
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

A PROCEDURE TO SELECT THE BEST SUBSET AMONG SIMULATED SYSTEMS USING
ECONOMIC OPPORTUNITY COST

Franco Chingcuanco

Dept. of Civil and Environmental Engineering
Engineering Systems Division

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Carolina Osorio

Dept. of Civil and Environmental Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

ABSTRACT

We consider subset selection problems in ranking and selection with tight computational budgets. We
develop a new procedure that selects the best m out of k stochastic systems. Previous approaches have
focused on individually separating out the top m from all the systems being considered. We reformulate
the problem by casting all m-sized subsets of the k systems as the alternatives of the selection problem.
This reformulation enables our derivation to follow along traditional ranking and selection frameworks. In
particular, we extend the value of information procedure to subset selection. Furthermore, unlike previous
subset selection efforts, we use an expected opportunity cost (EOC) loss function as evidence for correct
selection. In minimizing the EOC, we consider both deriving an asymptotic allocation rule as well as
approximately solving the underlying optimization problem. Experiments show the advantage of our
approach for tests with small computational budgets.

1 INTRODUCTION

The best m of k simulated systems are to be identified, where best is defined as the smallest output mean.
This subset selection problem falls under ranking and selection (R&S), which is a branch of statistics
that uses statistical sampling to infer the best out of the k unknown competing systems. R&S procedures
can be classified as either frequentist or Bayesian. Frequentist approaches, such as indifference zone (IZ)
methods (Kim and Nelson 2006), determine the additional replications required to maximize the probability
of correct selection based on statistically conservative assumptions (Chick and Inoue 2001). On the other
hand, Bayesian formulations like the value of information procedure (VIP) (Chick and Inoue 2001) and the
optimal computing budget allocation (OCBA) (Chen 1996) use the posterior distributions of the unknown
means to provide evidence for correct selection. VIP allocates additional samples to maximize the expected
value of information (EVI) from those samples, while OCBA approximates how additional replications
change the parameter uncertainty associated with each system (Chick 2006).

The IZ, VIP and OCBA methods use loss functions to describe the loss associated with an incorrect
selection. Note that loss functions are estimates of the penalty if a selection is wrong, whereas the EVI is a
framework that measures the value additional observations bring in reducing the uncertainty associated with
each system under consideration, before a decision is made. Two-stage and sequential R&S formulations
exist. In the former, first-stage observations are used to inform the allocation of replications for the second-
stage. The latter formulation is a natural extension of two-stage procedures where all observations up until
stage l serve as the first-stage observations to inform stage l + 1. By using information from all earlier
stages, sequential approaches could lead to improved sampling efficiency (Chick and Inoue 2001). We
focus on sequential formulations and refer to current- and next-stages to describe any consecutive stages l
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and l +1 in our selection procedure. See Kim and Nelson (2006), Chick (2006) and Branke et al. (2007)
for comprehensive reviews on these topics.

Most R&S procedures focus on identifying a single system with the best performance, even though one
of the main papers R&S originates from is the seminal work of Gupta (1965) on subset selection (Kim and
Nelson 2006). Gupta presents a single-stage procedure that seeks to identify a subset of random size that
contains the best system. Sullivan and Wilson (1989) extend this work to a two-stage IZ procedure that
selects a subset of at most size m. However, the primary motivation for both approaches is to screen inferior
systems out, leaving the selected subset for further scrutiny (Chen et al. 2008). As Chen et al. (2008) note,
the first attempt to identify the best m systems was not until Koenig and Law (1985). Recently, Chen et al.
(2008) apply the latest developments in R&S to subset selection problems by extending OCBA to choosing
the best m systems. The procedure, called OCBA-m, allocates a limited computational budget across the k
systems to maximize the probability of correct selection (PCS) that the top-m systems are chosen. Zhang
et al. (2012) present an improved version of this algorithm, called OCBA-m+, while LaPorte et al. (2012)
extend OCBA for subset selection under very small computing budgets. Ryzhov and Powell (2009) have
also recently developed a subset selection algorithm for online problems. In their procedure, entire subsets
are treated as the individual alternatives of the selection problem, and a covariance structure is imposed on
the priors that capture the correlations among overlapping alternatives. This design means that replications
are allocated across entire subsets and not individual systems.

