO WATER ALLOCATION PROBLEM AND COMPUTATIONAL RESULTS

7.1 Generalized Network Water Model

We applied LRLP-2 to a multi-period generalized network flow model of Colorado River water allocation
in Tucson, AZ, defined by a set of nodes and directed arcs (N, A). The nodes represent available water
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Algorithm 1 Specialized Bender’s Decomposition for LRLP-2
Initialize zl =−∞,zu = ∞

Solve first-stage problem given in (15) with θ = 0 to generate x
Solve all second stage scenario sub-problems h†

ω(x) given in (2)
Initialize λ ← 1, µ that minimizes µ−∑ω Nω λ̂ log(µ−h†

ω(x̂))
Generate initial objective cut
while zu− zl ≥ TOLmin{|zu|, |zl |} do

Solve master problem (15), get x,λ ,µ ,θM
Solve sub-problems h†

ω(x) given in (2)
θtrue← ∑

n
ω=1

Nω

N hω(x,λ ,µ)
if µ < maxω h†

ω(x) then
Generate feasibility cut
Find µ that minimizes µ−∑ω Nω λ̂ log(µ−h†

ω(x̂))
else

zl ← master optimal cost cx+µ + N̄λ +θtrue
end if
Generate objective cut
if cx+µ + N̄λ +θtrue < zu then

zu← cx+µ + N̄λ +θtrue
xbest← x,λbest← λ ,µbest← µ

pω ← λbestNω

µbest−h†
ω (xbest)

for i = 1, . . . ,n

end if
end while

supply from the Colorado River, water treatment plants, reservoirs, and water demand sites. The arcs
represent the conveyance system (pipes, etc.) that carry water between the nodes. Water can be stored in
between time periods in reservoirs to meet future demands. The model aims to find the minimal cost water
flows considering energy, treatment, storage, and transportation costs over the planning period. Generalized
network water allocation models have been used to find water allocations and delivery reliabilities and to
assess values of different water use operations; see, e.g., Draper et al. (2003).

Water flows on arc (i, j) ∈ A during time period t = 1, . . . ,P are represented by decisions xi jt . Each
arc (i, j) ∈ A and time period t has a unit cost cx

i jt , loss coefficient 0≤ ai jt ≤ 1 to account for evaporation,
leakage from the pipes, etc., and bounds on the flow lx

i jt ≤ xi jt ≤ ux
i jt . Each node j ∈N has a supply/demand

for time period t, denoted b jt . Nodes representing reservoirs are able to store water between time periods.
Stored water available at node j at the beginning of time period t is s jt , with associated cost cs

jt and bounds
ls

jt ≤ s jt ≤ us
jt . Finally, water released into the environment from node j in period t is given by r jt , with

bounds lr
jt ≤ r jt ≤ ur

jt . The deterministic model is a multi-period generalized network flow model. The
model is converted to a two-stage stochastic model with P1 periods in the first stage and P−P1 stages in
the second stage.

min
(x,s,r)∈L1 ∑

(i, j)∈A

P1

∑
t=1

cx
i jtxi jt + ∑

j∈N

P1

∑
t=1

cs
jt s jt +

n

∑
ω=1

pωh†
ω(s) (16)

s.t. ∑
i∈N

x jit + s j,t+1 + r jt = ∑
i∈N

ai jtxi jt + s jt +b jt , ∀ j,1≤ t ≤ P1,
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where the second stage problems

h†
ω(s) = min

(x,s,r)∈L2
ω

∑
(i, j)∈A

P

∑
t=P1+1

cx
i jtxi jt + ∑

j∈N

P

∑
t=P1+1

cs
jt s jt (17)

s.t. ∑
i∈N

x jit + s j,t+1 + r jt = ∑
i∈N

ai jtxi jt + s jt +bω
jt , ∀ j,P1 +1≤ t ≤ P,

and L1 and L2
ω represent the feasible regions defined by the lower and upper variable bounds. Note that

we assume that the supplies and demands are uncertain, as well as the bounds on the decision variables.
From this point on, in the first stage, decision variables {xi jt}, {s jt} and {r jt} become the vector

x, costs {cx
i jt} and {cs

jt} are written as the row vector c, the supply/demand parameters b jt become the
vector b and the constraint matrix is written as A. In the second stage, we denote the decisions as yω , the
costs as qω , the supply/demands as dω , and the constraint matrices multiplying yω and x as Dω and Bω ,
respectively. Then, we are back to SLP-2 given in (1)–(2) and we turn it to LRLP-2 in the way discussed.

