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ABSTRACT

Fast pricing of American-style options has been a difficult problem since it was first introduced to financial
markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes.
In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price
without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation
theorem for jump processes on the dual martingale, we are able to construct a martingale approximation
that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo
simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational
efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation.
Numerical experiments are conducted to verify the efficiency of our proposed algorithm.

1 INTRODUCTION

Pricing American-style derivatives (which is essentially an optimal stopping problem) has been an active
and challenging problem in the last thirty years, especially when the underlying stocks’ prices follow
some jump-diffusion processes, as they become more and more critical to investors. To present time,
various jump-diffusion models for financial modelling have been proposed to fit the real data in financial
markets, including: (i) the normal jump-diffusion model, see Merton (1976); (ii) the jump models based
on Levy processes, see Cont and Tankov (2003); (iv) the exponential jump diffusion models, see Kou
(2008). All these models are trying to capture some interesting features of the market behaviour that
cannot be well explained by the pure-diffusion models, such as the heavy-tail risk suffered by the market.
In general, closed-form expressions for the American-style derivatives can hardly be derived under these
jump-diffusion models due to the multiple exercise opportunities and the randomness in the underlying
asset price caused by both jumps and diffusions. Hence, various numerical methods have been proposed to
tackle the American-style option pricing problems under the jump-diffusion models, including: (i) solving
the free boundary problems via lattice or differential equation methods, e.g. Feng and Linetsky (2008); (ii)
quadratic approximation and piece-wise exponential approximation methods, e.g. Kou and Wang (2004).
A thorough study on jump-diffusion models for asset pricing has been done by Kou (2008). In a broader
sense, an elegant overview of financial models under jump processes is provided in Cont and Tankov
(2003).

Another class of widely-used methods is the Monte Carlo simulation-based method, which has been
successfully implemented on option pricing problems under the pure-diffusion models, see Longstaff and
Schwartz (2001), Tsitsiklis and van Roy (2001). They are able to approximate the continuation values
by regression on certain basis functions sets (called “function bases”), which leads to good suboptimal
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exercise strategies and lower bounds on the exact option price. Moreover, their methods bypass “the curse
of dimensionality” and scale well with the number of underlying variables, working efficiently for high-
dimensional problems under the pure-diffusion models. Though these methods can be naturally adapted
to option pricing problems under the jump-diffusion setting, two key questions regarding the effectiveness
of these methods remain to be addressed: (i) how to choose the function bases for regression. (ii) how to
measure the quality of the lower bounds.

The second question is partially addressed by the dual approach proposed independently by Rogers
(2002), Haugh and Kogan (2004), and Anderson and Broadie (2004). They are able to generate the upper
bounds on the option price by solving the associated dual problem, which is obtained by subtracting the
payoff function by a dual martingale adapted to a proper filtration. In theory, if the dual martingale is
the Doob-Meyer martingale part of the option price process, namely the “optimal dual martingale”, then
the resulting upper bound equals the exact option price. In practice, the optimal dual martingale is not
available, but good approximations of it can generate tight upper bounds. With the access to the upper
bounds, the quality of suboptimal exercise strategies or lower bounds could be measured empirically by
looking at the duality gaps. Glasserman (2004) provides an elegant and thorough overview of the duality
theory for option pricing problems.

A lot work has been done following the duality theory. To name a few, Ye and Zhou (2013b)
apply the primal-dual approach with particle filtering techniques to optimal stopping problems of partially
observable Markov processes. Desai et al. (2012) consider an additional path-wise optimization procedure
in constructing the dual martingales for optimal stopping problems. Rogers (2007), Brown et al. (2010)
generalize the duality theory to general discrete-time dynamic programming problems and provide a broader
interpretation of the dual martingale. From Brown et al. (2010)’s perspective, the dual martingale can be
regarded as the penalty for the access to the future information (information relaxation) and different degrees
of relaxation result in different levels of upper bounds. In particular, the dual martingales constructed
by Haugh and Kogan (2004), Anderson and Broadie (2004) can be interpreted as perfect information
relaxation, which means the option holder has access to all the future prices of the underlying assets. Ye
and Zhou (2012) consider an additional path-wise optimization technique in constructing the penalties for
general dynamic programming problems. Ye and Zhou (2013a) also develop the duality theory for general
dynamic programming problems under a continuous-time setting.

The numerical effectiveness of the primal-dual approach has been demonstrated in pricing multidimen-
sional American-style options. A possible deficiency of the algorithm is the heavy computation (quadratic
in the number of exercisable periods), caused by the nested simulation in constructing the dual martingale.
To address the computational issue, Belomestny et al. (2009) propose an alternative algorithm to generate
approximations of optimal dual martingale via non-nested simulation under the Wiener process setting.
By exploiting the martingale representation theorem on the optimal dual martingale driven by Wiener
processes, they are able to approximate the optimal dual martingale through regressing the integrand on
some function bases at finite number of time points. The resulting approximation preserves the martingale
property and generates a true upper bound. More importantly, their algorithm avoids nested Monte Carlo
simulation and is linear in the number of exercisable periods.

