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ABSTRACT 

This paper describes the use of real time simulation to aid time-critical decision making. An example of 
such a situation is the provision of a fire and rescue service response to an emergency. Another example 
is in a battle situation where a field commander has to take a rapid decision on how best to deploy troops. 
If a simulation model is available that can be run sufficiently fast this can be used to evaluate the likely 
outcome of different possible decisions before the real decision is actually made, and so provide infor-
mation on the likely consequences. The methodology of using a simulation model in this way is discussed 
and applied to an example from the fire and rescue service. 

1 INTRODUCTION 

This paper describes the use of real time simulation as an aid to time-critical decision making. There are 
many situations where a computer simulation model can be used in this way. In the WSC 2011 session: 
Real Time Decision Support, Mousavi, Komashie and Tavakoli (2011) give case studies arising from 
healthcare and manufacturing and Huang et al. (2011) describe use of simulation to estimate system per-
formance when managing surface transport systems. 
 Many time-critical decision making problems reduce to being an optimization problem where the ob-
jective is to find a good way of operating the system. One version of the problem is where the system per-
formance can be regarded as being a smooth function of a number of continuously varying decision vari-
ables and the problem is to find those values of these decision variables that will optimize system 
performance. This is essentially the classical optimization problem. Another version is where the system 
can be operated in a finite, but large, number of distinctly separate ways and the problem is to choose a 
good way, possibly the best, of operating the system. In this latter version of the problem the number of 
distinct ways can be combinatorially large, when we have what is know as a combinatorial optimization 
problem. The distinction between the two types of problem can become blurred in particular instances. 
 In a series of papers Cheng (2007, 2008, 2010) discusses both types of problem, but where it is as-
sumed that a simulation program can be used to analyse the different ways of operating the system. In all 
three papers Cheng considers the case where the different ways to be compared are selected at random. 
Simulation runs are then made to see how the system performs under each, to see which is best. If simula-
tion runs can be carried out sufficiently quickly then this random search optimization (RSO) becomes a 
straightforward and viable way of using simulation in real time-critical decision making. In notation 
which will be fully defined in Section 2 we will use W(1) to denote the best solution found amongst those 
randomly selected for consideration; however it will be convenient to use this notation immediately. 
 There are two main aspects of RSO that are of interest: (i) the experimental procedure used in carry-
ing out the random search itself leading to the identification of W(1), and (ii) establishing how good the 
system performance actually is corresponding to this solution is, typically involving calculation of a con
fidence interval for this quantity. The papers by Cheng cited above concentrate on (i), focusing on how 
best to balance between the number of points searched and the simulation effort used at each point. Cheng 
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also discusses (ii), but uses mainly computer intensive methods for calculating quantities like confidence 
intervals. In the real time decision making context, there will not usually be sufficient time to carry out 
such computer intensive methods in the time period within which the time-critical decision has to be 
made, so such an evaluation will usually only be of theoretical interest, carried out off-line, and not part 
of the time-critical decision making. 
 The overall purpose of this paper is to consider a practical method which handles aspect (ii) as well as 
aspect (i). We shall consider a method particularly suited for combinatorial optimization problems and il-
lustrate its use by revisiting an example first considered in Cheng (2007). This example − the so called 
‘cover-moves’ problem − is a genuine practical problem that occurs in the fire rescue service. 
 In Cheng (2008) it is pointed out that this problem can be analysed as a combinatorial optimization 
problem, though the method used in that paper is more general purpose. In Cheng (2010) a simpler RSO 
method than that discussed in Cheng (2008) is proposed for handling combinatorial optimization prob-
lems, but the behaviour of W(1) is examined by computer intensive methods which are not well suited for 
time-critical decision problems. 
 In this paper our starting point is the method proposed in Cheng (2007) and in Cheng (2010). This us-
es RSO to find W(1). However when it comes to studying the properties of W(1) we do not use computer in-
tensive methods in this paper, but instead used a modified form of the analysis discussed in Cheng (2007) 
to calculate quantities of practical interest like confidence intervals, doing this sufficiently fast so that 
they can be done in real time in time-critical applications. We apply our proposed method of analysis to 
the cover-moves fire rescue example which is very time-critical. 

