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ABSTRACT 

When collecting data to select an alternative from a finite set of alternatives that are described by multiple 
attributes, one must allocate effort to activities that provide information about the value of each attribute.  
This is a particularly relevant problem when the attribute values are estimated using experimental data.  
This paper discusses the problem of allocating an experimental budget amongst two attributes when the 
non-dominated decision alternatives form a concave efficient frontier.  The results of a simulation study 
suggested allocation rules that take advantage of knowledge of the decision model and, when available, 
knowledge about the general shape of the frontier.  These rules were compared to a default rule that 
equally allocated the experimental budget across the attributes.  A proportional rule that allocated samples 
based on the value function weights performed well only in some cases; a more sophisticated step rule in-
creased the frequency of correct selection across all weights.       

1 INTRODUCTION 

In 2008 the United States Congress mandated that the Domestic Nuclear Detection Office (DNDO) of the 
U.S. Department of Homeland Security work with the U.S. Customs and Border Protection (CBP) to 
evaluate and improve radiation detection systems in U.S. based international airports.  As a result of this 
mandate, DNDO initiated the PaxBag pilot program to identify the best possible system design for detect-
ing, identifying, and localizing illicit radiological or nuclear material entering the United States through 
international passenger and baggage screening.  This challenge was met by testing and evaluating, in a la-
boratory environment, available radiation detection equipment suitable for such an application, followed 
by an operational demonstration of the system that displayed the strongest potential for improved capabil-
ity over currently deployed technology.  To select the radiation detection system to put forth for the op-
erational demonstration, DNDO and CBP formulated a decision model and developed a laboratory exper-
imental plan to support the estimation of the decision model attribute values.  This led to the following 
question: how should the limited laboratory experimental budget be allocated to best support the decision 
process?  This question, which is not limited to the selection of a radiation detection system, applies to all 
decision processes where the values of multiple attributes are estimated based upon experimental evalua-
tions. 

When attribute values are estimated using experimental measurement data, measurement uncertainty 
associated with the estimates is present and relevant to the decision model.  In particular, this attribute 
value uncertainty can limit the decision model’s ability to identify the alternative that truly maximizes the 
decision-maker’s value (or utility).  Since the decision-maker can reduce the amount of attribute value 
uncertainty associated with each attribute by increasing the amount of information used in its assessment, 
the allocation of experimental effort across the decision attributes plays an important role in maximizing 
the probability of selecting the truly best alternative. 
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Leber and Herrmann (2012) introduced the problem of decision-making with attribute value uncertainty 
and described a method to propagate this uncertainty and estimate, for each alternative, the likelihood that 
it is truly the best one.  This paper discusses the results of a simulation study to investigate the impact of 
sample allocation in a two-attribute selection decision problem.  We present details of the study along 
with the findings and resulting methods for sample allocation. 

2 EXPERIMENTAL DESIGN FOR DECISION MAKING 

An entire discipline is devoted to the importance of obtaining the best set of observations in an experi-
mental setting.  The statistical design of experiments provides the foundation for defining experimental 
factors and levels in developing a design space, identifying optimal locations to sample within the design 
space, and determining the appropriate sample size.  Classic references such as Box, Hunter and Hunter 
(2005) and Montgomery (2013) provide extensive guidance for the principles and numerous example ap-
plications of the methods of statistical design of experiments.  Problems in this domain span the realm of 
comparing entities, quantifying the impact of various experimental factors, and estimating functional rela-
tionships.  These problems can be represented by ( )1, , py f l l=  , where y is the response variable of in-
terest, there are p experimental factors that each have multiple levels, and li is the level of the i-th experi-
mental factor.  A main focus of the design of experiments discipline is how to best allocate the total 
experimental budget of N observations across the design space defined by the factors and their levels 
while adhering to the underlying principles which, for example, minimize estimation variability and max-
imize hypothesis testing power.  In this regard, the designer must choose which particular combinations 
of factors and levels will be included in the experiment.  The response variable can be either a single re-
sponse or multiple responses, with all responses measured over each of the identified design points.  
While the principles are much the same, an alternative to the traditional design of experiments approach is 
that of Bayesian experimental design (Chaloner and Verdinelli 1995).  In Bayesian design, information 
available prior to experimentation is leveraged in identifying optimal locations to sample within the de-
sign space and determining the appropriate sample size.      