In this paper, we propose a new procedure to select the best subset of size m across k simulated systems.
Our overall purpose is to integrate this subset selection procedure with a recently developed simulation-based
optimization (SO) framework for urban transportation optimization by Osorio and Bierlaire (forthcoming).
Since this SO framework operates under very tight computational budgets, our subset selection procedure
focuses on problems with few systems and very small budgets. There are three notable distinctions between
our approach and previous contributions. First, we formulate our problem as finding a subset of m elements
that have the smallest collective performance out of all the possible subsets across the k simulated systems.
Previous approaches, such as OCBA-m, attempt to identify and separate out the best m out of the k systems,
whereas we consider entire subsets as our alternatives. Unlike Ryzhov and Powell (2009) however, we can
allocate our replications across individual systems and are not limited to allocating across entire subsets.
Second, rather than maximizing the PCS as in OCBA-m, we use an opportunity cost loss function and
minimize the expected opportunity cost of incorrect selection. Third, we allocate additional samples using
Bayesian decision theory to maximize the allocation’s expected value of information, and hence we build
on the work of Chick and Inoue (2001) by extending VIP to subset selection problems. As such, we call
our procedure VIP-m.

2 NOTATIONS, ASSUMPTIONS & FORMULATION

2.1 Notation

The following notation in used in this paper:

• Wi: the unknown mean of system i
• σ2

i : the unknown variance of system i
• λi: the unknown precision of system i (λi = 1/σ 2

i )
• xi j: the jth independent and identically distributed observation or realization of performance measure

for system i
• ni: the number of simulation replications at the current stage for system i
• xi: the vector of simulation outputs for system i, xi = {xi j : j = 1,2 . . .ni}

• x̄i: the sample mean of system i for samples observed up until the current stage, x̄i = (1/ni)
ni

∑
j=1

xi j
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• σ̂ 2
i : the sample variance of system i, σ̂2

i = (1/(ni−1))
ni

∑
j=1

(xi j− x̄i)
2

• ri: the number of next-stage simulation replications to be allocated to system i
• Zi: the predicted overall sample mean of system i prior to observing next-stage samples, Zi =

(1/(ni + ri))
ni+ri

∑
j=1

xi j

• W̃a: the unknown mean of subset a, defined as the sum of the performance measures of all systems
i in subset a, W̃a = ∑

i∈a
Wi

• σ̃2
a : the variance of subset a, which is σ̃2

a = ∑
i∈a

σ2
i for all independent systems in a

• Jab: the difference in the unknown means of two subsets a and b, Jab = W̃a−W̃b

2.2 Posterior Distribution of Systems and Subsets

Assume that the simulation output xi j for system i (i= 1,2 . . .k) and run j ( j = 1, . . .n) is normally distributed
with unknown mean Wi and unknown variance σ 2

i . Assume that the xi j’s are jointly independent. We
adopt a Bayesian framework and use information from an initial stage of sampling (xi) to infer the values
of the unknown means Wi and precisions λi (the inverse of variances), treating them as random variables.
Following Chick and Inoue (2001), we consider a noninformative prior distribution, which leads to a
normal-gamma posterior for the joint distribution of Wi and λi after an initial ni samples are taken (DeGroot
1970, Chapter 9.6). The marginal posterior distribution of the unknown mean is then a three-parameter
Student-t distribution with ni−1 degrees of freedom

Wi|xi ∼ St
(

x̄i,
ni

σ̂2
i
,ni−1

)
.

Wi|xi gives the predicted performance of system i, but what we want is to identify the best subset of
size m out of the k simulated systems. We define the performance of a subset as the collective performance
of its elements (i.e., the sum of the elements in that subset). Note that out of the k simulated systems, there
are s =

(k
m

)
possible subsets of size m, where

(k
m

)
is the binomial coefficient. For each subset a, let W̃a

represent its unknown mean and σ̃2
a its unknown variance. As each system i is assumed to be normally

distributed and independent of all of the other systems, then

W̃a = ∑
i∈a

Wi and σ̃
2
a = ∑

i∈a
σ

2
i .

Since the posteriors of the individual Wi’s are Student-t distributed, there is no known tractable expression
for the distribution of their sum W̃a when the cardinality of a is greater than two and when the individual
Wi’s have arbitrary degrees of freedom. For our purposes, we instead use a normal density for the posteriors
of the individual systems Wi|xi ∼ N

(
x̄i,

σ̂2
i

ni

)
by approximating σ2

i ≈ σ̂2
i , similar to OCBA (Chen 1996).

For independent systems, this allows the posterior density of the sum W̃a = ∑
i∈a

Wi to be expressed as

W̃a|xa ∼ N

(
∑
i∈a

x̄i,∑
i∈a

σ̂2
i

ni

)
where xa is the data observed for systems that belong in subset a.

