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ABSTRACT

“Input uncertainty” refers the effect of driving a simulation with input distributions that are based on

real-world data. At WSC 2012, Ankenman and Nelson presented a quick-and-easy experiment to assess the

overall effect of input uncertainty on simulation output. When their method reveals that input uncertainty is

substantial, then the natural follow-up questions are which input distributions contribute the most to input

uncertainty, and from which input processes would it be most beneficial to collect more data? To answer

these questions Ankenman and Nelson proposed a sequence of additional experiments that are in no sense

“quick.” In this paper we provide a follow-up analysis that requires no additional simulation experiments

beyond the overall assessment, and yet provides more information than Ankenman and Nelson. Numerical

illustrations are provided.

1 INTRODUCTION

There is increasing recognition of the error in simulation results due to the input models that drive

the simulation. In this context “input models” are fully specified probability distributions that represent

uncertainty in the system of interest at its most basic level. Realizations from these input models combine

with the simulation logic to produce output performance measures, and it is properties of these outputs

(e.g., expected or mean value) that are used to infer what the real-world system performance would be.

Every simulation language measures the statistical error due to sampling from the input models, typically

via confidence intervals on the performance properties. However, these confidence intervals do not account

for the possible (in fact, likely) misspecification of the input models when they are estimated from real-world

data. As shown in many papers (e.g, Barton 2012; Barton et al. 2013 Cheng and Holland 1998; Cheng

and Holland 2004; Chick 2001; Freimer and Schruben 2002; Zouaoui and Wilson 2003; and Zouaoui and

Wilson 2004) the error due to input uncertainty can overwhelm the simulation sampling error.

Ankenman and Nelson (2012) presented a quick-and-easy bootstrap experiment to assess the overall

effect of input uncertainty relative to simulation sampling variability; we review their method below.

Unfortunately, their method for identifying which input models contribute the most to input uncertainty

requires a sequence of follow-up experiments; in the worst case it requires as many experiments as there

are input models. In this paper we provide a new follow-up analysis that requires no additional simulation

experiments beyond the one to assess the overall effect of input uncertainty. This analysis reveals the relative

contributions of each input model and the sensitivity of performance-estimator variance to increasing the

quantity of real-world data. Using these results, the analyst can decide whether it is worth the time and

expense to collect additional data, and on which input processes to do so.

The paper is organized as follows. Section 2 describes the standard simulation experiment that ignores

input uncertainty, followed by a review of the method for assessing input uncertainty of Ankenman and
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Nelson (2012) in Section 3. Sections 4–6 introduce our new method. An empirical evaluation is provided

in Section 7, and we end with conclusions.

2 THE NOMINAL EXPERIMENT

Suppose that our simulation is driven by L mutually independent input processes characterized by a collection

of marginal distributions F = {F1,F2, . . . ,FL}. To have an example in mind F could be the interarrival-time

and service-time distributions in a queueing simulation. Unknown to us, the true, correct “real-world”

distributions are Fc = {Fc
1 ,Fc

2 , . . . ,Fc
L}. To infer the `th distribution we have a sample of real-world data

X`1,X`2, . . .,X`m`
∼ i.i.d. Fc

`

for ` = 1,2, . . .,L. Let F̂ = {F̂1, F̂2, . . ., F̂L} be the collection of fitted distributions.

Given a collection of input distributions F̂, the simulation generates performance output Yj(F̂) on

replication j = 1,2, . . .,n. Our objective in running the simulation is to estimate E[Y(Fc)] using the sample

mean Ȳ (F̂) = ∑n
j=1 Yj(F̂)/n. Our goal in this paper is to assess the relative impact of F̂̀ on Var

[
Ȳ (F̂)

]
.

The usual assessment of simulation error (e.g., a confidence interval) captures only Var
[
Ȳ (F̂)

∣∣∣ F̂
]
, the

variance of the estimator given the input distributions.