Finding the best alternative when performance is a random variable (and an alternative’s true perfor-
mance must be estimated using simulation) is known as the selection problem.  A simulation run can gen-
erate a value that can be used to estimate ( )j jy f A= , where yj is the value of the response variable (per-
formance) for Aj, an individual alternative within the given set of alternatives.  When the total number of 
simulation runs is limited, the problem is to determine how many simulation runs should be allocated to 
each alternative.  The indifference zone (IZ), the expected value of information procedure (VIP), and the 
optimal computing budget allocation (OCBA) approaches have been developed to find good solutions 
(see Branke, Chick and Schmidt (2007) and the references therein).  In these sequential approaches, the 
problem is to determine which alternatives should be simulated next and when to stop.  The computation-
al results presented by Branke, Chick and Schmidt (2007) demonstrated the strengths and weaknesses of 
these procedures.  LaPorte, Branke and Chen (2012) developed a version of OCBA that is useful when 
the computing budget is extremely small.  

As described in the next section we also address a selection problem, but our work is concerned with 
gathering information about different attributes, not different alternatives.  Given a set of alternatives, 
each described by k attributes, the decision-maker’s value for a particular alternative Aj may be represent-
ed by ( ) ( )1, ,j j j jky f A v x x= =  .  The alternative’s true attribute values 1, ,j jkx x  are unknown and 
are estimated based on different information gathering tasks (e.g., experiments).  The challenge is to de-
termine how many experiments should be allocated to the evaluation of each attribute value.  The simula-
tion study that we describe in this current paper was designed to determine how well different procedures 
used to determine the allocation of experiments for the evaluation of the attribute values perform and is 
part of a larger study of this problem.  
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3 PROBLEM STATEMENT 

As classified by Roy (2005), the decision problem we consider is one of choice: given non-dominated al-
ternatives A1, …, Am, the decision-maker will select a single alternative.  Each alternative Aj is described 
by attributes X1, …, Xk, which are quantified by specific attribute values xj1, …, xjk, and by its overall 
value, which equals ( )1, ,j jkv x x .  The decision-maker will select the alternative that provides the great-
est overall value.  We assume that the corresponding tradeoffs condition is satisfied, and hence an addi-
tive value function of the form displayed in Equation (1) is valid to model the decision (Keeney and 
Raiffa 1976).  Let xi be the value of attribute Xi, let λ i be the weight of attribute Xi, and let ( )i iv x  be the 
individual value function for attribute Xi, for i = 1, …, k.  Then,  
 
 ( ) ( ) ( )1 1 1 1, , k k k kv x x v x v xλ λ= + +   (1) 
 

The individual value functions ( )i iv x in Equation (1) map the attribute values, which are determined 

by the characteristics of the alternative, to decision values and are scaled such that ( )0 0i iv x =  for the least 

desirable attribute value 0
ix , and ( )* 1iv x =  for the most desirable attribute value *

ix ; i = 1, …, k.  The at-

tribute weights λ i reflect the decision-maker’s preferences and satisfy the constraint 
1

1k

ii
λ

=
=∑ . 

The best alternative is the one that has the greatest overall value, which is a function of its true attrib-
ute values.  There are no other influences (e.g., uncertain events) relevant to the decision that must be re-
solved.  While true values for the k attributes exist for each alternative, they are unknown to the decision-
maker and will be estimated through a series of experiments.  In this setting, an “experiment” is an infor-
mation-gathering activity that provides a value for one attribute of one alternative.  Due to randomness in 
the experiment, the value returned is a random variable that depends upon the true value of the attribute 
for that alternative.  The uncertainty associated with the attribute is a function of the values that are col-
lected from experimentation.  (More experiments gather more information about an attribute and will re-
duce the uncertainty about the estimate for the true attribute value.)  After the information is gathered, the 
results of the experiments are used to model the uncertainty about the estimated attribute values.  We as-
sume that the experimentation will occur in a single phase.  (We will be considering sequential allocation 
policies in future work.) 