2.3 Posterior Distribution Prior to Next-Stage Sampling

After an initial stage of sampling, the posterior distribution of the unknown means and variances of each
subset is used as the prior distribution for the next stage. The goal is to determine the allocation rule
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r = (r1,r2, . . .rk) across the k systems that maximizes the probability that the best subset is selected after
all next-stage replications have been run. Note that while we want to identify the best subset, we allocate
the simulation runs across the individual systems and not across entire subsets.

Consider the posterior distribution of system i. Let ȳi be the sample average of system i from only the
next-stage observations (i.e., ȳi only includes next-stage observations after an additional ri’s are allocated
and observed and does not include samples from previous stages). After observing the next-stage samples,
the overall sample average for i becomes (Chick et al. 2010)

zi = E[Wi|x′i] =
nix̄i + riȳi

ni + ri

where x′i is the overall data observed for system i, including next-stage samples. Prior to observing the
next-stage samples, Ȳi is a random variable. Following the work of Chick and Inoue (2001), it can be
shown that the distribution of Zi is then (DeGroot 1970, Chapter 11.9)

Zi|X′i ∼ N
(

x̄i,
σ̂2

i

ni

ri

(ni + ri)

)
.

That is, the posterior distribution of system i after an initial round of sampling but prior to observing the
next-stage samples is distributed around the current-stage sample mean x̄i, with a precision that is scaled by
(ni + ri)/ri. Following the approach above, the posterior distribution of subset a after ri runs are allocated
to system i (i ∈ a) is then

Z̃a|X′a ∼ N

(
∑
i∈a

x̄i,∑
i∈a

σ̂2
i

ni

ri

(ni + ri)

)
where X′a is the overall data to be observed for systems that belong in subset a (including current- and next-
stage samples). For an opportunity cost loss function (described below), we are interested in the posterior
distribution of the random variable Ja1a2 = Z̃a1− Z̃a2 for any two subsets a1 and a2. For independent systems,
this posterior distribution is then

Ja1a2 |X′a ∼ N

(
∑

i∈a1i/∈a2

x̄i− ∑
j/∈a1 j∈a2

x̄ j,

[
∑

i∈a1i/∈a2

σ̂2
i

ni

ri

(ni + ri)
+ ∑

j/∈a1 j∈a2

σ̂2
j

n j

r j

(n j + r j)

])
.

Note that the elements included in the posterior distribution of Z̃a1 − Z̃a2 are only those that are unique
across a1 and a2. This can be easily shown, and the result intuitively makes sense since when the difference
Z̃a1− Z̃a2 is taken, the common elements within a1 and a2 cancel each other out.

3 EVIDENCE FOR CORRECT SELECTION OF THE BEST SUBSET

3.1 Loss Functions

At a given stage, we are faced with a total of s subsets, each with m elements. We want to allocate a limited
computational budget across the k simulated systems to find the best subset with the smallest collective
performance measure. Denote by b∗ the subset with the true best performance, and denote the selected
subset by b, which is the subset that has been observed to have the best performance at the current stage.
In the R&S literature, the loss function L(d,ω) is used to provide evidence for correct selection. L(d,ω)
describes the loss when a decision d is chosen given the current state ω . For the case at hand, a correct
selection occurs when the selected subset b is the true best subset b∗. Branke et al. (2007) discuss two
loss functions that are applied in both frequentist and Bayesian procedures:

1. the zero-one loss function L0−1(b,ω) = I(w̃b 6= w̃b∗) which equals 1 if the true best subset is not
correctly selected and 0 otherwise;
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2. and the opportunity cost loss function LOC(b,ω) = w̃b− w̃b∗ which is 0 if the true best is selected,
and is otherwise the difference between the true best and the selected system.

For Bayesian R&S procedures, the probability of correct selection given the data seen so far (x) is then
(Branke et al. 2007)

PCSBayes = 1−E[L0−1(b,W)|x] = P(W̃b 6= W̃b∗ |x).

An alternate measure of evidence for correct selection is the expected opportunity cost, which makes better
sense when measuring output that have economic value (e.g., financial, time, man-hours, etc.)

EOCBayes = E[LOC(b,W)|x] = E[W̃b−W̃b∗ |x].