In this paper, we will generalize Belomestny et al. (2009)’s idea of “true martingale” to Bermudan
option pricing problems under jump-diffusion processes and provide a new perspective in understanding
the structure of the optimal dual martingale, which facilitates us to construct good approximations of
it. According to our knowledge, we are among the first to ever consider estimating the upper bounds
on American-style option price under the jump-diffusion models. In a greater detail, we have made the
following contributions.

• Motivated by Belomestny et al. (2009), we propose a new algorithm, which is referred as the
”true martingale algorithm” (T-M algorithm), to compute the upper bounds on the Bermudan
option price under the jump-diffusion models. The resulting approximation (called “true martingale
approximation”) preserves the martingale property, therefore generates true upper bounds on the
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Bermudan option price. Moreover, compared with the primal-dual algorithm proposed by Anderson
and Broadie (2004) (A-B algorithm), our proposed T-M algorithm avoids the nested Monte Carlo
simulation and scales linearly with the exercisable periods, and hence achieves a higher computational
efficiency.

• We investigate the numerical effectiveness of Longstaff and Schwartz (2001)’s least-squares re-
gression approach (L-S algorithm) for Bermudan option price under the jump-diffusion models.
In particular, we find that by incorporating the European option price under the corresponding
pure-diffusion model (referred as the “non-jump European option price”) into the function basis of
the L-S algorithm, the quality of the induced suboptimal exercise strategies and the lower bounds
can be significantly improved.

• Motivated by the explicit structure of the optimal dual martingale (Theorem 1), we propose a
function basis that can be employed in our proposed algorithm to obtain upper bounds on the option
price. This function basis is also derived based on the non-jump European option price, which
is critical to the true martingale approximation and hence the quality of the true upper bounds.
By implementing our algorithm together with the A-B algorithm on several sets of numerical
experiments, the numerical results demonstrate that both methods can generate tight and stable
upper bounds on option price of the same quality; however, we observe that our algorithm is much
more efficient than the A-B algorithm in practice due to the relief from nested simulation.

To summarize, the rest of this paper will be organized as follows. In section 2, we describe the Bermudan
option pricing problem under general jump-diffusion models and review the dual approach. We develop the
true martingale approach and provide error analysis and convergence analysis of it in section 3. Section 4
focuses on the detailed T-M algorithm and its numerical advantages. Numerical experiments are conducted
in section 5 to verify the computational efficiency of the T-M algorithm. Conclusion and future directions
are given in section 6.

2 MODEL FORMULATION

2.1 Primal Problem

In this paper, we consider a special case of asset price models−jump-diffusion processes, i.e., the asset
price X(t) satisfies the following stochastic differential equation (SDE):

dX (t) = b(t,X (t))dt +σ (t,X (t))dW (t)+
∫
Rd

J (t,X (t) ,y)P (dt,dy) , (1)

where t ∈ [0,T ], X(t) = [X1(t), ...,Xn(t)] is a random process with a given initial deterministic value X(0) =
X0 ∈ Rn, W (t) = [W1(t), ...,Wnw(t)] is a standard vector Wiener process, P(dt,dy) is the Poisson random
measure (see Definition 2.18 in Cont and Tankov (2003)) defined on [0,T ]×Rd ⊂Rd+1 with the intensity
measure µ(dt× dy), the coefficients b, σ and J are functions b : R×Rn→ Rn, σ : R×Rn→ Rn×Rnw

and J : R×Rn×Rd → Rn satisfying mild continuity conditions (such as uniformly Lipschitz continuous
or Holder continuous). Throughout F = {Ft : 0 ≤ t ≤ T} is the augmented filtration generated by the
Wiener process W (t) and the Poisson random measure P .

We consider a Bermudan option based on X(t) that can be exercised at any date from the time set
Ξ = {T0,T1, ...,TJ }, with T0 = 0 and TJ = T . Given a pricing measure Q and the filtration F , when
exercising at time Tj ∈ Ξ, the holder of the option will receive a discounted payoff HTj := h(Tj,X (Tj)),
where h(Tj, ·) is a Lipschitz continuous function. Our problem is to evaluate the price of the Bermudan
option, that is, to find

Primal : V ∗0 = sup
τ∈Ξ

E [h(τ,X (τ)) |X (0) = X0] , (2)

where τ is an exercise strategy (in this case, a stopping time adapted to the filtration {FTj : j = 0, ...,J })
taking values in Ξ, V ∗0 represents the Bermudan option price at time T0 given the initial asset price X0.
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2.2 Review of Dual Approach

Let M = {MTj : j = 0, ...,J } with M0 = 0 be a martingale adapted to the filtration {FTj : j = 0, ...,J }
and M represents the set of all such martingales. Anderson and Broadie (2004), Haugh and Kogan (2004)
show that the dual problem

Dual : inf
M∈M

(
E
[

max
0≤ j≤J

(
HTj −MTj

)
|X (0) = X0

])
(3)

yields the exact option price V ∗0 . Moreover, if we let MTj in (4) be the Doob-Meyer martingale part of the
discounted Bermudan price process V ∗Tj

, denoted by M∗Tj
, then the infimum in (4) is achieved. Precisely,

we have:

V ∗0 = E
[

max
0≤ j≤J

(
HTj −M∗Tj

)
|X (0) = X0

]
. (4)

