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ABSTRACT

In practice, many call center forecasters use the total inbound volume to make forecasts. In reality, besides
the fresh calls (initial call attempts), there are many redials (re-attempts after abandonments) and reconnects
(re-attempts after answered calls) in call centers. Neglecting redials and reconnects will inevitably lead
to inaccurate forecasts, which eventually leads to inaccurate staffing decisions. However, most of the call
center data sets do not have customer-identity information, which makes it difficult to identify how many
calls are fresh. Motivated by this, the goal of this paper is to estimate the number of fresh calls, and
the redial and reconnect probabilities. To this end, we propose a model to estimate these three variables.
We formulate our estimation model as a minimization problem, where the actual redial and reconnect
probabilities lead to the minimum objective value. We validate our estimation results via real call center
data and simulated data.

1 INTRODUCTION

In an inbound call center, a manager typically uses historical call data sets to forecast the future call volumes.
Based on the call volume forecast, one can make staffing decisions. An inaccurate forecast inevitably
leads to inaccurate staffing decisions (see Steckley, Henderson, and Mehrotra (2010)). There is extensive
literature on different forecasting methods applied to call centers. Andrews and Cunningham (1995) used
the Autoregressive Integrated Moving Average (ARIMA) method to forecast the inbound call volume of
L.L. Bean’s call center. Taylor (2012) adjusted the traditional Holt-Winters exponential smoothing method
to the Poisson count model with gamma-distributed arrival rate, and took both intraweek and intraday
patterns into account in his model. Taylor (2008) compared the accuracy of a few forecasting models for
a British retail bank call center. He concluded that for forecasting horizons up to two or three days ahead,
seasonal ARIMA and Holt-Winters model are more accurate, while for longer lead times, simple taking the
historical average is better. Shen and Huang (2008) used the Singular Value Decomposition (SVD) method
to reduce the dimension of square-root-transformed call center data. Then they applied time series and
regression analysis techniques to make distributional forecasts. Besides the forecasts, they also developed
a method to dynamically update the forecasts when early realizations of the day are given. The doubly
stochastic model built by Jongbloed and Koole (2001) addresses the issue of high variability in call arrival

181978-1-4799-2076-1/13/$31.00 ©2013 IEEE



Ding, Koole, and Van der Mei

volume. This model was then further developed in Avramidis, Deslauriers, and L’Ecuyer (2004), where
three variants of doubly stochastic model were analyzed and compared. Ibrahim and L’Ecuyer (2013) added
the correlation between different call types into a model with additive seasonality, interday correlation and
intraday correlation. A multiplicative way to model the intraweek and intraday pattern was used by Gans
et al. (2009).

Call center forecasting models aim to achieve the minimum error in the forecasts, where total inbound
volumes are used. In this paper, we show that the true inbound volume (we refer to it as the fresh volume
from now on) is more appropriate to be used when one makes forecasts, since it is independent of the service
levels in the call center. In contrast, the total inbound volumes are influenced by the service levels and
staffing decisions of the call centers, due to the redial and reconnect customer behaviors. We define redials
as re-attempts of abandoned calls, and reconnects as re-attempts of answered calls. Data analysis of a real
call center reveals that a significant fraction of the inbound call volume involves redials and reconnects.
The reason for customers to redial is clear, since abandoned customers did not get their questions answered
in their initial attempts. There are several reasons for customers to reconnect. For example, a customer
may check what is the status of his previous request. Also, solutions offered by agents may not be effective
for customers, hence, they may reconnect. Koole (2013) gives more insights into redials and reconnects.

In order to know the fresh volume, one would need customer-identity information in the data set, such
that redials and reconnects can be filtered out. However, in most of the call center data sets, customer-identity
information is either not recorded or not accessible, i.e., we do not know who is the caller of each call.
In other words, we do not know whether a call is a fresh call, a redial, or a reconnect. Furthermore, the
fresh volume is not stable due to the existence of seasonality and trend. On the other hand, the redial and
reconnect probabilities are expeted to be more stable over time, since they represent customer behavior.
In this paper, we will show how to estimate the number of fresh calls with the assistance of the redial and
reconnect probabilities.

