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ABSTRACT

This paper considers a stochastic system simulation with unknown input distribution parameters and assumes
the availability of a limited amount of historical data for parameter estimation. We investigate how to
account for parameter uncertainty — the uncertainty that is due to the estimation of the input distribution
parameters from historical data of finite length — in a subset selection procedure that identifies the stochastic
system designs whose sample means are within a user-specified distance of the best mean performance
measure. We show that even when the number of simulation replications is large enough for the stochastic
uncertainty to be negligible, the amount of parameter uncertainty in output data imposes a threshold on the
user-specified distance for an effective use of the subset selection procedure for simulation. We demonstrate
the significance of this effect of parameter uncertainty for a multi-item inventory system simulation in the
presence of short demand histories.

1 INTRODUCTION

Two important components of a stochastic simulation are input modeling and output analysis. Input
modeling is the selection of appropriate probability distributions that characterize the stochastic behavior
of the system inputs, while output analysis is the study of the simulation output data to estimate the
distributional properties of the system performance measures. The simulation generally starts with the
estimation of the unknown parameters of the input probability distributions from the historical input data of
finite length. Then, the finite-sample estimates of the parameters are used to drive the simulation as if they
were the true values. Finally, the output data obtained from this simulation are analyzed for predicting,
for instance, the mean performance measure and constructing the confidence interval.

However, when the input distributions and their parameters are unknown and the available historical
input data are limited, there are three main sources of uncertainty to represent in the output analysis:
stochastic uncertainty (i.e., the uncertainty that is due to the dependence of the simulation output on random
input processes) (Helton 1997), model uncertainty (i.e., the uncertainty that is due to the selection of a
single input model from a set of alternative models), and parameter uncertainty (i.e., the uncertainty that
is due to the estimation of the input-model parameters from limited data) (Raftery, Madigan, and Volinsky
1996). Stochastic uncertainty is inherent in every simulation and controlled by the number of simulation
replications. The input model and parameter uncertainties are, on the other hand, often ignored as a result
of driving the simulations with the probability distributions estimated from input data of finite length.
Unfortunately, this practice often leads to inconsistent estimates for the performance measures as well as
inconsistent coverage of the confidence intervals. Assuming known functional forms for all input models
in this paper, we account for the stochastic and parameter uncertainties in the analysis of the simulation
output data. However, we do this with the objective of selecting a subset of system designs whose sample
means are within a user-specified distance of the best mean performance measure.
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Cheng and Holland (1997) are the first to show the dependence of the simulation output on stochastic
and parameter uncertainties using the delta and parametric bootstrap methods. These solution approaches
are followed by the two-point method in Cheng and Holland (1998) as well as an alternative approach
that particularly considers the simulation bias in Cheng and Holland (2004). Barton and Schruben (1993,
2001) and Barton (2007) characterize the parameter uncertainty in the simulation output by using the
non-parametric bootstrap method, while Barton, Nelson, and Xie (2010) illustrate the metamodel-assisted
bootstrapping in dealing with parameter uncertainty in the simulation of queuing systems. Following
a parametric approach, Chick (2001), Zouaoui and Wilson (2003), and Ng and Chick (2006) develop
computationally effective Bayesian models to represent the parameter uncertainty. Similarly, we use a
Bayesian model to account for the parameter uncertainty. Differently, we use this model in a subset
selection procedure when the parameters of the input distributions are unknown and there is only a limited
amount of historical input data for parameter estimation.

A subset selection procedure is a screening device that aims to select a subset of alternative system
designs including the best system with at least a pre-specified probability. Gupta (1965) proposed a single-
stage procedure for this problem that is applicable when the output data from the simulations of the system
designs are independent, balanced, and normally distributed with common (unknown) variance. Nelson,
Swann, Goldsman, and Song (2001) developed a single-stage subset selection procedure that permits unequal
and unknown variances. Wilson (2001) enhanced the lower bound on the probability of correct selection
with a decomposition lemma for the screening-and-selection procedure of Nelson, Swann, Goldsman, and
Song (2001). The screen-to-the-best procedure of Boesel, Nelson, and Kim (2003) extended this procedure
further to allow unequal sample sizes. In the absence of parameter uncertainty, our procedures reduce
to the screen-to-the-best procedure of Boesel, Nelson, and Kim (2003) with an additional error tolerance
parameter.