In the next section we describe optimization problems and RSO in general terms whilst in Section 3 
we discuss a specific normal model that seems suitable for certain combinatorial optimization problems. 
In Section 4 we show how to fit this normal model to results obtained by RSO. In Section 5 we describe 
the cover-moves problem encountered by the fire rescue service when dealing with large incidents, and in 
Section 6 carry out the analysis of output from an RSO in this problem. A summary is provided in Section 
7. 

2 OPTIMIZATION AND RANDOM SEARCH 

2.1 Classical and Combinatorial Optimization 

In this first subsection we consider just the deterministic case. Let )(θJ  be the objective function, typi-
cally a system performance measure, that is a continuous function of a vector θ  of d continuous decision 
variables, where θ  can be selected from a compact region Θ  of dR . Suppose that we are interested in 
finding that value of θ  which optimizes )(θJ ; for simplicity we will suppose that the performance 
measure is a cost so that we wish to minimize its value. We write the minimum expected performance as  
 
  )(min θJ

θ Θ∈
=δ  (1) 

 
and for simplicity we shall only consider the case where this is obtained at an interior point minθ of Θ . In 
classical optimization )(θJ  is assumed to have smoothness conditions which allow it to be approximated 
by a quadratic function of θ  in the neighborhood of minθ . Convergence properties of numerical search 
procedures are then relatively easy to establish. 
 In this paper we are interested in certain commonly occurring combinatorial optimization problems. 
Usually such problems do not obviously fall into the framework of the classical optimization problem just 
set out, where there is a smooth objective function depending on input variables of given dimension d. 
However we argue that though a dimension is not usually defined in combinatorial problems, if we were 
able to do so, then the dimension d would have to be regarded as large. In such a situation, if results from 
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classical optimization theory were to be at all applicable, then it would have to be for the case when d is 
assumed large. 
 We admit that this viewpoint of combinatorial optimization problems is somewhat speculative at this 
juncture. Thus the main objective of this paper is not to try develop rigorous theory to support our ap-
proach, but merely to carry out exploratory examination of a genuinely practical problem, to see how 
successful such an approach might be. We leave as an open question whether a dimensionality can be as-
sociated with combinatorial problems. However irrespective of this, our numerical results do furnish 
some indication of how high dimension might be treated in numerical optimization. 

2.2 Random Search Optimization 

Random search can be thought of as being a simple way of exploring the region Θ , supposing that this 
region does contain minθ . Note that this immediately injects a probabilistic element into the problem, 
even if our problem had been initially deterministic. Our starting point is the statistical model of RSO 
considered by Cheng (2008) in which simulation runs are made to explore the behaviour of )(θJ . We 
begin by assuming that the random search is carried out as follows. This will not be the final version of 
the search that we will be discussing in more detail, but serves as a good starting point which allows us to 
set out the issues. 
 First sample m mutually independent values of θ : 
 
  mθθθ  ..., , , 21 , (2) 
 
which we shall call search points, from some continuous distribution with density Θ∈ θθg  ),( . We allow 
for a general density rather than sampling from a uniform distribution to enable sampling to be focussed 
in the most promising regions of Θ based on prior information. 
 Then for each iθ  we make n simulation runs, each of some predetermined and fixed standard length t. 
We shall not discuss how individual runs are conducted. For example, if a warm up period is needed in 
each run, we assume that this has already been considered and dealt with. If the total time available al-
lows a maximum of c simulation runs, we have that 
 
  c = nm. 