Hoffman and Harris (1986) are the first ones who address the issue that the total volume does not
represent the true demand in call centers. Aiming to have a more accurate forecast for the call volume,
they estimate the redial probability for the U.S tax-payer service telephone center. However, due to the
assumptions they made, the model in Hoffman and Harris (1986) is difficult to apply to other call center
data sets. First of all, they only consider redial behavior, but neglect reconnect behavior. Secondly, in their
model, the fresh call arrival rate is assumed to be a constant among certain hours of the day, whereas in
most call centers the arrival rate is far from constant over the day, exhibiting certain intraday pattern, see
Shen and Huang (2008), Gans et al. (2009), and Ibrahim and L’Ecuyer (2013). In this paper, we formulate
this estimation problem as a minimization problem, where the lowest objective value is attained when the
actual redial and reconnect probabilities are chosen. We analytically show that the redial probability, the
reconnect probability and the fresh volumes cannot be accurately estimated simultaneously. Nevertheless,
if one variable is given, the other two variables can be estimated accurately. To allow intraweek seasonality,
we adjust our model to a linear programming problem, which is easy to solve. We show both via simulated
data and real call center data that our estimations are close to the real values.

The remainder of the paper is organized as follows. In section 2, we describe the queueing model.
We also show a simulation example of such a model to understand the influence of redials and reconnects
on the total volume. In section 3, we present our estimation model for constant unknown arrival rate. We
validate this estimation model in section 4 via simulated data sets. In section 5, we analyze a real center
data to understand the redial and reconnect behaviors, and we adjust the estimation model such that the
model is suitable for data with intraweek seasonality. The results from estimating real call center data via
the adjusted model are shown in section 6.

2 MODEL DESCRIPTION

Consider the queueing model illustrated in Figure 1. We assume that calls arrive according to a Poisson
process. We refer to these calls as fresh calls. There are s agents who handle inbound calls. An arriving
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call will be handled by an available agent, if there is any. Otherwise, he will wait in a queue with infinite
buffer size. The calls are handled in the order of arrival. After a generally distributed amount of time H,
a waiting customer who did not get connected to an agent will lose his patience and abandon. We assume
EH = θ < ∞. With probability p, an abandoned customer will enter the redial orbit, and he will redial
after some generally distributed amount of time ΓRD, with EΓRD = δRD < ∞. We refer to these calls as
redials. With probability 1− p, this customer will not call back, and this call is considered as a ‘lost’ call.
We assume that the service time B of a customer has a general distribution with mean EB = 1/µ < ∞.
After the call has been finished, this customer will enter the reconnect orbit with probability q, and he
will reconnect after some generally distributed time ΓRC, with EΓRC = δRC < ∞. We refer to these calls
as reconnects. We assume that p and q do not depend on customers’ experiences in the system. These
experiences include holding time, waiting time and the number of times that customers have already called.
We use this queueing model to represent the situation of a single-skill call center.

Figure 1: Queueing diagram of a call center.

According to the model description, the total volume is influenced by the service level in the call
center, since a bad service level leads to more abandonments, which leads to a larger number of redials.
Thus, the total call volumes depend on the staffing decisions. To illustrate this, we show one simulation
example. We simulate the real situation in a call center by following the diagram in Figure 1, and we
generate a call center data set of 100 days. We vary the number of agents per day. For simplicity, the
fresh arrival rate is set to be 10 calls per minute every day. Since the sum of independent Poisson random
variables is again Poisson distributed, Fi (i.e., the fresh volume in day i) is then Poisson distributed with
rate 10 · 60 · 24 = 14400. We take B, H, ΓRD and ΓRC to be exponentially distributed in our simulation.
An example of this simulated data set is shown in Table 1. The total call volume and fresh call volume of
each day are plotted in Figure 2 for a 100-day time interval. In this example, we set p = 0.5 and q = 0.2.

Most interestingly, Figure 2 shows that not only the total volumes are much higher than the fresh
volumes (as they should), but that they exhibit much higher variability. If a manager would be able to
see the fresh volume, it will be easy to predict the future volume, since they are just Poisson realizations
with constant rate. However, since the manager can not identify who the caller is in the data set, he will
only see the total volume in the data set. The extra fluctuations of the total volumes are cuased by two
effects: (i) different service levels will lead to different abandonment rates, and that will eventually lead to
differences in number of redials, (ii) effect (i) is amplified by the reconnects, since reconnects will worsen
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Figure 2: Call volumes from a simulation example.

Table 1: An example of simulated data set.