In a single-stage selection procedure, the number of systems included in the subset is random. In other
words, the subset can include only a single system corresponding to the one with the best mean performance
measure, while it is also possible that the subset includes all the system designs; i.e., no system design with
inferior performance is screened out. To address this issue, Gupta and Santner (1973) devised a restricted
subset selection procedure that allowed the user to specify an upper bound on the subset size. This was
followed by Santner (1976) that proposed a restricted subset selection rule with the goal of including at least
one of a certain number of best system designs in a subset with a pre-specified maximum size. However,
both of these subset selection procedures are only applicable to simulation outputs that are assumed to have
a known common variance. The Gupta-Santner restricted subset selection rule was extended to unknown
variances by Sullivan and Wilson (1989). We refer the reader to Hsu and Panchapakesan (2005) and Chen
(2008, 2010) for more recent studies of restricted subset selection procedures in simulation.

Our goal is to understand the role of parameter uncertainty on the performance of the (unrestricted)
subset selection procedure, especially when the number of simulation replications is large enough to deliver
a single system as the best in the absence of parameter uncertainty.

We organize the remainder of the paper as follows. In Section 2, we present the well-known subset
selection procedure under the assumption of known input parameters, and discuss the challenge in the
implementation of this procedure when only a limited amount of historical input data are available. We
present a Bayesian model to capture parameter uncertainty in Section 3 and introduce the subset selection
procedure accounting for parameter uncertainty in Section 4. We apply this procedure to a multi-item
inventory system simulation in Section 5, and conclude with a summary of findings and a discussion of
several extensions in Section 6.

2 SUBSET SELECTION FOR STOCHASTIC SIMULATION

Section 2.1 presents the subset selection procedure for stochastic simulations with known input parameters.
Section 2.2 discusses the challenge arising from unknown input parameters with a newsvendor example.
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2.1 Subset Selection Formulation: Known Input Parameters

We consider k alternative stochastic system designs with independent and normally distributed simulation
output data. More specifically, we let Xi` represent the `th output from system i and Xi = {Xi`;`= 1,2, . . . ,ni}
denote the output sequence of ni replications from this system. Thus, we assume that Xi`, `= 1,2, . . . ,ni
are independent and identically distributed normal random variables with mean µi := E[Xi`] and variance
σ 2

i := V[Xi`] for i = 1,2, . . . ,k; i.e., Xi` can be considered as the average of a large number of output
variables or a batch mean in a steady-state simulation. We further assume that the processes X1,X2, . . . ,Xk
are mutually independent and are compared based on their true means µi, i = 1,2, . . . ,k. Finally, we let the
best system to be the one with the largest true mean and denote the ordered means by µ[k]≥ µ[k−1]≥ . . .≥ µ[1].

The goal is to obtain a (random) subset I ⊆ {1,2, . . . ,k} of k alternatives such that the probability of
correct selection, P{[k]∈ I|µ[k]−µ[k−1] ≥ δ} is at least 1−α , where 0 < α < 1−1/k and δ > 0 is the error
tolerance; i.e., a user-specified, practically significant difference between the mean performance measures
of the best and second best system designs. Under the assumption of unknown variances σ 2

i , i = 1,2, . . . ,k
and ni simulation replications performed for the ith system design, the decision rule achieving 1−α

probability of correct selection takes the following form for i = 1,2, . . . ,k and all values of j ∈ {1,2, . . . ,k}
that are different from i:

X̄i ≥ X̄ j−

(t2
(1−α)1/(k−1),ni−1

S2
i

ni
+ t2

(1−α)1/(k−1),n j−1

S2
j

n j

)1/2

−δ

+

, (1)

where X̄i := ∑
ni
`=1 Xi`/ni is the sample mean of the simulation output data collected for system i, S2

i :=
∑

ni
`=1(Xi` − X̄i)