In practice, the optimal dual martingale is not accessible to us. Nevertheless, we can still obtain an upper
bound with an arbitrary M ∈M via

V up
0 (M) = E

[
max

0≤ j≤J

(
HTj −MTj

)
|X (0) = X0

]
. (5)

It is reasonable to expect that, if MTj is the martingale induced by a good approximation, VTj , of the option
price process V ∗Tj

, then MTj is close to the optimal dual martingale M∗Tj
and the resulting upper bound

V up
0 (M) should be close to the exact option price V ∗0 . Specifically, suppose V = {VTj : j = 0, ...,J } is

some approximation of V ∗ = {V ∗Tj
: j = 0, ...,J }. Consider the following Doob-Meyer decomposition:

VTj =V0 +MTj +UTj , j = 0, ...,J , (6)

where V0 is the approximation of the Bermudan option price at time T0 and UTj is the residual predictable
process. Then we can obtain the martingale component MTj in principle via the following recursion:

MTj+1 = MTj +VTj+1−ETj

[
VTj+1

]
, with M0 = 0, (7)

where ETj [·] means the conditional expectation is taken with respect to the filtration FTj , i.e., ETj [·] =
ETj

[
·|FTj

]
.

Haugh and Kogan (2004), Anderson and Broadie (2004) both use the above theoretical result as the
starting point of their algorithms to the upper bounds. The difference between their approaches lies in
the ways of generating dual martingales. Nevertheless, due to the nested simulation in approximating the
conditional expectation in (7), both of their algorithms lose the martingale property. Thus the resulting
upper bounds are not guaranteed to be true upper bounds. Furthermore, the nested simulation requires
huge computational effort. Under limited computational resources, this approach might not be realistic. In
next section, we will develop an alternative approach to address these issues.

3 TRUE MARTINGALE APPROACH VIA NON-NESTED SIMULATION

In this section, we will develop an approach that is fundamentally different from previous approaches by
Haugh and Kogan (2004), Anderson and Broadie (2004). By exploiting the special structure of martingales
jointly driven by the Wiener measure and the Poisson random measure, we are able to construct an
approximation of M without nested simulation, and thus preserves the martingale property. The following
generalized martingale representation theorem provides the intuitive idea in understanding the unique
structure of such martingales.
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Theorem 1 (Martingale Representation Theorem) Fix T > 0. Let {W (t) : 0≤ t ≤ T} be a nw-dimensional
Wiener process and P be a Poisson random measure on [0,T ]×Rd with intensity µ(dt×dy), independent
from W (t). If M = {MTj : j = 0, ...,J } is a locally square-integrable (real-valued) martingale adapted to
the filtration {FTj : j = 0, ...,J } with deterministic initial value M0 = 0, then there exist a predictable
process φ : Ω× [0,T ]→ Rnw and a predictable random function ψ : Ω× [0,T ]×Rd → R such that

MTj =
∫ Tj

0
φsdW (s)+

∫ Tj

0

∫
Rd

ψ (s,y)P̃ (ds,dy) , j = 0, ...,J , (8)

where P̃ is the compensated Poisson random measure induced by P .
Remark 1 The proofs of all theorems, corollaries and propositions in this paper are provided in Zhu et al.
(2013).

Inspired by Theorem 1 and following Belomestny et al. (2009)’s work, if one tries to approximate the
martingale MTj , a natural idea is to first estimate the integrands φt and ψ (t,y) in

MTj =
∫ Tj

0
φtdW (t)+

∫ Tj

0

∫
Rd

ψ (t,y)P̃ (dt,dy) , j = 0, ...,J , (9)

at a finite number of time and space points. Then an approximation of MTj will be represented via φt and
ψ (t,y) using the Ito sum (similar to the Riemann sum).

We introduce a partition π = {tl : l = 0,1, ...,L } on [0,T ] such that t0 = 0, tL = T and π ⊃ Ξ, and
a partition A = {Ak : k = 0,1, ...,K } on Rd such that {[tl, tl+1]×Ak} are µ-measurable disjoint subsets

and
K⋃

k=1
Ak = Rd . Then P([tl, tl+1]×Ak) =

∫ tl+1
tl

∫
Ak

P (ds,dy) is a Poisson random variable (regarded as

Poisson increment), and P̃([tl, tl+1]×Ak) =
∫ tl+1

tl

∫
Ak

P̃ (ds,dy) is the corresponding compensated Poisson
random variable (regarded as compensated Poisson increment). We denote the magnitude of partitions π

and ¯A as |π| and |A | respectively, i.e., |π|= max
0<l≤L

(tl− tl−1) and |A |= max
1≤k≤K

∫
Ak

f (y)dy.

From (6), we have

VTj+1−VTj =
(
MTj+1−MTj

)
+
(
UTj+1−UTj

)
, j = 0, ...,J . (10)

Combining with the Ito sum of MTj+1 in (9), we have

VTj+1−VTj ≈ ∑
Tj≤tl<Tj+1

φtl (W (tl+1)−W (tl))+ ∑
Tj≤tl<Tj+1

K

∑
k=1

ψ (tl,yk) P̃([tl, tl+1]×Ak)+UTj+1−UTj , (11)

where yk ∈ Ak is a representative value, and we will keep using this notation thereafter. Multiplying both
sides of (11) by the Wiener process increment (W (tl+1)−W (tl)) and taking conditional expectations with
respect to the filtration Ftl , we obtain

φtl ≈
1

tl+1− tl
Etl
[
(W (tl+1)−W (tl))VTj+1

]
, Tj ≤ tl < Tj+1, (12)

where we use the F -predictability of U , the independent increment property of W (t) and the independence
between W and P .