Arr time Pick time Dep time Result day
0.000 0.000 0.697 Answered 1
0.093 0.093 1.071 Answered 1
0.116 0.116 0.486 Answered 1
0.278 0.278 4.650 Answered 1

the service levels by generating extra workload to the system. On the other hand, the fresh volume has
less variability and is independent of the staffing decisions. We will show our approach to estimate it as
well as redial and reconnect probabilities in the next section.

3 ESTIMATION MODEL

Many call center data sets are similar to the simulated data set that we showed in Table 1; customer
identity information is not available. Thus, in such call center data sets for N days, we would only know
Ai,Ci (i = 1, . . . ,N), which stands for the number of abandoned calls in day i and the number of connected
calls in day i, respectively. We denote Ti as the total number of calls in day i. We define ri := Ai/Ti, which
is the abandonment percentage of day i. With Ai and Ci given, ri and Ti can be obtained. We denote the
number of fresh calls in day i as Fi. Our goal is to estimate Fi, p and q.

By definition, we know that the expected number of total calls is the sum of expected fresh arrivals,
expected number of redials and expected number of reconnects, i.e.,

ETi = EFi +ECi ·q+EAi · p. (1)

Also, since a call is either answered or abandoned, we know that Ti = Ai +Ci. Insert this equation into
Equation (1), we obtain

EFi = (1−q)ECi +(1− p)EAi.

To estimate Fi, p and q, we start with the simple case where Fi ∼ Pois(F∗), i.e., each day has the same
arrival rate of fresh calls, but where F∗ is unknown. Note that, by this assumption, we ignore the intraweek
arrival pattern in the call center data set. We will extend our model to address this pattern in section 5.
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For given data points A1, . . . ,AN , C1, . . . ,CN , we consider the following minimization problem to estimate
p,q and F :

min
q,p,F

N

∑
i=1
|(1− p)Ai +(1−q)Ci−F |, (2)

where the objective function is the sum of absolute deviance (SAD). In this paper, we refer to p̂ and q̂ as
estimated value of p and q by using our model, respectively, and p∗ and q∗ as the true value of p and q,
respectively.
Property 1 The triple (p∗,q∗,F∗) is a local minimizer of minimization problem (2) on F ; in other words,
given p = p∗,q = q∗, F∗ is the minimizer of problem minF ∑

N
i |(1− p∗)Ai +(1− q∗)Ci−F |, when the

sample size is large enough.
Property 2 The triple (p∗,q∗,F∗) is not the only local minimizer of problem (2). More specifically, all
local minimizers are of form (p′,q′,F∗ − q′−q∗

1−q∗ F∗), where the following equation holds

(1− p∗)q′ − (1−q∗)p′+(p∗+q∗) = 0,0≤ p′,q′ ≤ 1.

Property 2 indicates that (p∗,q∗,F∗) is not the only minimizer of (2). In fact, it is not the global
minimizer. Because the errors measured by SAD are scaled errors, in the sense that if we choose large
number for p̂ and q̂, the error would be smaller. An extreme example that indicates this scaling problem
is letting p̂ = 1 and q̂ = 1, and SAD would always be 0 by choosing F̂ = 0. Therefore, we introduce the
following minimization problem, which uses the Weighted Absolute Percentage Error (WAPE) instead of
SAD as the objective function to remove this scaling problem

min
q,p,F

∑
N
i=1 |(1− p)Ai +(1−q)Ci−F |
∑

N
i=1 |(1− p)Ai +(1−q)Ci|

. (3)

To obtain (p̂, q̂) via minimization problem (3), we do the following: we solve (3) on a grid of p and
q. For given values of p and q, the denominator of WAPE is a constant, solving (3) is simply minimizing
the SAD over F . Thus, for any given combination of p and q, we can obtain

WAPE(p,q) := min
F

∑
N
i=1 |(1− p)Ai +(1−q)Ci−F |
∑

N
i=1 |(1− p)Ai +(1−q)Ci|

.

We choose p̂ and q̂ such that they lead to minimum WAPE, i.e., (p̂, q̂) = argmin
0≤p,q<1

WAPE(p,q).

Property 2 also tells us that the minimum WAPE will be attained in a line on the grid of p and q. This
means that we cannot estimate p, q and F simultaneously. This is not surprising, since in such data sets,
we have two known parameters (namely, Ai and Ci), with three degrees of freedom (namely, p, q and Fi).
On the other hand, it also indicates that when one variable is given, we can uniquely determine the other
two. In a call center, there are differnt ways to estimate the reconnect probability. For example, we can
ask agents to do some polling (e.g. for one whole day), we staff enough agents, so that almost all calls are
handled, and we ask each agent to record each connected call’s customer name or identity, then by the end
of the day, we can calculate how many customers have called back. For the redial probability, this is more
difficult to do, since abandoned customer’s information is often not recorded. Using polling to determine
the number of fresh calls is also difficult. Because the number of fresh calls is not stable over time, due
to presence of trend and seasonality.