2/(ni − 1) is the unbiased sample variance estimator of σ2
i , and t

(1−α)1/(k−1),ni−1 is the

(1−α)1/(k−1) quantile of the Student’s t distribution with ni−1 degrees of freedom. This is the generalization
of Gupta’s (1965) subset selection procedure for known variances to unknown variances and an error tolerance
of δ > 0, as a result of which the resulting subset contains those alternatives whose sample means are within
δ of the best with probability of at least 1−α . When the simulation replications ni, i = 1,2, . . . ,k are large
enough for the stochastic uncertainty (e.g., S2

i /ni for the ith system) to be negligible, the identification of
the best system design reduces to the selection of the system with the largest mean.

2.2 Challenge: Unknown Input Parameters

The assumption of known input parameters rarely holds in practice and the input parameters are often
estimated from very limited amounts of historical data. This is mainly because of the fact that the underlying
input generating processes do not remain constant indefinitely, and, even if a long history of observations
is available, it is common to consider only the most recent observations.

The basic premise of this paper is that the uncertainty around the input parameters estimated from
historical data of finite length might be too large to identify the best system design, even with negligible
stochastic uncertainty in the simulation output data. More specifically, if there is no parameter uncertainty,
then increasing the number of replications diminishes the simulation output variance and reduces the
comparison of different system designs to the comparison of their sample mean performance measures.
However, if the input distribution parameters are unknown and estimated from a historical input data set of
finite length, then the increasing number of simulation replications has no effect on the simulation output
variance due to parameter uncertainty.

We illustrate this situation with a simple inventory example to demonstrate the role of demand parameter
uncertainty on the estimation of the Type-1 service level; i.e., the probability that all customer orders arriving
are completely met from the stock on hand. We consider the simulation of the following repeated newsvendor
setting: (i) Historical demand data dt , t = 1,2, . . . ,m of length m are available and no forecasting process is
in place. (ii) F(·;ϒ) is the demand’s cumulative distribution function (cdf) with unknown (but stationary)
parameter vector ϒ. We assume a normal demand distribution with (unknown) mean µD and (unknown)
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standard deviation σD; thus, ϒ = (µD,σD)
′. (iii) A Bayesian approach is used to obtain an estimate ϒ̃ of ϒ

from the available historical demand data; see Biller, Corlu, and Tayur (2013a) for an example application
of this approach for inventory control. (iv) The inventory target Q is one of the inputs to the simulation. For
the given inventory target Q and historical demand data dt , t = 1,2, . . . ,m, we use simulation to estimate
the Type-1 service level and its 95% confidence interval.

Obviously, the inventory system of interest is not complex enough to warrant the use of simulation for
service-level estimation. However, our objective is to understand the role of demand parameter uncertainty
in the output analysis of a simple inventory simulation. Therefore, we represent the mean simulation output
response function as F(Q;ϒ) in terms of the demand parameter vector ϒ, and build on the distributional
properties of this response function together with maximum a posteriori estimates of the demand parameters
in order to obtain an approximation for the amount of demand parameter uncertainty in the simulation
output variance (Biller, Corlu, and Tayur 2013b):

Corollary 1 In the presence of a historical demand data set of length m, the simulation output variance
due to demand parameter uncertainty, Vϒ[F(Q;ϒ)] is given by

φ
2

(
(Q− γm)(νm +3)1/2

ζm

)(
1

κm
+

(Q− γm)
2

2ζ 2
m

)
,

where φ(·) is the probability density function of the standard normal random variable and γm := (κ0γ0 +
∑

m
t=1 dt)/(κ0 +m), κm := κ0 +m, νm := ν0 +m, and

ζ
2
m := ζ

2
0 +

κ0m
κ0 +m

(
1
m

m

∑
t=1

dt −µ0

)2

+
m

∑
t=1

(
dt −

1
m

m

∑
t=1

dt

)2

are the posterior demand parameters defined in terms of the historical demand data dt , t = 1,2, . . . ,m and
the hyper-parameters γ0, κ0, ν0, and ζ 2

0 of the prior density function.
We refer the reader to Biller, Corlu, and Tayur (2013a) for inferring the values of the hyper-parameters γ0,
κ0, ν0, and ζ 2

0 from expert opinion. In the remainder of the section, we use the above characterization to
understand the effect of demand parameter uncertainty on the Type-1 service-level estimation via stochastic
simulation.