The original OCBA and OCBA-m procedures were formulated to maximize the PCS, while Chick and Inoue
(2001) formulate the VIP by using both opportunity cost and zero-one loss functions. Since our intended
application is for urban transportation problems where the performance measures can be naturally translated
into economic metrics, we formulate our approach using an opportunity cost loss function. However, we
do note that using L0−1 can be derived in an analogous manner.

3.2 Objective Function

Let b(x′r) be the selected subset that has the best performance after all next-stage simulation outputs (x′r)
have been observed. The subscript r is used as a reminder than the next-stage outputs are dependent on
the simulation allocations r across the k systems. Given x′r and a loss function L, the expected loss is
then EW|x′r [L(b(x

′
r),W)|x′r] (Chick and Inoue 2001). Since r is chosen before the next stage of sampling

occurs, X′r is random. Hence, nested expectations across X′r are taken, (i.e., EW|x′r [L(b(x
′
r),W)|x′r] =

EX′r [EW|x′r [L(b(x
′
r),W)|X′r]]).

We use the objective function proposed in Chick and Inoue (2001). Assuming unit replication costs c
for all systems, the objective is to minimize the expected loss when the subset with the best overall sample
mean is selected subject to a replication budget constraint u

min
r

ρ(r) = crT +EX′r [EW|x′r [L(b(x
′
r),W)|X′r]]) (1)

s.t.
k

∑
i=1

cri = u

ri ∈ Z+, i = 1,2 . . .k

The allocation rule that minimizes ρ(r) is the vector r that minimizes a nested expectation, the inner
expectation corresponding to the expected loss after X′r = x′r is observed, the outer expectation averaging
over X′r (Chick 2006).

3.3 Approximate Objective Function

A general technique for determining an expression for EX′r [EW|x′r [L(b(x
′
r),W)|X′r]] is to consider an auxiliary

loss function L∗ that has the same optimal decision as the original L. Chick and Inoue (2001) derive a
lower bound for ρ(r) using this approach, which we adopt for our formulation. Consider the modified loss
function

L∗OC(b(X
′
r),w) = LOC(b(X′r),w)−LOC(b∗,w)

Adding LOC(b∗,w) to the original loss function does not change the optimal answer (DeGroot 1970, Chapter
8.4). An approximation to E[L∗OC(b(X

′
r),W)|X′r] is obtained using a Bonferroni-type bound (Chick and

Inoue 2001, see Appendix for the full proof). The use of the auxiliary loss function and Bonferroni-type
bound lead to the following approximate objective function
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min
r

ρ
∗(r) = crT +E[min

a
w̃b∗ − w̃a]−∑

a6=b
λ
−1/2
ba Ψ[λ

1/2
ba dba] (2)

where

dba =

(
∑

j∈b, j/∈a
x̄ j− ∑

i∈a, j/∈b
x̄i

)

λ
−1
ba =

(
∑

j∈b j/∈a

σ̂2
j

n j

r j

(n j + r j)
+ ∑

i∈ai/∈b

σ̂2
i

n j

ri

(n j + r j)

)

and Ψ[s] is the standard normal loss function, defined as Ψ[s] =
∞∫
s
(t− s)φ(t)dt = φ(s)− s(1−Φ(s)) (Chick

2006, Nahmias 2000, p. 262). Refer to Chingcuanco and Osorio (2013) for the full derivation.

4 SOLUTION TO THE OPTIMIZATION PROBLEM

4.1 Optimal Allocation Rule

One approach to solve the optimization problem posed above is to derive an optimal allocation rule that
allocates the next-stage budget u to the different systems. Following Chick and Inoue (2001), we optimize
∑

a6=b
λ
−1/2
ba Ψ[λ

1/2
ba dba] by relaxing the integrality constraints and taking partial derivatives with respect to

the ri’s subject to a budget constraint
k
∑

i=1
ri = u. Since λba is itself a function of the next-stage samples, a

large-sample approximation is made so that λba→ λba∗ where

λ
−1
ba∗ =

(
∑

j∈b j/∈a

σ̂2
j

n j
+ ∑

i∈ai/∈b

σ̂2
i

n j

)
. (3)

and does not depend on next-stage samples, similar to Chick and Inoue (2001). The optimal allocation
rule is then

ri =

[
u+

k
∑
j=1

n j

]
[

k
∑
j=1

(
σ̂2

j η j

σ̂2
i ηi

)1/2
] −ni (4)

where

ηi = ∑
a′

(
1
2

λ
1/2
ba∗ φ

(
λ

1/2
ba∗ dba

)) a = 1,2 . . .s
a′ : i ∈ a i f i /∈ b
a′ : i /∈ a i f i ∈ b

(5)