It will be convenient to write the performance measure as )()( θµθ XJ +=  where µ is a constant to be de-
fined and )(θX  is the part depending on the decision quantities θ . We write iJ  for )( iθJ  and iX  for 

)( iθX . The important point to note is that because the iθ  are randomly sampled, the iJ  and iX  are also 
random variables. In all that follows we shall use the notation )(θJ  and )(θX  when we are regarding J 
and X as deterministic functions of θ , and the notation iJ , and iX , when regarding J and X as a random 
variables resulting from the random sampling of the iθ  in (2). The constant µ  can be viewed as the mean 
of the random variables iJ , and the iX  as having mean 0)( =iXE . 
 An additional random variation has to be allowed for when simulation is used to assess system per-
formance. This is because each simulation run outputs a performance measure )(θJ  that is observed with 
error, even when θ  is being regarded as fixed. We assume that the observed performance measures, ob-
tained from simulation runs, take the form 

 
  .,...,2,1;..., ,2,1          , njmiXY ijjiij ==+++= εηµ  (3) 
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Here we distinguish between two random ‘error’ quantities appearing in a simulation run, even when θ  is 
fixed. The quantities ijε  are assumed to be all mutually independent random errors arising from random 
numbers sampled independently at all the different design points and replicates. We assume the ijε  have 

mean zero and variance 2σ . The quantities jη  are random errors which arise from the use of common 
numbers. Let jz  be a set of random numbers used in the jth run made at a given design point, and with 
this same set used in the jth run made at all m design points, i.e. the set jz  comprises random numbers 
common to all the jth runs across all design points. They therefore give rise to the same random error jη  
in the simulation output irrespective of the design point i θ . 
 The averages of the observations at each iθ  are 
 

  ,,...,2,1for   say,  , 
1

1

1

1

1

1 miXnnXYnW ii

n

j
ij
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j
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j
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=

−

=

− ζηµεηµ  (4) 

 
where the averaged errors iζ  have mean zero and variance: 
 
  .say ,/][Var 22

ni n σσζ ==  (5) 
 
We include the suffix n as a reminder that ][Var iζ  depends on n. 
 The effect of using random numbers is to add the same random error, η , to all the Wi. This shows the 
benefit of using random numbers when we compare different Wi , as the η  random error then cancels out. 
 Equation (4) shows that there are therefore two sources of variation in RSO: the search induced varia-
bility of the iX  and the simulation induced variability of the iζ , which is independent of that of the iX .  
We shall write )(⋅XF , and )(⋅ζF  to denote the cumulative distribution functions (CDF) of iX  and ζ  and

)(⋅Xf  and )(⋅ζf  for their probability density functions (PDF). 
 It will be convenient to assume that the observations W are put in ranked order 
 
  )()2()1( ... mWWW <<< . 
 
It is natural to take the decision )1(θ corresponding to W(1), the minimum observed value of the iW , as the 
best available of those points searched. Note that, because 
 
  )1()1()1( ζηµ +++= XW  (6) 
 
involves a random error )1(ζ , it may be that )1(X , the actual performance achieved corresponding to )1(W  
is not the best amongst the decisions examined. As )1(X  is never directly observable it is therefore of par-
ticular interest to estimate its distribution. One of the main objectives of this paper is to show how this 
can be done. 
 Moreover it is of particular interest to see if this can be done sufficiently quickly so that it can be ob-
tained in time-critical decision taking. A statistical model that allows one to do this is of special interest. 
In the next section we consider such a model. 
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3 THE NORMAL MODEL 

3.1 RSO when Search Points have High Dimension 

Under the classical assumption that )(θX  is a quadratic function of θ  near minθ  it is known, see Chia 
and Glynn (2007), Cheng (2013), that )1(W  has minimum variance when 
 
  m  ~ )4/( +ddrc ,  n ~ )4/(41 +− dcr  (7) 
 