When the historical data set contains 10 observations with a critical fractile of 90% (i.e., m = 10 and
ϕ = 0.90), we find that accounting for demand parameter uncertainty in the simulation leads to a length
of 0.21 for the 95% confidence interval when the number of simulation replications is large enough for
the stochastic uncertainty to be negligible. In other words, the 95% confidence interval for the estimated
Type-1 service level, say 0.78, is obtained as [0.68,0.89]; i.e., [0.78− 0.21/2,0.78+ 0.21/2]. Thus, the
impact of the demand parameter uncertainty on the confidence interval of the mean Type-1 service level
can be quite significant for the limited amounts of historical demand data to the extent that the resulting
confidence interval is too wide for the simulation to guide the inventory manager towards setting any
particular inventory target.

While a way to reduce the confidence-interval length of 0.21 is the collection of more demand data, a
natural question to ask is how fast the additional demand observations reduce the length of the confidence
interval. We achieve a reduction of 14.43% in the confidence-interval length with 5 additional data points
and a reduction of 34.73% with 20 additional data points. Fifty additional data points, on the other hand,
achieve a reduction of 46.60% in the confidence-interval length. That is, we need to increase the number
of observations in the demand data set by at least five times to approximately halve the confidence-interval
length. Thus, the effect of the parameter uncertainty in the simulation output variance disappears very
slowly with the increasing number of observations in the historical input data set, even in a simple setting
like the single-item repeated newsvendor setting. Our goal is to equip the subset selection procedure with
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the ability to compare alternative system designs (e.g., the multi-item inventory system simulations that
do not necessarily satisfy the assumptions of the repeated newsvendor) in the presence of input parameter
uncertainty.

3 QUANTIFICATION OF THE PARAMETER UNCERTAINTY IN THE OUTPUT DATA

An excellent review of the methods of capturing parameter uncertainty in stochastic simulations is available in
Barton (2012). In this section, we only review one of these methods, the asymptotic normality approximation
(Cheng and Holland 1997, Ng and Chick 2006), for the decomposition of the simulation output variance
into terms related to stochastic uncertainty and parameter uncertainty. We refer the reader to Section 6 for a
brief discussion of extending the presentation to an alternative method of capturing parameter uncertainty.
In this paper, however, we use the decomposition resulting from the asymptotic normality approximation
to formulate the subset selection procedure under parameter uncertainty.

We start with denoting the output random variable Xi` of the `th simulation replication of system i with

Xi` = gi(ϒi)+σiZi`,

where gi(ϒi) is the mean simulation response function with the unknown input parameter vector ϒi, σ2
i

is the simulation stochastic variance, and Zi`, ` = 1,2, . . . ,ni are independent and identically distributed
random variables, each with a mean of zero and a standard deviation of one. We assume the availability
of historical input data of length mi, which we denote by di,t , t = 1,2, . . . ,mi for system i. The key to the
asymptotic normality approximation is the convergence of the density function of the parameter vector ϒi
to a multivariate normal density function with a mean of ϒ̃i (i.e., the maximum a posteriori estimate of the
unknown parameter vector ϒi) and a variance-covariance matrix of Σi with the increasing length mi; i.e., as
mi→ ∞, Σ

−1/2
i (ϒi− ϒ̃i)→Nωi(0ωi ,Iωi), where 0ωi denotes the ωi×1 vector of zeros and Iωi denotes the