Similarly, if we multiply both sides of (11) by the compensated Poisson random variable P̃([tl, tl+1]×Ak)
and take the conditional expectations with respect to the filtration Ftl , we can obtain

ψ (tl ,yk)≈
1

µ ([tl , tl+1]×Ak)
Etl

[
P̃([tl , tl+1]×Ak)VTj+1

]
,Tj ≤ tl < Tj+1,1≤ k ≤K . (13)
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Motivated by expressions (12) and (13), we denote the approximation of φtl and ψ (tl,yk) by φ
π,A
tl and

ψπ,A (tl,yk) respectively, which are defined as follows:

φ
π,A
tl :=

1
∆π

l
Etl
[
(∆πWl)VTj+1

]
, Tj ≤ tl < Tj+1, (14)

and
ψ

π,A (tl ,yk) :=
1

µ ([tl , tl+1]×Ak)
Etl

[
P̃([tl , tl+1]×Ak)VTj+1

]
,Tj ≤ tl < Tj+1,1≤ k ≤K , (15)

where ∆π
l and ∆πWl represent the increments of time t and the Winer process W (t) respectively, i.e.

∆π
l = (tl+1− tl) and ∆πWl = (Wl+1−Wl). Therefore we can construct an approximation of MTj , denoted

by Mπ,A
Tj

, as

Mπ,A
Tj

:= ∑
0≤tl<Tj

φ
π,A
tl (∆πWl)+ ∑

0≤tl<Tj

K

∑
k=1

ψ
π,A (tl,yk) P̃([tl, tl+1]×Ak). (16)

The construction procedure of Mπ,A
Tj

can be summarized in the following Algorithm 1.

Algorithm 1 Construction of the Martingale Approximation Mπ,A

Step 1: Express MTj as an integral of φ(t) and ψ(t,y) via (9).
Step 2: Approximate φtl by φ

π,A
tl via (14) and ψ (tl,yk) by ψπ,A (tl,yk) via (15) respectively.

Step 3: Construct the approximation of MTj , denoted by Mπ,A
Tj

, via (16).

Notice that Mπ,A = {Mπ,A
Tj

: j = 0, ...,J } remains to be a martingale adapted to the filtration {FTj :
j = 0, ...,J }, based on its structure. We formally state this result in the following theorem.
Theorem 2 (True Martingale) If an approximation of M, denoted by Mπ,A , is constructed using Algorithm
1, then Mπ,A is still a martingale adapted to the filtration {FTj : j = 0, ...,J }.

According to Theorem 2, if we plug Mπ,A in (5), it is easy to see that V up
0

(
Mπ,A

)
is a true upper

bound on the Bermudan option price V ∗0 in the sense that V up
0

(
Mπ,A

)
is an unbiased expectation for a

valid upper bound. Moreover, if we adopt the L-S algorithm to solve the primal problem (3), we will
obtain a suboptimal exercise strategy τ̃ . Exercising τ̃ along a certain number of sample paths yields an
approximation VTj of the Bermudan option price at time Tj via VTj = ETj

[
Hτ̃ j

]
, where τ̃ j means the stopping

time τ̃ takes value greater than or equal to j. Due to the tower property of conditional expectations, we
can rewrite (14) and (15) as

φ
π,A
tl :=

1
∆π

l
Etl
[
(∆πWl)Hτ̃ j+1

]
, Tj ≤ tl < Tj+1, (17)

and
ψ

π,A (tl ,yk) :=
1

µ ([tl , tl+1]×Ak)
Etl

[
P̃([tl , tl+1]×Ak)Hτ̃ j+1

]
,Tj ≤ tl < Tj+1,1≤ k ≤K . (18)

Through this we avoid the computation of conditional expectations in (14) and (15), which would incur
nested simulation in implementation. Therefore we can estimate Mπ,A

Tj
in (16) via non-nested simulation,

and hence significantly improve the computational efficiency.
The following theorem provides the convergence analysis of the above true martingale approximation.

Theorem 3 Let MTj be the martingale component of VTj = v
(
Tj,XTj

)
and Mπ,A

Tj
be its approximation

obtained via Algorithm 1, where v(Tj, ·) are Lipschitz continuous functions. Then there exists a constant
C > 0 such that

E
[

max
0≤ j≤J

|Mπ,A
Tj
−MTj |2

]
≤C|π|.
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According to the relationship between M and V up
0 (M) in (5), we can immediately obtain the following

corollary on the quality of uppers bounds.
Corollary 4 Under the assumptions of Theorem 3, we have

|V up
0 (Mπ,A )−V up

0 (M) |2 ≤C|π|.