We assume that the decision-maker is concerned about the true rank of the alternative selected and 
will select the alternative that is most likely to be the true best; thus, he will use the Rank 1 decision rule 
described by Leber and Herrmann (2012).  (Further details of this approach are provided in Section 4.2.2.)  
The likelihood that the decision-maker selects the best alternative depends not only upon the decision rule 
but also upon the experiments selected to gather information about the alternatives and their attributes. 

Clearly, if the experimental budget is sufficiently large, then the decision-maker can gather enough 
information about every attribute of every alternative to reduce the attribute value uncertainty to a point 
where it is clear which alternative is truly the best.  In practice, however, especially when experiments are 
expensive, this is not possible. 

The information-gathering resource allocation problem can be stated as follows:  The overall experi-
mental budget will be divided equally among the m alternatives.  The experimental budget for each alter-
native must be divided among the k attributes.  In general, the budgets for different alternatives could be 
divided differently, but we assumed that the allocation is the same for all alternatives.  These assumptions 
are reasonable for a situation in which there is no prior information about the alternatives that would sug-
gest treating them differently.  For a given single alternative, let ci denote the cost of an experiment that 
generates a single value of attribute i, and let ni denote the number of times that this experiment will be 
repeated.  Let C denote the total budget for one alternative.  Thus, the problem is to find values n1, …, nk 
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that maximize the probability that the decision-maker will choose the truly best alternative (the probabil-
ity of correct selection), such that 1 1 k kc n c n C+ + ≤ . 

4 SIMULATION STUDY 

Intuitively, it would seem reasonable to perform more experiments on those attributes that have the most 
uncertainty and are the most important in the decision model.  To test this intuition and understand better 
the behavior of the probability of correct selection as a function of sample allocation across the attributes, 
we conducted a simulation study.  The following subsections describe the details of the study, the insights 
gained, and the sample allocation rules suggested.  

We considered the following simpler situation in which each alternative is described by two attrib-
utes, X1 and X2, and the two attributes are the alternative’s probability of success in two different tasks.  
The alternatives, when characterized by their true values of X1 and X2, form a concave efficient frontier in 
R2 space.  An experiment tests one alternative on one task, and the alternative either succeeds or fails.  
The experiments cost the same amount.  Given an overall experimental budget of N = 10 Bernoulli trials 
for each alternative, the problem is to determine the number of trials to be allocated to attribute 1, n1, and 
the number of trials to be allocated to attribute 2, n2, (where n1 + n2 = N) to maximize the probability of 
correct selection.  That is, the decision-maker wants to maximize the likelihood of selecting the alterna-
tive whose true values of the attributes yield the greatest overall value defined by Equation (1).    

4.1 Non-dominated Decision Alternatives 

While the efficient frontier formed by a set of non-dominated alternatives described by two attributes can 
take on several forms (Keeney and Raiffa 1976), we focused specifically on the case of a concave effi-
cient frontier.  To form the test bed for our initial experimentation, we developed 20 concave efficient 
frontiers (cases) where each case included five alternatives characterized by two attributes.  The attribute 
values associated with each alternative were randomly generated subject to the constraints necessary for 
non-dominance and concavity.  The left panel of Figure 1 displays the attribute values of the 20 cases 
considered in our initial experimentation. 
 

 
Figure 1: Twenty cases considered in initial experimentation (left panel) with the case number displayed 
by the numeric plotting character.  The right panel illustrates the measures of nonlinearity (scaled shaded 
area) and general angle (θ).  

 Given the random nature of the 20 cases, many aspects of potential alternative sets are captured such 
as frontiers with great curvature, nearly linear frontiers, both horizontally and vertically situated frontiers, 
frontiers that span a small region, and those that span a larger region.  Two characteristics were quantified 
and used to describe each case: a measure of nonlinearity and a measure of general angle.  The measure of 
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nonlinearity is defined as a scaled area between the piecewise linear concave curve formed by the alterna-
tives on the concave frontier and the line segment connecting the alternatives defined by the attribute 
pairs (x1[1], x2[5]) and (x1[5], x2[1]), where the bracketed subscript denotes the ith ordered statistic, 
i = 1, …, 5.  The measure of general angle is defined as the acute angle formed by the line segment con-
necting the attribute pairs (x1[1], x2[5]) and (x1[5], x2[1]) and the horizontal line x2 = x2[5].  The measures of 
general angle, θ,  and nonlinearity, NL, are related by ( ) ( )1

4 90max sinNL θπθ = .  An illustration of the 
nonlinearity and general angle measures is given in the right panel of Figure 1. 