ωi×ωi identity matrix for i = 1,2, . . . ,k. However, this asymptotic normality approximation only works
under certain regularity conditions (Bernardo and Smith 2000). The satisfaction of these conditions is
verified together with the continuous differentiability of gi(ϒi), the equivalence of λi,max and O(λi,min) with
λi,min and λi,max the smallest and largest eigenvalues of Σi, and the convergence of ϒ̃i to ϒi in probability.
Letting ∆gi(ϒ̃i) represent the 1×ωi vector of gi evaluated at ϒ̃i and utilizing the multivariate delta method
(Hogg, McKean, and Craig 2005), we see that the response function gi(ϒi) is asymptotically normal with
a mean of gi(ϒ̃i) and a variance of

τ
2
i = ∆gi(ϒ̃i)Σi[∆gi(ϒ̃i)]

T ,

which quantifies the amount of input parameter uncertainty in the simulation output data.
We are now ready to decompose the variance of the ith system design into σ 2

i , the simulation stochastic
variance and τ2

i , the simulation output variance due to parameter uncertainty:

V[Xi`] = Vϒi

[
E
[
gi(ϒi)+σiZi`

∣∣∣ϒi

]]
+Eϒi

[
V
[
gi(ϒi)+σiZi`

∣∣∣ϒi

]]
= Vϒi [gi(ϒi)]+Eϒi

[
σ

2
i
]
= τ

2
i +σ

2
i .

Consequently, for i = 1,2, . . . ,k, we obtain the mean performance measure, E[X̄i] as gi(ϒ̃i) and the variance
of the mean performance measure, V[X̄i] as τ2

i +σ2
i /ni. Thus, for the ith system design, the amount of

parameter uncertainty in the variance of the mean performance measure, τ2
i can be reduced by the collection

of additional input data (i.e., by increasing the value of mi), but the increase in the number of replications,
ni has no impact on this portion of the simulation output variance due to parameter uncertainty.

4 SUBSET SELECTION UNDER PARAMETER UNCERTAINTY

Building on the response-surface representation of the simulation output data in Section 3, we redesign
the subset selection procedure of Section 2 under parameter uncertainty. As we do this, it is important to
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distinguish between different sources of uncertainty (i.e., across all the k system designs, the input random
variables and thus the input parameter vectors ϒi, i = 1,2, . . . ,k are different and independent of each
other) and identical sources of uncertainty (i.e., ϒ1 = ϒ2 = · · ·= ϒk with a single distribution function for
the identical input random variables driving the simulation of each system design). We provide a subset
selection procedure for stochastic simulations with different sources of uncertainty in this section, and
discuss the case of identical sources of uncertainty in Section 6.

More specifically, we represent the response function of the simulation output data by Xi` = gi(ϒi)+σiZi`,
`= 1,2, . . . ,ni, i = 1,2, . . . ,k with independent random vectors ϒi, i = 1,2, . . . ,k and independent zero-mean
normal random variables Zi`, ` = 1,2, . . . ,ni, i = 1,2, . . . ,k. Proposition 1 provides the decision rule to
identify a subset of the system designs within δ of the best system design with probability of at least
1−α in the presence of ni, i = 1,2, . . . ,k simulation replications and mi, i = 1,2, . . . ,k observations in the
historical data set. The proof of this proposition can be found in Biller and Corlu (2013):

Proposition 1 The decision rule ensuring the probability of correct selection to be at least 1−α is

X̄i ≥ X̄ j−

(t2
(1−α)1/(k−1),ni−1

(
χ2(ni)

ni
τ

2
i +

S2
i

ni

)
+ t2

(1−α)1/(k−1),n j−1

(
χ2(n j)

n j
τ

2
j +

S2
j

n j

))1/2

−δ

+

for i = 1,2, . . . ,k and all values of j ∈ {1,2, . . . ,k} that are different from i, where χ2(ni) is the chi-squared
random variable with ni degrees of freedom.

If there were no input parameter uncertainty in the system simulations (i.e., τ2
i = 0 for i = 1,2, . . . ,k),

then the decision rule in Proposition 1 would reduce to the subset selection rule (1) in Section 2 and identify
the system designs that are within δ of the best system design with probability of at least 1−α . However,
in the case of a limited amount of demand data with τ2

i ≥ 0, i = 1,2, . . . ,k, it is important for the subset
selection procedure to account for the parameter uncertainty to deliver at least 1−α probability of correct
selection.