In our application, the model has a total of P = 41 time periods, representing years 2010–2050. For
each time period, the network has 62 nodes representing demand for potable and nonpotable (reclaimed)
water, pumps, water treatment plants, and the available water supply from the Colorado River. The network
in each time period has 102 arcs, representing the pipe network carrying the water between the nodes
physically and connecting the network to the five reservoirs that connect the time stages in the model. We
use P1 = 10 time periods for the first stage. Uncertainty in the second stage takes the form of uncertain
population (thus, demand for water) and supply of water. There are a total of 4 scenarios considered in
this test instance: (i) high population, high supply, (ii) high population, low supply, (iii) low population,
high supply, and (iv) low population, low supply. Each scenario is assumed to have five observations. The
high population scenarios are more costly as the system needs to meet demand or pay for unmet demand.
The low population scenarios, on the other hand, are not as costly. We applied the decomposition-based
solution algorithm presented in Section 6 to solve this model.

7.2 Computational Results

Figure 1a shows how the worst-case distribution changes with γ ′. When γ ′ is close to 1, we use the
maximum likelihood distribution, which has equal 1

4 probabilities on each of the four scenarios. As γ ′ is
decreased, the ambiguity set increases, and the worst-case distribution used by LRLP-2 changes. It gives
higher than 1

4 probability to the two high-population scenarios and lower than 1
4 probability to the two

low-population scenarios, making the solution more robust to costly scenarios. Note that the scenarios fall
into two similar pairs because the cost of each scenario depends strongly on the projected demand but only
weakly on the projected supply of Colorado River water. A closer look at the optimal solutions reveals
that as γ ′ is decreased (or as robustness is increased), the solution uses more and more reclaimed water
(treated wastewater that is reused for nonpotable purposes such as irrigation) in an effort to meet demands
in a least-costly way.

The results of the water model were then analyzed with the value of data techniques from Section 4.
Figure 1b shows the estimated probability that an additional sample will remove the worst-case distribution
from the likelihood region, resulting in a lower-cost solution. The dashed line in Figure 1b depicts the
computed values of NL

N , which provide an upper bound on the estimated probabilities. Because the low-
population scenarios have lower costs, an additional sample of either low-population scenario will result
in a lower expected cost. This is what we see through most of the computed values of γ ′, with NL

N = 0.5,
indicating that the sufficient condition (14) was satisfied for both low-population scenarios. For extremely
large values of γ ′—above 0.97—we see the ratio NL

N quickly drops to zero. As γ ′ increases and the ambiguity
set shrinks, the worst-case probabilities become so close the empirical probabilities that (14) can no longer
be satisfied, resulting in NL

N decreasing to zero.
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Figure 1: (a) Worst-case distribution for the likelihood robust water allocation problem. (b) Probability
that an additional sample causes a decrease in worst-case expected cost for the likelihood robust water
allocation problem. The red line shows the upper bound probability NL

N .

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension of the Likelihood Robust Optimization (LRO) method of Wang,
Glynn, and Ye (2010) to general two-stage stochastic programs with recourse, creating a two-stage likelihood
robust program with recourse, denoted LRLP-2. The LRO models use the empirical likelihood function
to define an ambiguity set of probability distributions using observed data and optimize the worst-case
expected cost with respect to this likelihood ambiguity set. We provided a simple condition to determine if
an additional sample will produce a likelihood ambiguity set that does not contain the current worst-case
distribution and will result in a lower-cost solution and a computationally efficient way to estimate the
probability that this will happen. We have also provided a Bender’s decomposition-based solution algorithm
for the LRLP-2 and applied this method to planning future water distribution in Tucson, Arizona.

Our future work includes the following. On the methodological side, we plan to generalize our results
to the more general φ -divergence case of Ben-Tal et al. (2013). Multistage extensions also constitute future
research. In our application, we plan to augment the existing model first with a richer set of second-stage
scenarios. In addition to more varied estimates for future population, we will integrate climate change
predictions into the model to generate scenarios for future water supply from the Colorado River. This
model is intended to include a facility location problem to determine the best places for an additional waste
water treatment plants to increase the use of reclaimed water in the most cost-efficient manner.
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