as ∞→c , with r an arbitrary but fixed positive constant. 
 An immediate consequence of this result is that as ∞→d , less and less effort is spent making runs at 
individual design points iθ , and correspondingly more effort on increasing the number of search points m. 
If we take r = 1 it is clear therefore that for large d we are better off not replicating runs at individual iθ  
but should simply take n = 1. The only reason for replicating at a given iθ  is to enable estimation of 2σ  
by calculating this variance from the replicated observations at each given iθ . 
 Once the observations (4) are obtained, our approach is to fit a statistical model to them. To specify a 
statistical model for the observations (4) we note that Wi is simply the sum three terms: )( ηµ +  which is 
effectively a constant, Xi and iζ . Thus all we need to do is specify )(⋅XF  the distribution of X and )(⋅ζF  
the distribution of ζ . The distribution of W is then the convolution of these two distributions plus the 
constant. For the situation where d is large we consider the case where we do not have to specify a defi-
nite value for d but can assume that a central limit theorem applies to the distribution of X so that it is as-
ymptotically normally distributed. Moreover we shall only consider the situation where the errors are also 
normally distributed. The distribution of W is then also normally distributed.  
 Cheng (2010) discusses the situation when d → ∞ and shows that it is reasonable to approximate the 
distribution of Xi by the normal, at least in the left tail. In combinatorial problems we suggest that it may 
be reasonable to assume that the entire distribution of Xi is adequately represented by a normal distribu-
tion. It is beyond the scope of this paper to investigate the precise conditions when this might hold rigor-
ously. We only offer the following rough and heuristic argument when this is might occur. 
 A combinatorial problem can be regarded as a deterministic situation where the decision space com-
prises a finite but very large number of choices which we can represent as }..., ,2 ,1 |{ Nii ==Θ θ . Sup-

pose that each choice iθ  depends on a large number, d, of factors so that ),...,,( )()2()1( d
iiiii θθθθθ =  where 

)( j
iθ  is the value of the jth factor in the ith decision. In RSO we select iθ  at random so that the values of 

all the factors )( j
iθ , j = 1,2,...,d are selected at random. The factors )( jθ therefore behave like random var-

iables with )( j
iθ  being the sampled value corresponding to the decision iθ . It is perfectly possible for the 

combinations of factor values appearing in the set of choices comprising Θ  to be so distributed that, in 
selecting iθ  at random, we are in effect carrying out independent sampling of the each of the factors .)( jθ  
Suppose therefore )( ii XX θ=  depends on the factors additively so that =)( iX θ  +++ )2()1(

ii θθµ  )(... d
iθ+  

where µ  is some constant; if the )( jθ , treated as random variables and standardized so that their vari-
ances satisfy the Lindeberg condition, see Billingsley (1979) for example, then RSO would produce a set 
of Xi which would be asymptotically normally distributed as d → ∞. 
 For the rest of the paper we consider analysis of the behaviour of Wm,n under the assumption that the 
distribution of Xi is normal, i.e. 
 
  iX  ~ ),0( 2ωN , (8) 
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where ω  is unknown and has to be estimated. It might appear strange that this representation does not in-
volve xmin . But this arises only in the limit as d → ∞. A practical interpretation is that, as d → ∞, the Xi, 
in tending to normality, have a lower limit, i.e. xmin, that is increasingly unstable and unreliable to esti-
mate. Cheng (2010) discusses estimation of a low quantile of (8) instead. In this paper we do not consider 
this further.  
 Our statistical model of the observations (3) or (4) is completed by specifying the distribution of ijε , 
the random simulation induced error arising from the within-run stochastic variation. We shall simply as-
sume that this is also normal, i.e. 
  ε  ~ ),0( 2σN  (9) 
where σ  is unknown but constant. 
 In summary, for the rest of the paper we make the following assumption. 
 
Assumption A: 
(i) The RSO is for a problem where the dimension of the search points iθ  is large. 
(ii) The observed performance measures take the form 
 
  .,...,2,1;..., ,2,1    , njmiXY ijjiij ==+++= εηµ  (10) 
 
with iX  ~ ),0( 2ωN  and ijε  ~ ),0( 2σN  mutually independent so that (conditional on η ) Wi as defined in 
(4) takes the form 

 iii XW ζηµ +++=  ∼ )  ,( 2ψηµ +N  (11) 
where 
  2122 σωψ −+= n . (12) 

3.2 Estimating X(1) 

As already discussed, the quantity of most interest in RSO is X(1), the unobserved actual performance 
achieved when W(1), as given in (6) is selected as being the best search point. The next best thing to ob-
taining X(1) itself is to estimate its distribution. Under Assumption A, when Xi and iζ  are both normally 
distributed and independent, we can calculate )(

)1(
⋅XF  as follows. 