For a historical data length of mi, the contribution of τ2
i to the decision rule in Proposition 1 is

proportional to the ratio of χ2(ni) to ni. A natural question to ask is which value is to be chosen for the
ratio χ2(ni)/ni as we implement our decision rule for subset selection. Since χ2(ni)/ni→ 1 as ni→ ∞, a
reasonable choice might be one. We investigated the sensitivity of the subset selection to different quantiles
of the random variable χ2(ni) for the stochastic simulation of the multi-item inventory system in Section
5. We found that the selection of one for χ2(ni)/ni, i = 1,2, . . . ,k works very well for this particular
application. While we expect this result to extend to the simulations of other stochastic systems, further
investigation of this issue would require focus on the specific applications.

Next, we consider the case of increasing the number of simulation replications as a result of which the
simulation output variance due to stochastic uncertainty diminishes to zero:

Corollary 2 As ni → ∞ for i = 1,2, . . . ,k, the identification of the best system design reduces to the
comparison of the sample output means only when δ ≥ z(1−α)1/(k−1)

√
τ2

i + τ2
j for i = 1,2, . . . ,k and all

values of j ∈ {1,2, . . . ,k} that are different from i.
For large enough number of simulation replications in the absence of parameter uncertainty, the

identification of the best system design reduces to the comparison of the mean performance measures.
The take-away from Corollary 2 is that the value of the parameter δ must be at least the maximum of
z(1−α)1/(k−1) (τ2

i + τ2
j )

1/2, i = 1,2, . . . ,k, ∀ j 6= i to apply the subset selection procedure in a similar manner
under input parameter uncertainty. That is, the amount of parameter uncertainty in the simulation output
imposes a threshold on δ when the goal is to identify a system design based on the comparison of the
sample means for sufficiently large number of simulation replications. Obviously, the lower bound on
δ increases with the amount of parameter uncertainty in the simulation output data. While we do not
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address this issue here, the lower bound on δ can also be used to identify the stochastic system designs for
which more data are to be collected for the effective use of the subset selection procedure under parameter
uncertainty. In Section 5, we quantify this lower bound on δ for a multi-item inventory system, and discuss
the effect of parameter uncertainty on this quantification when the goal is to identify the inventory system
with the maximum joint demand fulfillment probability in the presence of limited amounts of historical
demand data.

5 AN APPLICATION TO A MULTI-ITEM INVENTORY SYSTEM SIMULATION

This section illustrates the procedure of the previous section with an application to a multi-item inventory
system simulation. In particular, we consider five different distribution centers, each of which holds two
items, and all of these items and thus their probability distributions, are different from each other. Table 1
tabulates the characteristics of each inventory system in terms of the means and standard deviations of the
item demands, the item base-stock levels, and the maximum joint demand fulfillment probability achievable
under the assumption of known demand parameters. Our goal is to identify the distribution center that
delivers the maximum joint demand fulfillment probability under demand parameter uncertainty. For the
case of known demand parameters, the decision rule (1) with n ≥ 100, α = 0.05, and δ = 0 selects the
first system design as the only element of the resulting subset.

First, we utilize the functional form of the joint demand fulfillment probability and apply the decision
rule in Proposition 1 to investigate the impact of the demand parameter uncertainty on the subset selection.
Table 2 provides the probability of including the (optimal) first system design in the subset, first for the
case in which parameter uncertainty is ignored (see the Case I column) and then for the case in which we
account for the parameter uncertainty (see the Case II column). m represents the (equal) number of historical
demand observations available for each item and n represents the number of simulation replications that
is also equal across all system designs. We conduct each experiment for 1000 macro-replications and set
the value of the ratio χ2(n)/n to one in the decision rule of Proposition 1.