4.2 Decision Simulation 

To measure the performance of a particular allocation of experimental effort, we tallied how often the de-
cision rule selected the alternative that is truly the best for that case, given the value function weights λ1 
and λ2 = 1 – λ1.  This measure we called the frequency of correct selection.  The following subsections 
provide details on the generation of the experiment realizations and the implementation of the subsequent 
decision rule that provide frequency of correct selection values. 

4.2.1 Experiment Realizations 

For each of the j = 1, …, 5 alternatives within each of the i = 1, …, 20 cases we simulated 1000 pairs of 
binomial experiments that represented experimental results from the pair of attributes, X1 and X2.  Each 
pair of binomial experiments consisted of a total of N = 10 Bernoulli trials that were divided between at-
tribute 1 and attribute 2 as n1 and n2 = N – n1.  We considered all 11 possible sample allocations defined 
as (n1, n2) pairs: (0, 10), (1, 9), …, (10, 0).  The Bernoulli probability of success associated with each bi-
nomial experiment was provided as the true attribute value for the alternative as specified by the initial 
test bed.  The result obtained from each of the simulated binomial experiments is denoted as yijkrs, the 
number of successes for attribute k from alternative j in test bed case i under sample allocation s = n1 + 1 
in simulation replicate r = 1, …, 1000.    

4.2.2 Decision Rule     

We considered d = 1, …, 19 decision models of the form displayed in Equation (1), each with a unique 
pair of weighting parameters λ1 and λ2 = 1 – λ1 , where (λ1, λ2) = (0.05, 0.95), (0.10, 0.90), …, 
(0.95, 0.05).  The individual value functions v1(x1) and v2(x2) were both defined to be linear in all nine-
teen models.  Provided the binomial outcomes yijkrs from each simulated experiment, the decision method 
described in Leber and Herrmann (2012) was implemented and an alternative was selected for each case, 
sample allocation, and decision model combination.  Specifically, the uncertain attribute values were 
modeled with a uniform prior distribution and updated based upon the observed binomial outcomes to 
provide the Bayesian posterior distribution ( )1 ,1ijkrs ikrs ijkrsBeta y n y+ + − .  The uncertainty was propagat-
ed through the decision model and onto the decision value parameter by drawing 1000 Monte Carlo sam-
ples from the posterior distributions of each of the two attributes and calculating the value of the alterna-
tive for each sample using the value function.  This resulted in a distribution of 1000 values for each of 
the five alternatives within a case. 

For each of the 1000 samples, the Rank 1 selection rule noted the alternative with the best (largest) 
value, and the alternative that had the best value most often was selected for this simulation replicate.  
The Rank 1-selected alternative was identified for each case, sample allocation, and decision model for 
each of the 1000 simulated binomial experiments and compared to the true best alternative for the deci-
sion model (the alternative known to maximize the value function given its attribute values provided by 
the test bed).  The frequency of correct selection was then defined as the percentage of Rank 1 selected 
alternatives that were truly the best alternative out of the 1000 simulated binomial experiments. 
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4.2.3 Pseudo Code and Performance 

1. For each case i = 1, …, 20, perform steps 2 to 7. 
2. For each decision model d = 1, …, 19, 

(a) Determine j*, the alternative that maximizes vd(xij1, xij2) = λ1dxij1 + λ2dxij2; and 
(b) Perform steps 3 to 7.  

3. For each allocation s = 1, …, 11, 
(a) Set n1 = s – 1 and n2 = N – n1;  
(b) Set Cdijs = 0 for alternatives j = 1, …, 5; and 
(c) Perform steps 4 to 7. 