 As µ  is a constant in (10) and η  is effectively so, we need only focus on iii XZ ζ+=  the random 
part of iW , and consider the probability that )1(Z , the smallest iZ , will occur at each given i and the way 
that this will occur. Thus suppose that X(1) = Xi, for a given i. An elementary conditional argument shows 
that 
 

  Pr(X(1) = Xi and Xi > x) = dzduzFufuzf
xz m

ZX∫ ∫
∞

∞−

−

∞−

−−− })](1)[()({ 1
ζ .  

 
Hence, as any of the i are equally likely to be selected, we have 
 

  dzduzFufuzfmxFxX
xz m

ZXX ∫ ∫
∞

∞−

−

∞−

−−−−==< })](1)[()({(1)()Pr( 1
)1( )1( ζ , (13) 

and 

  .)](1)[()(()( 1
)1( dzzFxzfxfmxf m

ZXX ∫
∞

∞−

−−−= ζ . (14) 
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Under Assumption A the distributions used in (13) and (14) are all normal, depending only on the vari-
ance parameters ω  and n/σ . Once they have been estimated, estimates of the CDF and PDF of )1(X  
can be calculated from (13) and (14) by numerical quadrature. In the next subsection we discuss how to 
estimate the parameters µ ,  ω  and σ  under Assumption A. 

4  FITTING THE NORMAL MODEL 

4.1 Estimating µ , ω 2 and σ2 

We first consider a basic procedure for estimating the parameters. We suppose that the RSO observations 
take the form (3). We write Yij and Xi in lower case as a reminder that in the actual observations they are 
variate values. 
 We can estimate the ix  and jη  as fixed effects by minimizing the sum of squares  

  2

1 1
)(∑∑

= =

−−−=
m

i

n

j
jiij xyS ηµ  (15) 

subject to 

  ∑ ∑
= =

==
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j
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1 1
0η . (16) 

This gives the estimates 
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The estimate for 2][ ω=iXVar  is then: 

  ∑
=

−=
m

i
ixm

1

212 ˆω̂ , (20) 

 
and estimate of the variance of 2][ σε =ijVar  is 

  .)ˆˆˆ()(ˆ
1 1

212 ∑∑
= =

− −−−=
m

i

n

j
jiij xynm ηµσ  (21) 

4.2 A Practical RSO Procedure 

The basic RSO procedure with observations taking the form (4) is not very satisfactory as we want to 
have n as small as possible, i.e. to have n = 1. However we cannot then estimate σ  and consequently will 
not be able to estimate the distribution of X(1) from (13) or (14). Our suggested practical procedure is to 
carry out the RSO in two steps. 
Step 1: The purpose of this step is to obtain an estimate of 2σ . For a selected number, say m = m1 of ini-
tial search points, carry out RSO with n > 1, say n = n1 = 5. The parameter σ  is then estimated from (21). 
 

Step 2: Carry out the RSO proper, using m2 search points, but now with n = n2 = 1. The parameter ω  is 
then estimated from equations (17)-(20), with m = m2 and n = 1. 
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5 AN EXAMPLE 

This example is taken from Cheng (2007). To save the reader having to access that paper for details, we 
summarize its main features here. The example is drawn from a very specific genuine application based 
on work done for the fire service emergency cover (FSEC) Section of UK Government Department of 
Communities and Local Government (DCLG). 

 
5.1 Fire Service Emergency Cover 

Regional Fire Brigades in the UK possess a very sophisticated tool for gathering and analysing incident 
data in a very comprehensive way. This information is used for planning and to provide operational statis-
tics to the UK Government. It is realised by brigade management that the data could be used to inform 
day to day management decisions.  
 The specific question of interest was whether it would be possible to develop a simulation model that 
would run sufficiently fast to be used to evaluate risk in real time. Such a model might then be deployed 
as an operational tool to provide real-time advice to brigade officers in responding to actual incidents. 
 The speed at which such a model can be run is a determining factor of its practically. In our case the 
discrete event simulation (DES) model, which was a very detailed one, was able to simulate a year’s op-
eration in about three seconds. 