Our results demonstrate the significant effect of the parameter uncertainty on the probability of including
the optimal system design in the subset in the presence of short demand history. When the number of
simulation replications is large enough for the simulation output variance due to stochastic uncertainty to
be negligible (e.g., when n = 5000), we identify the probability of including the optimal system design in
the subset only as 0.519 for a historical data length of 10. This probability increases to 0.851 when the
number of historical demand observations is 100 and 1.000 when the number of available data points is
1000. Accounting for parameter uncertainty, on the other hand, results in higher probability of including
the optimal system in the subset; i.e., we observe this probability to always exceed 0.99 in Table 2.
Nevertheless, the impact of representing the parameter uncertainty diminishes in the presence of more than
100 input data points. For the cases in which m = 500 and m = 1000, probability of including the optimal
system design in the subset is almost one regardless of accounting for the parameter uncertainty. To put
it another way, while the importance of considering parameter uncertainty decreases with the increasing
length of the demand history, the simulation user must be aware of the improved performance of the subset

Table 1: Characteristics of the inventory system designs with different sources of demand uncertainty

System First Item Second Item Base-Stock Levels Fulfillment
Index Mean Std. Dev. Mean Std. Dev. First Item Second Item Probability

1 100.00 25.00 120.00 15.60 131 140 0.80
2 80.00 20.00 110.00 14.30 93 127 0.66
3 130.00 32.50 70.00 9.10 140 85 0.59
4 50.00 12.50 150.00 19.50 62 170 0.71
5 155.00 38.75 85.00 11.10 195 100 0.78
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Table 2: The probability of including the optimal system design in the subset of selection: (i) Case I
ignores the demand parameter uncertainty; (ii) Case II accounts for the demand parameter uncertainty.

Case I Case II
m n = 100 n = 1000 n = 5000 n = 100 n = 1000 n = 5000
10 0.778 0.568 0.519 0.994 0.990 0.993
30 0.937 0.770 0.690 0.993 0.991 0.993
50 0.952 0.857 0.751 0.993 0.997 0.994

100 0.984 0.911 0.851 0.997 0.999 1.000
500 0.997 0.994 0.981 0.995 0.999 1.000
1000 0.998 1.000 1.000 0.995 0.997 1.000

selection procedure as a result of accounting for parameter uncertainty when there is a limited amount of
historical data.

Next, we consider the case of large enough number of simulation replications for which the output
variance due to stochastic uncertainty is negligible. In the absence of parameter uncertainty, the decision
rule (1) reduces to the comparison of the sample means of the performance measures. This coincides
with the selection of the inventory system having the maximum joint demand fulfillment probability in
the experimental setting of this section. As shown by Corollary 2, parameter uncertainty imposes a lower
bound on the value of δ , which would allow us to identify a (best) system design by simply comparing the
simulation mean performance measures of the alternatives. This bound on the parameter δ is tabulated in
Table 3 as a function of the number of historical demand observations available for each item. We observe
that when the length of the demand history is short, the bound on δ can be high; e.g., when we have
only 10 data points, we identify the bound on δ as 0.338. This means that identifying the first system
design as the only element of the subset requires the specification of the error tolerance to be at least
0.338. Considering that this parameter takes values only from the unit interval, which follows from the
definition of a joint demand fulfillment probability, the amount of parameter uncertainty in the simulation
output data hinders the ability of the subset selection procedure to screen out the inferior system designs.
Currently, we are investigating how to use this bound to guide the simulation user towards data collection
for selective system designs to perform effective subset selection. Only when the number of data points
exceeds 100, the bound on δ falls below 0.1.

6 CONCLUSION

A common purpose for the use of simulation in stochastic system design and analysis is to evaluate
alternative decisions. Despite the examples demonstrating the importance of capturing the uncertainty
around the input parameter estimates, accounting for parameter uncertainty in a stochastic simulation is
still not the standard practice. Consequently, there is a lack of statistically-valid procedures that compare
alternative simulated decisions by accounting for parameter uncertainty. However, with the growing use
of stochastic simulation in business system design and analysis, it is imperative to develop data-driven
modeling support for statistical comparison of alternative decisions in the absence of full knowledge about
the systems’ input distribution parameters.