In this estimation model, we only consider redial and reconnect in the same day of the fresh call. We
will motivate this assumption when we analyze the redial and reconnect behaviors from a real call center
data set.
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4 SIMULATION EXPERIMENT

In this section, we test our estimation model (3) in the data sets generated by discrete-event simulation.
The data generation procedure is the same as described in Section 2. We generated five data sets using
different parameter settings. The parameters are shown in Table 2. In each example, we vary the values
of all different parameters. Note that we take B,H,ΓRC and ΓRD to be exponentially distributed in the
simulation. However, since Ai and Ci are realizations which can be obtained from the data, how B,H,ΓRC
and ΓRD are distributed becomes irrelevant in our estimation model (3). Consequently, we can extend our
estimation model to call centers where these variables have general distributions.

Table 2: Parameters of the simulation experiments.

Example p q F∗ 1/µ θ δRD δRC

1 0.5 0.2 4 10 2 20 100
2 0.5 0.2 10 4 2 20 100
3 0.5 0.2 10 4 2 5 10
4 0.7 0.3 4 9 3 20 100
5 0.7 0 4 9 3 20 100

Figure 3: Values of WAPE on the grid of p and q for simulated data example 1, with the red points standing
for (p∗,q∗).

Figure 3 illustrates the combinations (p,q) for which WAPE(p,q) = γ , where γ is varied as 0.01, 0.02,
0.03 and 0.04, in addition to the optimum (p∗,q∗). Other simulation examples (not shown here) gave
similar graphs as in Figure 3. These figures all confirm that if the reconnect probability is known, we can
estimate the redial probability accurately.

5 ANALYSIS OF REAL CALL CENTER DATA

In this section, we analyze real call center data to understand the redial and reconnect behaviors. The call
center data is obtained from a call center company called Vanad Laboratories in the Netherlands. The
data set consists of call arrival records to the municipality of Rotterdam in the Netherlands. The calls are
recorded from 1st April 2012 to 29th September 2012. On Sundays, the call center is closed. On Saturdays,
the arrival volume is quite low, i.e., 5508 total call records for 26 Saturdays. Therefore, we may ignore the
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Figure 4: The histograms redial time for Router A.

weekends call data, and focus only on the weekdays. We also remove the week which consists of one or
few days of holidays. This leaves us with 22 weeks of data. Each call record consists of seven attributes,
i.e., call arrival date, arrival time, caller’s phone number, router name, agent number, time that the call is
answered and the time that the call is hanged up. Approximately 20% of the caller’s phone numbers is
unidentified, since some callers set their phone number to be invisible by the call receivers. We assume
that each caller is identified by its phone number. There are different routers that can be selected by an
caller. The selection of router is done by customer during Interactive Voice Response (IVR) unit. After
the customer has made the selection, his call will be distributed by an Automatic Call Distributor (ACDs).
Each router represents one or multiple types of questions that a customer may have. We will focus our
study on two specific routers which are referred to as router A and router B.

5.1 Redial and Reconnect Behavior

For this data set, we do have the caller-identity information, which allows us to we can follow customer
and see whether he called back or not. In Figures 4, we plot the histograms of time-to-redial for router
A, i.e., ΓRD. For time to reconnect and router B, we obtain a similar figure. We can see that both for
redial and reconnect, most of the customers call back in the same day as their fresh calls. A small fraction
of the customers redial or reconnect one or two days later after the fresh call. Therefore, in our model,
it is sufficient to assume that the redials and the reconnects arrive in the same day as the fresh call, i.e.,
customer who calls again one or more days later will be regarded as another fresh call. Some descriptive
statistics are shown in Table 3.

Table 3: Descriptive statistics.

Router Total volume Fresh volume Redials Reconnects
A 41624 36515 2142 2967
B 28526 23782 1117 3627
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After removing the unidentified calls, we use following formulas to calculate redial and reconnect
probabilities

p∗ =
∑

N
i=1 RDi

∑
n
i=1 Ai

, (4)

q∗ =
∑

N
i=1 RCi

∑
n
i=1Ci

, (5)

where RDi is the number of redials in day i, and RCi is the number of reconnects in day i.
The probabilities p∗ and q∗ of each weekday are shown in Table 4 and 5.