5.2 The ‘Cover-Moves’ Problem 

An operational problem of particular interest is the Cover-Moves Problem. This occurs when a fire bri-
gade responds to a large incident (one that needs a large, say 8 or more, number of fire appliances to at-
tend). The incident controller then usually repositions a small number of vehicles not involved in the large 
incident in what are called cover-moves, to try to minimize risk in the remainder of the region. Here risk 
can be clearly defined. We shall take as our performance measure the expected fatality rate (as measured 
by the expected number of fatalities over a given period of time, under the conditions of the large inci-
dent). For simplicity in what follows, we refer to this as the (observed) fatality count. 
 The choice of a worthwhile cover-move combination (CMC) is an example of a problem in combina-
torial optimization. It is not usually possible, certainly in real time, to identify the best solution. The real 
question is whether a worthwhile operational solution can be found.  
 We consider the kind of cover-moves solution achievable. In one example of a typical large incident, 
consideration was given to selecting 3 vehicles for cover-moves out of 16 available vehicles located in 11 
stations. The 3 vehicles were to be sent to 3 out of the 6 stations that had supplied vehicles to attend the 
large incident. A simple combinatorial calculation shows that there are 25800 distinct CMCs possible. In 
fact, the majority of these could be ruled out on operational grounds so that only 230 CMCs turned out in 
this instance to need serious consideration. 
 The strict (policy driven) operating requirement for the cover-moves problem is that a solution has to 
be found within one minute of the notification of occurrence of a large incident. 
 In our example, if simulations of a year’s operation were used, then one could only make 20 runs in 
the one minute allowed. However if, say, each run simulated only two months’ operation, then about 120 
runs of the simulation model could be made.  As the example is for discussion purposes only, we actually 
carried out simulation runs for all 230 CMCs each of two months’ operation. This provides a benchmark 
to gauge how well our proposed real-time method would have worked out in this particular example. Fig-
ure 1 gives the empirical distribution of the observed fatality rates ( i.e. the Yi) for the 230 CMCs. 
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 Figure 1: Fatality count by run number for 230 CMCs 
 
 A run carried out for the situation when no large incident has occurred gave a fatalities count of 
2.108, well below all the cases where the large incident has occurred, even with cover moves. A run 
where the large incident has occurred but no cover moves are made gave a fatality count of 2.278 which is 
lower than many of the fatality counts where a CMC was deployed. This shows that it is very possible for 
a CMC to be counter-productive.  

6 REAL-TIME ANALYSIS OF THE COVER MOVES PROBLEM 

We apply the method set out in Section 4.2 to analyse the cover moves problem. 
 In Step 1 of the RSO process we took m1 = 5 and n = 4. Figure 2 shows the 20 observed values with 
the horizontal scale corresponding to the observed fatality counts. The five observations of each replicate 
are on the same horizontal line, with one line for each replicate. It will be seen that there is some signifi-
cant variation in horizontal position of each group – this is due to the variation of jη  in (10) –, but that 
within each group the ranked order of the points remains very similar – thus the ranking is determined 
largely by Xi in (10), with the effect of ijε  being much smaller in comparison. 
 

  
 

Figure 2. Fatality counts obtained in the 20 simulation runs of Step 1 of the suggested RSO process 
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These observations were used to estimate σ  from equation (21) giving 
 
 00622.0ˆ =σ ,  
 
 For Step 2 of the RSO process we set m2 = 100, n = 1. These observations correspond to the first 100 
values depicted in Figure 1. The lowest value in this set is 2.168, the 37th value. Note that the first 100 
observations happen not to be a particular good set of values compared with later CMCs, but of course in 
the time-critical situation where only 100 observations are made, we would not know this. Fitting the 
RSO model to these 100 observations gave the estimates 
 
 ,267.2ˆ =µ  0372.0ˆ =ω . 
 