Our paper addresses this limitation of the simulation design and analysis by restricting the focus on
subset selection when the parameters of the input distributions are unknown and there is only a limited
amount of historical data available for parameter estimation. Redesigning the subset selection procedure

Table 3: The threshold on δ as a function of m, the number of observations in the historical demand data.

length of the historical data set
10 30 50 100 500 1000

threshold on δ 0.338 0.207 0.163 0.117 0.053 0.037
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to account for parameter uncertainty, we provide insights into the effect of parameter uncertainty on the
identification of the stochastic system designs whose sample means are within an error tolerance of the best.
We demonstrate that the amount of parameter uncertainty in the simulation output data imposes a threshold
on the error tolerance even if the number of simulation replications is sufficiently large for a negligible
amount of stochastic uncertainty. In other words, the error tolerance is to take the value of this threshold to
effectively identify a subset including the best system design with a probability of correct selection that is at
least of some user-specified value. This threshold can potentially guide the simulation practitioner towards
data collection in selective system designs for effective subset selection under parameter uncertainty. We
illustrate our subset selection procedure with an application to a multi-item inventory simulation in the
presence of limited amounts of historical demand data.

We conclude with a discussion of extensions to our procedure to broaden its use under input uncertainty:
Alternatives to Asymptotic Normality Approximation The motivation behind our focus on the asymptotic
normality approximation in this paper is the functional form it provides for the subset selection procedure
under parameter uncertainty, which leads to an analytical approximation demonstrating the significant
role that parameter uncertainty plays on the identification of the best decision even when the number of
simulation replications approaches infinity. Asymptotic normality approximation is also suitable for the
analysis of inventory system simulations with focus on service-level measurement. However, the asymptotic
normality approximation works only with restrictions on the simulation inputs as well as with a smooth,
well-defined function for the simulation output response. As one of the alternative methods to the asymptotic
normality approximation, Bayesian simulation replication algorithm, on the other hand, does not suffer
from any of these limitations of the asymptotic normality approximation (Zouaoui and Wilson 2003, 2004).
It further provides increasing flexibility in the quantification of the model uncertainty in the simulation
output data. Thus, a follow-up is to build on more flexible methods of capturing parameter uncertainty to
devise subset selection procedures independent of the restrictive conditions under which the asymptotic
normality approximation works.
Identical Sources of Uncertainty Despite our focus on simulation system designs with different sources
of uncertainty in this paper, it is also possible that the system designs are faced with identical sources of
uncertainty. More specifically, we consider the case of ϒi = ϒ for i = 1,2, . . . ,k and thus, the representation
of the response function of the simulation output data by Xi` = gi(ϒ)+σiZi`, `= 1,2, . . . ,ni, i = 1,2, . . . ,k.
What is important to recognize is that ϒ is common to all system designs creates dependence among
their output response functions, and this dependence should be factored into the development of a subset
selection procedure under input parameter uncertainty. Preliminary analysis shows that the effect of such
dependence in the simulation output data might decrease the impact of parameter uncertainty on the lower
bound to δ . A natural question to ask is whether such a reduction would be significant enough to eliminate
the effect of parameter uncertainty from subset selection.
Common Random Numbers When the input random variables are the same for all system designs, another
question to ask is whether the use of Common Random Numbers (CRN) would improve the performance of
the decision rule to identify the subset of system designs within δ of the best system design with probability
at least 1−α . A good resource for insights on using CRN in selection procedures is Chen (2012). It
is shown that it is generally better to use CRN to increase the probability of correct selection for subset
selection when common random numbers are properly synchronized. In our particular case, the use of CRN
to drive the simulation leads to the representation of the response function of the simulation output data by
Xi` = gi(ϒ)+σZ`, `= 1,2, . . . ,n, i = 1,2, . . . ,k with an identical number of simulation replications across
all system designs; i.e., ni = n, i = 1,2, . . . ,k. The derivation of decision rules to capture this situation is
the subject of ongoing work.
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