4. For each simulation replication r = 1, …, 1000, 
(a) Set Mdijrs = 0 for alternative j = 1, …, 5; 
(b) For each alternative j = 1, …, 5, select a sample value for yij1rs from the Binomial(n1, xij1) dis-

tribution and a sample value for yij2rs from the Binomial(n2, xij2) distribution; and 
(c) Perform steps 5 and 6. 

5. For each Monte Carlo sample t = 1, …, 1000, 
(a) For each alternative j = 1, …, 5, select a sample value for zij1rst from the posterior distribution 

Beta(1 + yij1rs, 1 + n1 – yij1rs) and a sample value zij2rst from the posterior distribution Be-
ta(1 + yij2rs, 1 + n1 – yij2rs) and calculate vjt = λ1dzij1rst + λ2dzij2rst. 

(b) Identify j** as the alternative that maximizes vjt and add one to Mdij**rs. 
6. Identify j*** as the alternative that maximizes Mdij**rs (this is the alternative selected in replica-

tion r) and add one to Cdij***s. 
7. Let Fdis = Cdij*s.  (This is the frequency of selecting the correct alternative for this case, decision 

model, and sample allocation)      
 
The simulation code was implemented in the freely available statistical computing software R, 64-bit 

version 2.15.3 and run on a laptop PC with a 2.80 GHz processor and 8.00 GB of memory.  The user time 
(the CPU time charged for the execution of user instructions of the calling process) of approximately 22 
hours was required to complete this simulation consisting of 20 five-alternative frontier cases, 19 decision 
models, 11 sample allocations, 1000 simulation replications, and 1000 Monte Carlo replications.   

4.3 The Impact of Sample Allocation  

Before exploring the results of the decision simulation, we gained some insight about the impact of sam-
ple allocation in this two-attribute problem when utilizing the decision method of Leber and Herrmann 
(2012).  Using the set of five alternatives with attribute value pairs {(0.1, 0.9), (0.4, 0.85), (0.7, 0.7), 
(0.85, 0.4), (0.9, 0.1)} we investigated the impact of sample allocation on the expected Bayesian posterior 
distributions. 

As with our general problem, we allocated N samples (in this case 50) across the two probability of 
success attributes as n1 and n2 = N – n1, with the allocation the same for all alternatives.  For each alterna-
tive j = 1, …, 5 and attribute k = 1, 2, we defined the expected Bayesian posterior distribution to be the 
posterior distribution obtained when the proportion of successes observed in the binomial experiment of 
size nk equals xjk, the true attribute value, i.e., ( )( )1 ,1 1k jk k jkBeta n x n x+ + − .  The 95 % expected credi-
ble interval was calculated for each alternative and attribute as the interval from the lower 2.5 % quantile 
to the upper 97.5 % quantile of the expected Bayesian posterior distribution.  We defined a 95 % expected 
credible box to be the rectangle whose edges are equal to the end points of the 95 % expected credible in-
tervals for each attribute in R2 space.  The probability that the alternative’s true attribute values are be-
lieved to be contained within this credible box equals (0.95)2.  Figure 2 displays graphically the expected 
credible boxes for each of the five alternatives for three different sample allocations. 
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Figure 2: Expected credible boxes for three different sample allocations of 50 total samples (when the 
proportion of successes observed equals the true attribute value).  The plotting character (1 to 5) indicates 
the true attribute values for each alternative. 

When moving from the left panel (sample allocation n1 = 5, n2 = 45) to the center panel (n1 = 25, 
n2 = 25) and to the right panel (n1 = 45, n2 = 5) of Figure 2, it is seen that the ability to discern alterna-
tives improves when considering attribute 1 (width of boxes decrease) and declines when considering at-
tribute 2 (height of boxes increase).  This suggests that allocations placing more samples with attribute 2, 
such as in the left panel, would provide the ability to better identify the true best alternative for a decision 
model with a large emphasis on attribute 2 (i.e., large λ2 value).  Whereby the opposite is suggested for 
allocations placing more samples with attribute 1 (better suited for decision models with large λ1 value). 