4 TRUE MARTINGALE ALGORITHM

We will formally describe the T-M algorithm based on the construction of the martingale approximation
Mπ,A in section 3. The outline of the T-M algorithm consists of four steps in order: generating a suboptimal
exercise strategy τ̃ , approximating the integrands φ π,A and ψπ,A , constructing the martingale approximation
Mπ,A , and generating true upper bounds V up

0

(
M̂π,A

)
on the option price.

First, let’s start with generating the suboptimal exercise strategy τ̃ . It not only provides the lower
bound, but also plays an important role in approximating the integrands φ π,A and ψπ,A . We adopt the L-S
algorithm to generate the suboptimal exercise strategy τ̃ and the corresponding approximation of option
price process V̄Tj at time Tj, of the form V̄Tj = v

(
Tj,X

π̄, ¯A
Tj

)
, where π̄ ⊃ π , ¯A ⊃A are employed to simulate

the discretized asset price process {X π̄, ¯A }.
Second, let us approximate the integrands φ π,A and ψπ,A . To avoid confusion, we denote{

φ̄
π,A
tl = 1

∆π
l

Etl

[
(∆πWl)v

(
Tj+1,X

π̄, ¯A
Tj+1

)]
, Tj ≤ tl < Tj+1

ψ̄π,A (tl ,yk) =
1

µ([tl ,tl+1]×Ak)
Etl

[
P̃([tl , tl+1]×Ak)v

(
Tj+1,X

π̄, ¯A
Tj+1

)]
,Tj ≤ tl < Tj+1,1≤ k ≤K

as the counterparts of φ
π,A
tl and ψπ,A (tl,yk) respectively, under the discretized asset price X π̄, ¯A

Tj+1
. Inspired

by Longstaff and Schwartz (2001)’s least-squares regression approach to approximating the continuation
values, we apply a similar regression technique to approximate φ̄ π and ψ̄π,A . Specifically, the function bases
chosen to regress φ̄

π,A
tl and ψ̄π,A (tl,yk) are row function vectors ρW

(
tl,X

π̄, ¯A
tl

)
=
(

ρW
i (tl,X

π̄, ¯A
tl )

)
i=1,...,I1

and ρP
(

tl,yk,X
π̄, ¯A
tl

)
=
(

ρP
i (tl,yk,X

π̄, ¯A
tl )

)
i=1,...,I2

respectively, where I1 and I2 are the dimensions of

the function bases. If we simulate N independent samples of Wiener increments ∆πWl , denoted by
{∆π

nWl : l = 1, ...L ,n = 1, ...,N}, and N independent samples of Poisson increments P([tl, tl+1]×Ak),
denoted by {Pn ([tl, tl+1]×Ak) : l = 1, ...,L ,k = 1, ...,K ,n = 1, ...,N}, and based on which we construct
the sample paths of the asset price {X π̄, ¯A

tl ,n }l=0,...,L ,n=1,...,N , then we can obtain the regressed coefficients
α̂tl and β̂tl ,k, for Tj ≤ tl < Tj+1 and 1≤ k ≤K , via

α̂tl = arg min
α∈RI1

{
N
∑

n=1

∣∣∣∆π
n Wl
∆π

l
Hτ̃ j+1

(
X π̄, ¯A

Tj+1,n

)
−ρW

(
tl,X

π̄, ¯A
tl ,n

)
α

∣∣∣2}
β̂tl ,k = arg min

β∈RI2

{
N
∑

n=1

∣∣∣ P̃n([tl ,tl+1]×Ak)
µ([tl ,tl+1]×Ak)

Hτ̃ j+1

(
X π̄, ¯A

Tj+1,n

)
−ρP

(
tl,yk,X

π̄, ¯A
tl ,n

)
β

∣∣∣2} , (19)

where we employ the tower property to avoid nested simulation, as described in (17) and (18). Therefore
we can compute the approximations of the integrands φ̄

π,A
tl and ψ̄π,A (tl,yk), denoted by φ̂ π,A (tl,x) and

ψ̂π,A (tl,yk,x) respectively, via

φ̂
π,A (tl,x) = ρ

W (tl,x) α̂tl and ψ̂
π,A (tl,yk,x) = ρ

P (tl,yk,x) β̂tl ,k. (20)

Next, with fixed α̂ and β̂ , we construct an approximation of Mπ,A , denoted by M̂π,A , by combining
the approximation φ̂ π,A and ψ̂π,A of the integrands with the Euler scheme of system (1). Precisely, we
have

M̂π,A
Tj

:= ∑
0≤tl<Tj

φ̂
π,A

(
tl ,X

π̄, ¯A
tl

)
(∆πWl)+ ∑

0≤tl<Tj

K

∑
k=1

ψ̂
π,A

(
tl ,yk,X

π̄, ¯A
tl

)
P̃([tl , tl+1]×Ak). (21)
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Obviously, M̂π,A remains to be a martingale adapted to the filtration {FTj : j = 0, ...,J }. Consequently,
V up

0

(
M̂π,A

)
is a true upper bound on the Bermudan option price V ∗0 .