See Chingcuanco and Osorio (2013) for the details of the derivation. Note that ηi is a constant that
does not depend on ri. If i is in the best subset b, then it will be canceled out of all the subsets being
compared against it. Hence, the summation for ηi is taken over all subsets a that do not contain i (a′ : i /∈ a).
If i is not part of the best subset b, then simply sum over all subsets that contain i (a′ : i ∈ a). It is worth
mentioning that the allocation rule above is similar to the one obtained by Chick and Inoue (2001), with
the only significant difference being how ηi is defined. Theirs is reproduced below for the case of normal
posteriors to maintain consistency with our formulation

ηi =

(
1
2

λ
1/2
ik∗ φ

(
λ

1/2
ik∗ dik

))
[i] 6= [k]
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ηi =
k−1

∑
j=1

η j [i] = [k].

In our formulation, ηi is a sum of constants across all subsets that contain system i that capture how these
subsets compare to the best subset b, while in the work of Chick and Inoue (2001) ηi pertains to how an
individual system i compares against the current best. In addition, their ηi for the currently best system is
a summation of k terms for the k systems, while we may have different number of terms across all ηi’s
depending on: 1) whether or not a system i belongs to the best subset b; and 2) the size of m. The reason
for this difference is that in our formulation, systems common to any two subsets being compared cancel
out each other.

4.2 VIP-m Analytical Allocation Procedure

We now describe our proposed subset selection procedure. Consider k systems in which the best m are
to be selected. The description below assumes that best is defined as the smallest means. Set an initial
sample size n0, a next-stage budget u and a total budget t. Set ni = 0 for all i.

1. Take n0 replications for each of the k systems and set ni = ni +n0.

2. Compute the current-stage sample means x̄i =(1/ni)
ni

∑
j=1

xi j and sample variances σ̂2
i =

1
(ni−1)

ni

∑
j=1

(xi j−

x̄i)
2 for the k systems.

3. Compute the current-stage order statistics for the k systems x̄[1] ≤ x̄[2] ≤ . . . ≤ x̄[m] ≤ x̄[m+1] ≤
. . . x̄[k−1] ≤ x̄[k].
(a) Take the smallest m systems and set this as the best subset b.
(b) Out of the k systems, generate the remaining s =

(k
m

)
subsets for consideration.

4. While t > 0
(a) Initialize the systems considered for additional replications S← 1, . . . ,k.
(b) Compute the next-stage replications for all systems using equations (3) to (5).
(c) Remove any ri < 0 from S and return to 4b.
(d) Round the ri’s and take an additional ri replications for each system i.
(e) Set ni = ni + ri.
(f) Update sample and order statistics, as well as the best subset b and those subsets in s.
(g) Reduce the total budget t by u.

5. Return the m elements with the smallest means.

Other stopping criteria besides t > 0 (e.g., meeting a certain threshold for the probability of correct selection
or economic opportunity cost) could also be used (Branke et al. 2007).

4.3 VIP-m Numerical Allocation Procedure

Alternatively, it is also possible to minimize the objective function numerically which avoids the large-
sample approximation made in (3). For the numerical allocation procedure, the posterior variances are
approximated as σ̂2

i
ni+ri

similar to OCBA (Chen 1996). The full derivation of the procedure is available
in Chingcuanco and Osorio (2013). When the replication costs are identical and when the integrality
constraints are relaxed, the numerical optimization problem simplifies to

min
r ∑

a6=b
λ̃
−1/2
ba Ψ[λ̃

1/2
ba dba] (6)

s.t.
k

∑
i=1

ri = u
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ri ≥ 0 i = 1,2 . . .k

dba =

(
∑

j∈b, j/∈a
x̄ j− ∑

i∈a, j/∈b
x̄i

)

λ̃
−1
ba∗ =

(
∑

j∈b j/∈a

σ̂2
j

n j + r j
+ ∑

i∈ai/∈b

σ̂2
i

ni + ri

)
.

The numerical allocation procedure is similar to the algorithm presented in Subsection 4.2, except that
steps 4a to 4c are replaced with solving the optimization problem posed above.