4.4  Frequency of Correct Selection Analysis 

For each of the 20 cases and each of the 19 decision models (defined by λ1, λ2 pairs) considered in the 
decision simulation, there is at least one sample allocation value of n1, denoted *

1n , that produced the 
maximum  frequency of correct selection (in some cases, for some values of λ1, there were multiple val-
ues of *

1n ).  This optimal sample allocation should maximize the probability of choosing the true best al-
ternative.  Since λ1 = 1 – λ2 and n1 = N – n2, it was sufficient to consider only λ1 and n1 when exploring 
the frequency of correct selection results.  The relationship between *

1n  and λ1 followed a general trend in 

which *
1n  increased as λ1 increased, often in a manner that could be well represented by an “S-curve” 

such as the logistic function.  The shape and location of the “S-curves” varied but displayed dependencies 
on θ, the frontier characteristic measure of overall angle. 

For each of the 11 sample allocations for each case and decision model, we defined the relative fre-
quency of correct selection as the ratio of the frequency of correct selection for that sample allocation to 
the frequency of correct selection that results from the optimal sample allocation.  This measure provided 
a continuous response variable, as a function of n1 and λ1, that indicates the relative quality of each sam-
ple allocation versus the optimal sample allocation.  The relative frequency of correct selection measure 
allows us, within the confines of the problem which include the alternatives’ attribute values and the total 
experimental budget, to quantify how much better the selection could be if a different sample allocation 
was chosen.  By viewing the relationship between n1, λ1, and the relative frequency of correct selection 
as a contour plot for each case, further insights were gained. 

The shaded contour plots of Figure 3 present the relative frequency of correct selection as a function 
of n1 and λ1 ranging from dark (low values) to light (high, desirable values).  The solid squares within the 
plots denote *

1n , the sample allocation that produced the maximum frequency of correct selection for each 
λ1 considered in the simulation study.  The contour plots of Figure 3 serve to illustrate three general 
trends observed across the 20 test bed cases.   
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Figure 3: Contour plots for the relative frequency of correct selection as a function of n1 and λ1 for three 
selected test bed cases.  The solid squares denote *

1n  for the λ1 values evaluated. 

The left panel in Figure 3 displays the contour plot as a result of case 1.  The general increasing trend 
of *

1n  as a function of λ1 is observed, but further, it is observed that favorable values of relative frequency 
of correct selection can be obtained through much of the middle of the graph; in other words, choosing a 
sample allocation that performed poorly would be difficult for nearly all values of λ1.  The center panel in 
Figure 3 displays the contour plot as a result of case 8.  Again the general increasing trend of *

1n  as a 
function of λ1 is observed, but here the optimal “path” from λ1 = 0 to λ1 = 1 is much more defined with 
less room for error, and thus more careful consideration is necessary when choosing a sample allocation.  
Finally, the rightmost panel in Figure 3 is the contour plot as a result of case 7.  Here, favorable relative 
frequency of correct selection values at low values of λ1 correspond to low values of n1 (lower left region 
of graphic) and at high values of λ1 favorable relative frequency of correct selection values correspond to 
high values of n1 (upper right region of graphic).  But unlike the first two cases, these two regions are dis-
connected. 

4.5 Sample Allocation Rules 

In general, the optimal allocation rule has dependencies on the degree of information possessed by the de-
cision-maker.  In the absence of any information, including knowledge of the decision model, the deci-
sion-maker will have no reason to allocate more samples to either attribute.  Thus, a balanced allocation 
of n1 = n2 = ½N would be implemented as the experimental plan to collect data to support the estimation 
of each attribute value and ultimately the selection decision.  We refer to this sample allocation as the uni-
form allocation rule.  This allocation is consistent with the principle of balance in the traditional design of 
experiments discipline. 

If knowledge of the decision model – specifically the values of λ1 and λ2 – is available, the decision-
maker may choose to implement an allocation rule that assigns n1 and n2 proportional to λ1 and λ2.  Such 
an approach is supported by the general insights discussed in Section 4.3 as well as the observations made 
is Section 4.4 that the optimal allocation *

1n  increased as λ1 increased.  Since n1 and n2 must be integer 
values, rounding is necessary, e.g., n1 = round(λ1N), n2 = N – n1.  We refer to this sample allocation ap-
proach as the proportional allocation rule.   