Finally, let’s estimate V up
0

(
M̂π,A

)
via (5) by simulating a new set of N̄ independent sample paths

{X π̄, ¯A
n : n = 1, ..., N̄}. Precisely, an unbiased estimator for V up

0

(
M̂π,A

)
is given as follows:

V̂ up
0

(
M̂π,A

)
=

1
N̄

N̄

∑
n=1

max
0≤ j≤J

[
h
(

Tj,X
π̄, ¯A
Tj,n

)
− M̂π,A

Tj,n

]
, (22)

where M̂π,A
Tj,n represents the realization of M̂π,A

Tj
along the sample path X π̄, ¯A

Tj,n . We can formally summarize
these steps in the following Algorithm 2.

Algorithm 2 True Martingale Algorithm
Step 1: Apply the L-S algorithm to generate a suboptimal exercise strategy τ̃ .
Step 2: Simulate N independent samples of Wiener increments ∆πWl and N independent samples of Poisson
increments P([tl, tl+1]×Ak), for l = 0, ...,L −1 and k = 1, ...,K ; construct the sample paths of the asset
price {X π̄, ¯A

tl ,n }l=0,...,L ,n=1,...,N .
Step 3: Obtain the parameters α̂ = {α̂tl}l=0,...,L and β̂ = {β̂ (tl,k)}l=0,...,L ,k=0,...,K via least-squares
regression (19) by exercising τ̃ along the sample paths {X π̄, ¯A

tl ,n }l=0,...,L ,n=1,...,N .

Step 4: Simulate a new set of N̄ independent sample paths {X π̄, ¯A
tl ,n }l=0,...,L ,n=1,...,N̄ ; compute φ̂ π,A and ψ̂π,A

via (20); construct the martingale approximation M̂π,A via (21); obtain an unbiased estimator V̂ up
0 (M̂π,A )

for the true upper bound on the Bermudan option price V ∗0 via (22).

5 NUMERICAL EXPERIMENTS

In this section, we will conduct numerical experiments to illustrate the computational efficiency of our
proposed T-M algorithm on a Bermudan option pricing problem under a jump-diffusion model. The exact
model we consider here falls into the class of jump-diffusion models (see Merton (1976) and Kou (2008))
reviewed in section 1. Specifically, the asset prices evolve as follows:

dX (t)
X (t−)

= (r−δ )dt +σdW (t)+d

(
P(t)

∑
i=1

(Vi−1)

)
, (23)

where r is the constant discount factor, δ is the constant dividend, σ is the constant volatility, X(t) =
[X1(t), ...,Xn(t)] represents the asset price with a given initial price X0, W (t) = [W1(t), ...,Wn(t)] is a Wiener
process, P(t) is a Poisson process with intensity λ , and {Vi} is a sequence of independent identically
distributed (i.i.d.) nonnegative random variables such that J = log(V ) is the jump amplitude with p.d.f.
f (y). Here J can follow a normal distribution (see (Merton 1976)) or an exponential distribution (see Kou
(2008)) or various other reasonable distributions. For simplicity, we assume J follows a one-dimensional
(d = 1) normal distribution N(m,θ 2). We also assume W (t), P(t) and J are mutually independent.

To connect dynamics (23) with the jump-diffusion model (1) we have mainly focused on, we should
construct a Poisson random measure P such that dynamics (23) can be easily transformed to an equivalent
dynamics jointly driven by the Wiener measure and the Poisson random measure. The following proposition
provides an intuitive criterion in selecting such a Poisson random measure P by explicitly defining the
intensity function µ (dt×dy) for the unique P induced by a compound Poisson process.
Proposition 5 (Proposition 3.5 in Cont and Tankov (2003)) Let S(t)t>0 be a compound Poisson process
with intensity λ and jump size distribution f . Then the Poisson random measure PS induced by S(t)t>0
on [0,∞]×Rd has intensity measure µ (dt×dy) = λ f (y)dydt.
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According to Proposition 5, for a compound Poisson process S(t), the compensated Poisson random
measure P̃S induced by S(t) can be simulated by P̃S = PS−λ f (y)dydt. Although X(t) satisfying (23)
is not a compound Poisson process, S(t) = log(X(t)) is usually a compound Poisson process, and thus
its Poisson random measure PS(t,y) can be easily simulated according to Proposition 5. Now if we
incorporate PS into the asset-price dynamics (23), we can obtain an equivalent dynamics as

dX (t)
X (t−)

= (r−δ )dt +σdW (t)+
∫
Rd

yPS (t,y) . (24)

Unfortunately, the solution to asset dynamics (23) or (24) is not uniquely determined in the risk-neutral
sense, caused by the incompleteness of the market under the jump-diffusion setting. However, we can
construct pricing measures Q′s ∼ P such that the discounted price X̂(t) is a martingale under Q′s (c.f.
Chapter 10 in Cont and Tankov (2003)). Here we will adopt the construction method proposed by Merton
(1976). That is, changing the drift of the Wiener process but leaving other components of (23) unchanged
to offset the jump results in a risk-neutral measure QM, which is a generalization of the unique risk-neutral
measure under the Black-Scholes model. Therefore, the solution under QM can be easily derived and
efficiently simulated. Precisely, the solution to the asset-price dynamics (23) is given by:

X (t) = X0 exp
[

µ
Mt +σW M (t)+

P(t)

∑
i=1

Ji

]
, t > 0, (25)

where µM = r−δ − 1
2 σ2−E

[
eJi−1

]
is the new drift, W M(t) is a standard vector Wiener process and J′i s

are the i.i.d. random variables according to J.
Given the equivalence of (23) and (24), we can perform the Euler scheme on an equidistant partition

π̄ with |π̄| = 0.01 and a continuously equi-probabilistic partition ¯A on Rd with | ¯A | = 0.1 to simulate
the Wiener increments {Wtl}, the Poisson random measure increments P([tl, tl+1]×Ak), and the resulting
sample paths of X(t) = exp(S(t)) according to (25).