Using these values allows us to calculate the distribution of X(1) from (13) or (14). Note that we are only 
using the Step 2 observations so that 22 /][ σσζ == nVar i  in this case as n = 1. We have calculated the 
fitted PDF numerically from (14) using simple quadrature by Simpson’s Rule with appropriately selected 
ranges of integration over which the integrand is not negligible. Equation (14) only shows how the distri-
bution of X(1) depends on the Xi and iζ . These both have zero expectations. We therefore need to add the 
overall mean 267.2ˆ =µ  to the argument of the PDF if this is to be the fatality rate. Figure 3 shows the be-
haviour of the density for the case m2 = 100, corresponding to number of observations used in the Step 2 
of the RSO process. The position where the depicted ordinate axis crosses the horizontal fatality count ax-
is has been placed at x = 2.278. the value of the fatality count when cover moves are not deployed follow-
ing despatch of appliances to the large incident. This thus corresponds to the breakeven fatality count with 
X(1)  having to be less than this value to be effective. As one would wish, the bulk of the probability distri-
bution of X(1) is significantly to the left of this value. However the small probability to the right of x = 
2.278 shows that there is still a noticeable probability that the best value estimated by the RSO is less than 
effective. 
 

  
 
Figure 3: Estimated distribution of X(1) the expected fatality count given by the cover move combination 
found by RSO under the one minute constraint within which the decision has to be made. The point where 
the y axis crosses the x-axis corresponds to the fatality count where the large incident has occurred, but no 
cover moves are deployed 
 
 The final figure, Figure 4, shows the EDF of observed fatalities in the m2 = 100 observations of Step 2 
of the suggest RSO process together with the CDF of the fitted distribution. This latter is as given by 
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equations (11) and (12) with 267.2ˆ =µ , 0372.0ˆ =ω  and 00622.0ˆ =σ . It has to be admitted that though 
the general fit is not unreasonable, the fit is poorest in the left hand tail and this is likely to have the most 
influence on the estimated distribution of X(1). However it seems likely that this lack of fit will not have 
much influence in estimating the probability that the chosen cover move will have some beneficial effect. 
This is clearly governed by those search points, for which there is some beneficial effect. As Figure 4 
shows, these make up almost exactly 60% of the search points. The fitted CDF matches this proportion 
rather accurately at this x-value.  We argue therefore that, whatever the true shape of the PDF of X(1), the 
value of the area under the PDF to the left of x = 2.278 in Figure 4 will be close to that under the true PDF 
to the left of x = 2.278. 
 

 

  
 

  Figure 4: The EDF of the m2 = 100 observations of Step 2 of the suggest RSO process, and the CDF of 
the fitted distribution. The value where the x-axis is crossed by the y axis has been set so that it corre-
sponds to the fatality count where the large incident has occurred, but no cover moves are deployed 
 

7 CONCLUDING REMARKS 

This paper has focused on the use of a particular normal statistical model that allows a relatively easy 
analysis of the results obtained when one is attempting to improve system performance using random 
search optimization (RSO). RSO is very easy to implement, and indeed it is little different from the initial 
exploratory simulation runs carried out in developing a simulation model and in a preliminary evaluation 
of system performance. 
 If the simulation model runs fast enough and if it is to be used in improving system performance, 
then, in situations that involve real time adjustment of the system, the simulation model can be incorpo-
rated as a decision tool to assist in this process. 
 In the real time context, it may be unrealistic to expect true system optimization to be achievable. One 
should simply be satisfied with obtaining improved system performance. As a bottom line one would like 
some reassurance that the best way of running the real system found by RSO actually does lead to some 
improvement. This paper shows how to calculate a probability distribution which estimates how the un-
known actual true system is likely to behave if it is run according to the best solution found by RSO. This 
calculation can be done sufficiently fast to be incorporated in the real time decision making, so that an in-
dication is available of how well the best solution found by RSO might actually perform. 
 It may be thought that the proposed normal model may be too narrowly applicable to be of general 
practical use. However as illustrated in the numerical example, it may be sufficiently robust to at least 
give a clear indication of whether the RSO process has been worthwhile or not. 
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