If, in addition to knowledge of the decision model, the decision-maker is able to make some general 
statements about the shape of the concave frontier, such as the value of the general overall angle θ, a case-
specific allocation rule may be utilized.  It was observed in Section 4.4 that as a function of λ1, the opti-
mal sample allocation *

1n  was reasonably represented by an “S-curve” with location and shape dependent 
on the general overall angle of the concave frontier.  One simplification of an “S-curve” is a step-like 
function with the horizontal steps connected by a line which may or may not be vertical.  We considered a 
sample allocation step rule with n1 defined by Equation (2) and n2 = N – n1. 
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For each of our 20 test bed cases, we determined the values of c1 and c2 in Equation (2) that maxim-

ized the average relative frequency of correct selection across the 19 evaluated values of λ1.  We selected 
the pair of second order polynomial models ( ) 21 1

1 225 13500c θ θ θ= +  and ( ) 27 1
2 450 20250c θ θ θ= −  to describe 

the relationship between these optimal values of c1 and c2 and the general overall angle of the concave 
frontiers.  Note that when θ = 0 (a horizontal frontier), c1 = c2 = 0 and when θ = 90 (a vertical frontier), 
c1 = c2 = 1; this results in the sample allocations (n1 = 10, n2 = 0) and (n1 = 0, n2 = 10), respectively, for 
any decision model values of λ1 and λ2. 

5 ALLOCATION RULE COMPARISON 

The second part of our study compared the performance of the allocation rules.  One hundred new con-
cave frontiers, each containing 5 alternatives were randomly generated for the comparison of the three 
sample allocation rules described in Section 4.5 (uniform allocation, proportional allocation, and step 
rule).  The attribute values of the 100 evaluation cases and their nonlinearity and general angle measure 
values are displayed in Figure 4.  
 

 
Figure 4: Attribute values (left panel) and nonlinearity and general angle measure values (right panel) for 
the 100 concave frontiers in the evaluation set. 

The sample allocations dictated by each of the three allocation rules were determined for each of the 
100 evaluation cases.  Based on these sample allocations, the decision simulation described in Section 
4.2, again with 1000 simulation replicates and 1000 Monte Carlo samples, was used to evaluate the fre-
quency of correct selection (and relative frequency of correct selection) for each evaluation case and each 
of the 19 decision models (λ1 values).  We then examined, on a case-by-case basis, the relative frequency 
of correct selection that resulted from the simulation, as a function of λ1.  At each λ1 value, we calculated 
the average relative frequency of correct selection across the 100 evaluation cases.  The uncertainties in 
the average relative frequency of correct selection were expressed as 95 % confidence intervals based up-
on the normality assumptions provided by the Central Limit Theorem. 

While it varied from case to case and across λ1 values, in general, the step allocation rule provided 
the largest relative frequency of correct selection values.  The proportional allocation rule displayed simi-
lar performance to the step rule with λ1 values near 0 and near 1, but presented lower relative frequency 
of correct selection values elsewhere.  The uniform allocation rule nearly always produced the smallest 
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relative frequency of correct selection values.  Further, in many evaluation cases, the sample allocation 
resulting from the uniform allocation rule failed to provide the best possible allocation (a relative fre-
quency of selection equal to one) for any values of λ1.  Figure 5 illustrates these general conclusions by 
displaying, for each of the three allocation rules, the relative frequency of correct selection averaged 
across all evaluation cases at each λ1 value. 
 

 
Figure 5: Relative frequency of correct selection averaged across all evaluation cases for each λ1 value.  
The dashed lines represent the 95 % confidence intervals. 