We consider a Bermudan Min-Puts on n assets, whose evolution is given by (25). In particular, at any
time t ∈ Ξ = {T0,T1, ...,TJ }, the option holder has the right to exercise his option to receive the payoff
h(X (t)) = (SK−min(X1 (t) , ...,Xn (t)))

+. The maturity time of the option is T = 1 and can be exercised
at 11 equally-spaced time points, i.e., Tj = j×T/10, j = 0, ...,10. Our objective is to solve the Bermudan
option pricing problem by providing a lower bound and an upper bound on the exact option price.

5.1 Suboptimal Exercise Strategies and Lower Bounds

First, let’s adopt the L-S algorithm to generate a suboptimal exercise strategy τ̃ by regressing the continuation
values on certain function bases, and compute the corresponding benchmark lower bound. Anderson and
Broadie (2004) propose a function basis consisting of all monomials of underlying asset prices with degrees
less than or equal to three, the European min-put option with maturity T, its square and its cube, since the
European option under the pure-diffusion model has a closed-form that can be fast numerically evaluated
(see Zhu et al. (2013) for explicit formula).

For the Bermudan option pricing problem under the jump-diffusion model (23), the corresponding
European option still has a closed-form expression (see Zhu et al. (2013) for explicit formula). However,
it is extremely difficult to be evaluated because of the infinite sum and the integral in the closed-form.
Naturally, we try to approximate it directly by an European option under a closely-related pure-diffusion
model. Surprisingly, the most intuitive one, i.e., the European option under the pure-diffusion model derived
simply by removing the jump part of (23) works extremely well in our numerical experiments. To avoid
confusion, we refer to it as “non-jump European option”.

Now the function basis we choose includes all monomials of underlying asset prices with degrees less
than or equal to three, the non-jump European option with maturity T, its square and its cube. With this
basis, we implement the L-S algorithm, and obtain suboptimal exercise strategies τ̃ ′s and the corresponding
lower bounds, as shown in Table 1.
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5.2 Upper Bound by True Martingale Approach

Now let’s implement our proposed T-M algorithm (Algorithm 2) described in section 4. Notice that we
have addressed almost all the implementation details except the choices of partitions π and A , and the
bases ρW and ρP .

First of all, the choice of partition π is essential to balance the tradeoff between the quality of the true
martingale approximation and the computational efficiency. It has to be sufficiently small to reduce the
overall mean square error between the true martingale approximation and the objective martingale, but not
too small so that the computational effort for obtaining martingale approximation Mπ,A is much less than
the computational effort for obtaining the inner sample paths in A-B algorithm. In fact, a good way to
achieve this tradeoff is to perform the regression on a rough partition in the beginning, and then interpolate
them piece-wisely constant to a finer partition. To maximize the effect of this two-layer regression-
interpolation technique, we choose to perform the regression procedure on the original exercisable dates
Ξ = {T0,T1, ...,TJ −1} and interpolate the regression coefficients piece-wisely constant to the partition
π̄ of the Euler scheme. Secondly, the choice of the partition A is less restrictive than the choice of π

since |π| will dominate the error between the martingale approximation and the objective martingale (see
Theorem(3)) regardless of the choice of A . For the sake of convenience, we let A = ¯A . Therefore the
compensated Poisson increments {P̃([tl, tl+1]×Ak)} in (19) are obtained immediately from the simulation
of X π̄, ¯A , and µ ([tl, tl+1]×Ak) in (19) equals λ × 0.01× 0.1 (see Proposition 5). Specifically, we obtain
{α̂Tj , j = 0, ...,J −1} and {β̂Tj,k, j = 0, ...,J −1,k = 1, ...,K } via the regression (19), and set α̂tl = α̂Tj

for tl ∈ [Tj,Tj+1) and β̂tl ,k = β̂Tj,k for tl ∈ [Tj,Tj+1),k = 1, ...,K .
Finally, the choice of the bases ρW and ρP affects the accuracy of the martingale approximation M̂π,A .