Table 4: Real redial and reconnect probabilities of each weekday for Router A.

Mon Tue Wed Thu Fri
p∗ 0.52 0.52 0.46 0.49 0.43
q∗ 0.08 0.08 0.07 0.09 0.08

Table 5: Real redial and reconnect probabilities of each weekday for Router B.

Mon Tue Wed Thu Fri
p∗ 0.42 0.40 0.38 0.38 0.39
q∗ 0.15 0.13 0.14 0.15 0.12

From Tables 4 and 5 we see that the redial and reconnect probabilities are different, i.e., redial probability
is usually larger than the reconnect probability. Intuitively, this makes sense, since an abandoned customer
has higher urge to call back than an answered customer. For different routers, redial probability has
more fluctuations than reconnect probability. However, within the same router for every weekday both
probabilities are stable, only except for the redial probability for router A on Friday. Therefore, it is
sufficient to have two parameters for all weekdays together for redial and reconnect probabilities of each
router.

5.2 Intraweek Seasonality

In model (3), we made the assumption that each day has the same fresh call arrival rate. This is an
unrealistic assumption in a real call center. As illustrated in the paper by Shen and Huang (2008) as well
as other papers, call center data would show strong intraweek patterns. To make our model applicable in
call center data with intraweek seasonality, we make adjustments to mode (3). To this end, we assume that
the weekly total fresh calls distributed to each day of the week in a multiplicative way, i.e.,

EFi = EWFwi ·βdi ,

where wi and di are the week number of day i and the weekday of day i, respectively, di ∈ {1,2,3,4,5},
wi = 1,2, . . . ,n, where n is the number of weeks. WFwi is the total number of fresh calls of week wi. Thus,
βdi can be interpreted as the proportion of calls on weekday di than in the whole week. A key assumption
of this multiplicative model is that βdi does not depend on the week number (relaxation of this assumption
is beyond the scope of this paper, see also section 7). Therefore, our estimation model changes to

min
p,q,β

∑
N
i=1 |(1− p)Ai +(1−q)Ci−WFwi ·βdi |

∑
N
i=1[(1− p)Ai +(1−q)Ci]

s.t. ∑
di

βdi = 1,

WFwi = WAwi(1− p)+WCwi(1−q), wi = 1,2, . . .n,

(6)
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where WAwi and WCwi are the total number of abandoned calls and total number of connected calls in
week wi, respectively. The intuition behind model (6) is that the daily fresh call volume is proportional to
the weekly total fresh call volume.

Solving minimization problem (6) is difficult even on the grid of p and q, noting that the objective
function is not differentiable. Also, unlike model (3), in model (6), we have a hard constraint on variables
β . Therefore, we reformulate problem (6) into a linear programming (LP) problem on a grid of p and q,
which is easier to solve. The corresponding LP problem of model (6) can be written as

min
β ,Z+,Z−

N

∑
i=1

(
Z+

i +Z−i
)

s.t. ∑
di

βdi = 1,

Z+
i −Z−i =

|(1− p)Ai +(1−q)Ci−WFwi ·βdi |
∑

n
i=1[(1− p)Ai +(1−q)Ci]

, for all i,

WFwi = WAwi(1− p)+WCwi(1−q), for all i,

0≤ p,q,β ≤ 1,

Z+
i ,Z

−
i ≥ 0 for all i.

(7)

Note that the second constraint is linear, since when p and q are given, term ∑
N
i=1[(1− p)Ai +(1−q)Ci]

is a constant. One can show that problem (6) and (7) are equivalent. We will omit the proof here.

6 RESULTS

In subsection 5.2 we adjusted our estimation model to the real call center data set with multiplicative
intraweek patterns. We simplified the original optimization problem (6) to a LP problem (7). Then we
solved this LP problem for given p and q. We apply this method to the Vanad Laboratories data set, and
plot the points with different value of WAPE on a grid of p and q, with grid size of 0.01. The estimation
results of router A is in Figure 5. One could see from this figure that the minimum WAPE is attained in
thicker lines which are wider than the ones from the simulated data sets. Estimation result for router B
(not shown here) gave similar graph as in Figure 5. Therefore, instead of obtaining a line of minimum
WAPE, for this data set, we have a region of minimum WAPE. This could be caused by multiple reasons;
(i) the redial and reconnect probabilities of each weekday are slightly different, while we assume them to
be the same every weekday; (ii) extra error is introduced when we model seasonality.