5 NUMERICAL EXPERIMENTS

5.1 Description of Procedures Tested and Configurations

This section compares the performance of the proposed subset selection procedures against other subset
selection methods under different testing configurations. The following procedures are evaluated:

1. The proposed analytical allocation rule described in Subsection 4.2.
2. The proposed numerical optimization procedure described in Subsection 4.3.
3. The OCBA-m (Chen et al. 2008) allocation procedure

n1 + r1

σ̂2
1 /δ1

=
n2 + r2

σ̂2
2 /δ2

. . .=
nk + rk

σ̂2
k /δk

where δi = x̄i− c and c is a parameter derived from the order statistics. The code of the OCBA-m
procedure was obtained from its authors for use in the numerical experiments.

4. The uniform allocation rule, i.e., ri = u/k for all i.
5. The proportional to variance allocation rule

n1 + r1

σ̂2
1

=
n2 + r2

σ̂2
2

. . .=
nk + rk

σ̂2
k

.

In all experiments, 6 systems are considered (k = 6), where the best 3 elements (m = 3) are to be identified.
Three different testing configurations are used and described below:

1. Systems have equal variance and are distributed according to N(i,6) i = 1,2 . . .6.
2. Systems have variances that are increasing with their means, where systems are distributed as

N(i, i2) i = 1,2 . . .6.
3. Systems have variances that are decreasing with their means, where systems are distributed as

N(i,(k− i+1)2) i = 1,2 . . .6.

5.2 Results of Numerical Experiments

In comparing the procedures, two metrics are used and are calculated across 20,000 experiments (N =
20,000). The estimated probability of correct selection (PCS) of a procedure is the fraction of time it
correctly identifies the best m-systems across the N experiments. However, the PCS metric treats all incorrect
selections equally and does not capture the magnitudes of the errors. Hence, economic opportunity cost

(EOC) is also used to measure performance and is calculated as EOC =
m
∑
j=1

(w̃b− w̃b∗). When the selected

best is not the true best system (b 6= b∗), the EOC is positive and it is zero otherwise. All tests were run
with very small budgets: t was increased from 24 to 60 and the systems were initially sampled 3 times
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(n0 = 3). The next-stage budget was set equal to the number of systems, i.e., u = k = 6. The results of the
experiments are displayed in Figures 1 to 3 below.

Figure 1 shows that the analytical and numerical VIP-m procedures outperform the other three methods
in the constant variance test. The relative improvements of the two VIP-m procedures improve as the budget
is increased. As shown in the PCS and EOC graphs, OCBA-m has a higher PCS than uniform allocation but
loses some of its advantage for higher budgets when the EOC is measured. When the systems have variances
that increase with the mean (Figure 2), the two VIP-m procedures maintain their advantage over the other
three methods but the improvement of OCBA-m over the uniform and proportional to variance allocations
are diminished. Figure 3 illustrates this as well for the case where systems have decreasing variance. While
the results are preliminary, they show the promise of our proposed subset selection procedure for problems
with few systems and tight computational budgets.

Figure 1: PCS and EOC for Test 1 (constant variance).

Figure 2: PCS and EOC for Test 2 (variance increasing with mean).
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Figure 3: PCS and EOC for Test 3 (variance decreasing with mean).

6 CONCLUSION

We propose a new procedure, VIP-m, that selects the best subset of size m across k simulated systems.
Building on the work of Chick and Inoue (2001), our approach adopts an EVI framework and uses an
expected opportunity cost loss function. We focus on problems with few systems and very small budgets,
and experiments show the advantage of our approach under these conditions. In the tests above, two
consistent trends are observed. First, the VIP-m perform just as well or better compared to the other
methods under all configurations. Note that all tests were limited to very small computational budget,
which means that the advantage of the VIP-m may be diminished when the budgets and initial sample sizes
are increased. Second, numerically solving the VIP-m (equation 6) yields only a very small margin over
its analytic counterpart (equation 4). However, the numerical formulation takes on average about 5 times
longer to solve. Hence, the marginal gain in performance may not outweigh the additional computational
burden required when solving the problem numerically. Finally, at present, the VIP-m formulation is limited
to a small number of systems because the number of subsets s of size m grows exponentially as the number
of systems k increase. However, it is possible to circumvent this problem by employing smarter subset
generation procedures (e.g., ignoring subsets that are clearly inferior).

There are ongoing experiments to further understand the performance of the VIP-m procedure when
various parameters are changed, in particular: the initial sample sizes (n0); the overall computational budget
(t); the number of systems (k); and the next-stage allocation budget (u). Besides this, current efforts are
devoted to applying the proposed technique to urban transportation problems. Specifically, we are designing
how VIP-m could be integrated into the simulation-based optimization framework of Osorio and Bierlaire
(forthcoming) as a step towards developing traffic-responsive control strategies.
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