It is observed from Figure 5 that sample allocations provided by the uniform allocation rule lead to, 
on average, a relative frequency of correct selection near 0.75, and this performance is nearly constant 
over all values of λ1.  The sample allocations provided by the proportional allocation rule near λ1 = 0.5 
are identical to the uniform allocation, and hence the performance of the proportional and uniform alloca-
tion rules are comparable in this region.  The relative frequency of correct selection for the proportional 
allocation rule increases as λ1 moves away from 0.5 and towards either λ1 = 0 or λ1 = 1.  Overall, the av-
erage relative frequency of correct selection for the proportional allocation rule is approximately 0.83.  
The step rule provides a maximum average relative frequency of correct selection value of 0.98 at 
λ1 = 0.95, a minimum average value of 0.88 at λ1 = 0.5, and an overall average relative frequency of cor-
rect selection of 0.93.  We thus arrive at the important conclusion that for nearly all values of λ1, the step 
rule provides average relative frequency of correct selection values that are statistically distinguishable 
(non-overlapping confidence intervals) and superior to the other allocation rules.        

It can be observed from the right panel of Figure 4 that there were a number of evaluation cases that 
displayed nearly identical frontier curve characteristic measures of nonlinearity and general angle.  The 
contour plots of the relative frequency of correct selection as a function of n1 and λ1, and ultimately the 
relative frequency of correct selection values that resulted from the sample allocations dictated by the 
three allocation rules were very similar when comparing  several such pair of evaluation cases near the 
limits of the characteristic measures.  On the other hand, these similarities were not observed when com-
paring pairs of cases near the middle of the characteristic measures’ domain.  This observation leads us to 
believe that there is at least one additional frontier curve characteristic that would help distinguish relative 
frequency of correct selection performance from case to case, and ultimately aid in identifying the optimal 
sample allocation.  Additional frontier curve characteristics that we intend to explore and serve as a sub-
ject for future research include the distance alternatives are from one another within the frontier, as well 
as the general proximity of the frontier relative to the limits of the attribute values.  
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6 CONCLUSIONS 

We have demonstrated that when collecting data to support a selection decision, the allocation of experi-
mental budget across the attributes does impact the probability of correct selection.  This was clearly il-
lustrated by the contour plots in Figure 3 of Section 4.4.  Further, we have shown that the decision model 
as well as the set of alternatives (and their associated true attribute values) also influences the probability 
that the decision-maker will choose the truly best alternative.  While it is not uncommon in large projects 
for the decision modeling and the experimental planning to be done in isolation, we have shown how the 
decision modeling efforts can help improve the experimental planning, which in turn can improve the 
overall selection results of the project. 

For the two-attribute case studied where the non-dominated decision alternatives form a concave effi-
cient frontier, we evaluated three novel, previously unstudied sample allocation rules: uniform allocation, 
proportional allocation, and the step rule.  The uniform allocation rule would be a reasonable approach 
for allocating the experimental budget when information available about the decision model and the alter-
native’s attribute values is not available.  We have displayed, however, that this allocation rule nearly al-
ways provides an allocation that is sub-optimal.  Defining the decision model prior to the data collection 
phase allows one to utilize the proportional allocation rule.  We have shown, for the decision models 
considered, that the proportional allocation rule provides sample allocations that outperform the sample 
allocations provided by the naïve uniform allocation rule, particularly for λ1 < 0.25 and λ1 > 0.75.  If, in 
addition to the decision model, the decision-maker can provide the general slope of the concave frontier 
formed by the considered alternatives, then the proposed step rule can be utilized.  The step rule identified 
sample allocations that provided, on average, a significant improvement in the relative frequency of cor-
rect selection over the allocations provided by the uniform allocation and the proportional allocation rules 
for nearly all the decision models considered.                  

While the proposed step rule provided sample allocations with favorable correct selection values for 
most frontiers and decision models, it did not identify the optimal allocation in all cases.  There may be 
additional frontier characterization measures, beyond the general angle, that could be implemented into 
the calculation of c1 and c2 in the step rule to more often provide sample allocations that are optimal.  The 
step rule was designed as a simplification of the S-curves observed to describe the relationship between 
the optimal allocation and the decision model parameter λ1.  Though the relative simplicity of the step 
rule is attractive, a more complicated model might provide better performance. 

This study focused on the attribute-specific information-gathering resource allocation problem when 
considering two attributes that describe the alternative’s probability of success in two different tasks with 
information collected in the form of Bernoulli trials during a single-phased experiment.  Our future work 
will consider sequential allocation policies with more than two attributes where these attributes may be 
supported by measurements other than Bernoulli results.  
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