Notice that European option price is a good basis function for the L-S algorithm. Inspired by Theorem 1,
if we apply Ito’s lemma on the European option price, the resulting integrands should be good candidates
for basis functions. Precisely, we have

CM (t,Xt ;Tj
)
= h(XTj )−

∫ Tj

t

∂CM (u,Xu− ;Tj
)

∂X
Xu−σdW M

u −
∫ Tj

t

∫
Rd

[
CM (u,Xu− · ey;Tj

)
−CM (u,Xu− ;Tj

)]
P̃S (du,dy), (26)

whereCM (t,Xt ;Tj) is the European option price with maturity Tj under pricing measureQM. After simple nu-

merical tests, we find out, for t ∈ [Tj,Tj+1) and 1≤ k≤K , ρW (t,Xt−) consisting of 1,
∂CBS(t,Xt− ;Tj+1)

∂X Xt− and
∂CBS(t,Xt− ;T)

∂X Xt− , ρP(t,yk,Xt−) consisting of 1,CBS (t,Xt− · eyk ;Tj+1)−CBS (t,Xt− ;Tj+1) andCBS (t,Xt− · eyk ;T )−
CBS (t,Xt− ;T ) yield the tightest upper bounds, where CBS (t,Xt ;Tj) is the European option price under the
corresponding pure-diffusion model and yk ∈ Ak is a representative value.

We report the numerical results on the lower bounds by the L-S algorithm, the benchmark upper bounds
by the A-B algorithm and the true upper bounds by the T-M algorithm in Table 1. The small gaps between
the lower bounds and the true upper bounds indicate that the T-M algorithm is quite effective in terms of
generating tight true upper bounds. The small length of the confidence intervals of the true upper bounds
indicates that T-M algorithm generates good approximations of the optimal dual martingales. The CPU
time ratios indicate that T-M algorithm achieves a much higher numerical efficiency.

It is instructive to theoretically compare the computational complexity of the T-M algorithm and the
A-B algorithm, since the CPU time ratios in Table 1 are quite different for 1-dimensional problems and
2-dimensional problems. We know that the total CPU time is mainly consumed by simulating sample paths
and evaluating the basis functions. When n = 1, the time for simulating sample paths will significantly
dominate the time for evaluating the basis functions because the basis functions, which are European options
and their derivatives, reduce to the c.d.f.’s of a standard normal distribution, and hence can be evaluated
extremely fast. Therefore, the CPU time ratio will be in the order of the ratio between the numbers of
sample paths simulated in both algorithms, which is consistent with the result (≈ 1:400). However, when
n≥ 2, the basis functions reduce to infinite integrals of the c.d.f.’s of a standard normal distribution, which
are relatively time-consuming to evaluate. Therefore, the CPU time ratio should be the ratio between the
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total evaluation times of the basis functions in both algorithms. For the A-B algorithm, the total evaluation
times is in the order of (N2×N3×J ×J ); for the T-M algorithm, the total evaluation times is in the order
of (N̄×L ×K ). The ratio of the latter versus the former is around 1:20, which is in the approximately
same order of the result (≈ 1:9). We can expect the CPU time ratios (T-M algorithm versus A-B algorithm)
to remain stable if the dimension of the problem increases, and even further decrease when the number of
exercisable periods increases. See Zhu et al. (2013) for more detailed discussion.

Table 1: Bounds (with 95% confidence intervals) for Bermudan Min-put options. The payoff of the min-
put option is: (SK−min(X1(t), ...,Xn(t)))+. The parameters are: SK = 40,r = 4%,δ = 0,σ = 20%,m =
6%,θ = 20%,T = 1,J = 10. The jump intensity λ is 1 or 3 and the initial price is X0 = (X , ...,X) with
X =36, as shown in the table. We use N = 5×104 sample paths to estimate the regression coefficients to
determine the suboptimal exercise strategy, and we use N = 5×104 sample paths to estimate the coefficients
α̂ and β̂ . We use N1 = 105 sample paths to determine the lower bounds. For the implementation of the
A-B algorithm, we use N2 = 103 outer sample paths and N3 = 5×102 inner sample paths to determine the
benchmark upper bounds and the confidence intervals of appropriate length. For the implementation of the
T-M algorithm, we use N̄ = 2.5×103 sample paths to determine the true upper bounds and the confidence
intervals of appropriate length.

Lower Bound Upper Bound Benchmark U-B CPU Time Ratio

n λ X0 (L-S algorithm) (T-M algorithm) (A-B algorithm) (T-M vs A-B)
1 1 36 5.842±0.031 5.970±0.031 5.899±0.038 ≈ 1:400
1 3 36 7.702±0.043 7.899±0.030 7.810±0.053 ≈ 1:400
2 1 36 8.133±0.033 8.308±0.045 8.243±0.040 ≈ 1:9
2 3 36 9.786±0.045 10.038±0.061 9.989±0.057 ≈ 1:9

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose a true martingale algorithm (T-M algorithm) to fast compute the upper bounds
on the Bermudan option prices under the jump-diffusion models, as an alternative approach for the classic
A-B algorithm proposed by Anderson and Broadie (2004), especially when the computational budget is
limited. The theoretical analysis of our algorithm proves and the numerical results verify that our algorithm
generates stable and tight upper bounds with significant reduction of computational effort. Moreover,
we explore the structure of the optimal dual martingale for the dual problem and provide an intuitive
understanding towards the construction of good approximations of the optimal dual martingale over the
space of all adapted martingales.

Furthermore, from the information relaxation point of view (see Brown et al. (2010)), we can gain
an intuitive understanding towards the structure of the optimal penalty function. It inspires us to construct
good penalty functions over the space of “feasible penalty functions” for general dynamic programming
problems, which is still an open area to explore (see Ye and Zhou (2012) for some initial exploration).
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