In Figures 5, the true parameter lies close to the line where minimum WAPE is attained. In Table 6,
we compute the real redial and reconnect probabilities using Equations (4) and (5). Assume the real
reconnect probability p∗ can be calculated accurately via polling method which we described in section 3,
our estimated redial probability is shown in Table 6 under the column p̂|q∗. One can see that our estimation
of redial probability for router A is approximately 0.05 higher than the real redial probability, while for
router B, our estimation is about 0.09 higher. For a call center with r = 20%, i.e., 20% of all calls are
abandoned, 0.09 error in redial probability would lead to less than 2% error in estimating the number of
fresh calls. For these two routers, which have much less abandonments than 20%, 0.09 would lead to
even less errors. Therefore, maximum of 0.09 error in our estimation of redial probability is acceptable.
In Table 6, we also compare the real number of fresh calls F∗i with our estimation of the number of fresh
calls F̂i by using p̂ and q∗, which can be obtained via F̂i = (1− p̂)Ai +(1− q̂)Ci. To obtain F∗i , we remove
all the redials and reconnects in the data set, and we assume that the unidentified customers have the same
behaviors as identified customers. We use the WAPE of the fresh calls as the error measurement, i.e.,
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Figure 5: Values of WAPE on the grid of p and q for Router A.

WAPEF , which is defined as

WAPEF :=
∑

N
i=1 |F̂i−F∗i |
∑

N
i=1 |F∗i |

.

One can see from Table 6 that the WAPEF for both routers are quite small, which are both less than
3%. The real fresh calls and the estimated fresh calls of router A are plotted Figure 6. In this figure, our
estimations F̂i are quite close to the real fresh calls F∗i . For router B, we obtained a similar graph (not
shown here) as in Figure 6.

Table 6: Estimation results for both routers.

Router CIp∗ CIq∗ p̂|q∗ WAPEF

A 0.488 0.080 0.54 2.6%
B 0.398 0.141 0.49 3.0%

7 CONCLUSION AND FURTHER RESEARCH

In this paper, we proposed a model to estimate the number of fresh calls of a call center, which is hidden
under the total number of calls. The fresh calls represent the true demand, since they do not depend on the
service levels of the call center, while the total number of calls do. Thus, the number of fresh calls should
be used when one makes forecasts. However, direct calculation of the number of fresh calls is difficult in
some call centers, since customer identity information is not available in their data. In our model, we try to
estimate the redial probability, reconnect probability and the fresh calls simultaneously in call center data
without customer identity information by solving a minimization problem. However, we show analytically
that although the actual redial probability, reconnect probability and the number of fresh calls is indeed
a minimizer of this minimization problem, they are not the only minimizer. In order to have an accurate
estimation, one variable needs to be given. We propose a polling method in call centers to calculate the
reconnect probability. Once the reconnect probability is given, the other two variables can be estimated.
Via simulated data, our estimation results of redial probability and the number of fresh calls are accurate.
We also validate our model via two real call center data sets. Our estimation of redial probabilities for
both data sets are close to the actual redial probabilities, with errors of less than 0.09. Furthermore, our
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Figure 6: Real number of fresh calls VS. estimated number of fresh calls for router A.

estimation of the number of fresh calls are very close to the real number of fresh calls, with the WAPE
less than 3%.

In addition to helping call center managers to estimate the true demands of the call centers, this paper
also addresses the reconnect customer behavior in call centers. In the data set of Vanad Laboratories, we
found that the number of reconnects is significant. Neglecting it will lead to inaccurate prediction of the
call volumes, which will cause inaccurate staffing in the call centers. Inspired by these findings in this
paper, we propose the following topics for further research:

1. For a call center manager, it would be interesting to know what are the consequences of neglecting
reconnects in terms of costs or service levels;

2. In order to make the right staffing decisions, it would be useful to evaluate the service levels of a
call center with consideration of the reconnect behaviors;

3. The redial and reconnect behaviors will introduce intraday correlation to the call center data. For
example, if a manager saw a busy morning, he would expect a busy afternoon, since some “morning
customers” will redial or reconnect in the afternoon. This raises the question how managers should
update the agent schedules dynamically when morning realizations are available.
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