3 A QUICK REVIEW OF THE QUICK ASSESSMENT

To simplify the review, suppose that the simulation has a single input distribution on which we have an

i.i.d. sample of real-world data X1,X2, . . . ,Xm. Ankenman and Nelson (2012) represented the output of the

simulation on replication j, implemented using estimated input distribution F̂, as

Yj(F̂) = E
[
Y (F̂)

∣∣∣ F̂
]
+ε j (1)

where ε1,ε2, . . .,εn are i.i.d. with mean 0 and variance σ2 representing the natural variability from replication

to replication in the simulation. They then provided a confidence interval for γ =
√

nσI/σ , where σ2
I =

Var
{

E
[
Y(F̂)

∣∣∣ F̂

]}
is the variability in the expected value due to the possibility of having observed a

different real-world sample of data from Fc. Thus, γ is a measure of how large input uncertainty is relative

to the standard error of Ȳ (F̂) given F̂. Their CI is formed using bootstrapping:

Algorithm Quick

1. Given real-world data {X1,X2, . . . ,Xm}, do the following:

2. For b from 1 to B

(a) Generate bootstrap sample X?
b1,X?

b2, . . .,X?
bm by sampling m times with replacement from

{X1,X2, . . . ,Xm}.

(b) Fit F̂?
b to X?

b1,X?
b2, . . . ,X?

bm.

(If there is more than one input model, do Steps 2a and 2b for each one.)

(c) Simulate R replications Yj(F̂?
b ), j = 1,2, . . .,R using input model(s) F̂?

b .

3. Report the point estimate and CI for γ =
√

nσI/σ using the formulas in Ankenman and Nelson

(2012).

This experiment is quick and easy to conduct. Ankenman and Nelson (2012) show that the optimal

allocation of N total replications to B bootstraps of R replications each so as to minimize the expected

width of the CI for γ is B ≈ 10 and R = N/B. They also described an additional collection of experiments,

using a version of sequential bifurcation (Wan et al. 2006), to identify which individual input distributions
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are the biggest contributors to input uncertainty. They did this by decomposing the variance as

Var
[
Yj(F̂)

]
= σ2

I +σ2 =
L

∑
`=1

σ2
` +σ2. (2)

In this paper we propose a more robust method to identify the relative contributions of each distribution

using a more rigorously justified decomposition and the same bootstrap data generated to estimate γ .

We will measure relative contribution in two ways: The relative contribution to variance of the `th

input model is
V`(m`)

∑L
i=1 Vi(mi)

where

V`(m`) = Var
{

E
[
Y (Fc

1 ,Fc
2 , . . . ,Fc

`−1, F̂̀ ,Fc
`+1, . . .,Fc

L )
∣∣∣ F̂̀

]}
(3)

is the variance due to input uncertainty if only input distribution ` was estimated. We use the notation

V`(m`) to indicate that the variance contribution of the `th input model depends on the quantity of real-world

data. The second measure is the sample-size sensitivity with respect to input distribution `

∂Var
[
Ȳ (F̂)

]

∂m′
`

∣∣∣∣∣∣
m′

`=m`

.

Clearly the sample size m` must be integer, so treating it as continuous-valued and taking a derivative is a

convenient approximation for the marginal impact of an additional real-world observation from distribution

Fc
` . As we have more samples from F̂̀ the variance contribution of `th input model decreases, hence,

the sample-size sensitivity is always negative; the more negative the sensitivity is, the more sensitive the

variance is to additional real-world samples. We will scale the sensitivities so that the sensitivity of the

input distribution with the most negative sensitivity is −1.

4 A NEW INPUT-UNCERTAINTY MODEL

For any distribution G let the functionals µ(·) and σ2(·) be defined as

µ(G) = EG(X)

σ2(G) = VarG(X)

where X ∼ G. Rather than decomposing the output variance directly, we first model the relationship between

the input models and the simulation output itself as

Yj(F) = β0 +
L

∑
`=1

β`µ(F̀ )+
L

∑
`=1

ν`σ
2(F̀ )+ε j (4)

where β0,β1, . . . ,βL and ν1,ν2, . . . ,νL are constants, and ε1,ε2, . . . are i.i.d. (0,σ2) random variables.

Model (4) approximates the impact of the `th input model through its mean and variance. This is clearly a

first-order approximation, since we include no interactions among the input distributions. However, it does

reflect the situation in which both where the input distribution is centered, and how much it varies around

that center, have an impact. The variability of the simulation output is represented by ε , whose variance

does not depend on F, also clearly an approximation. Ng and Chick (2001, 2006) used a related model that

is a function of the natural parameters of the input distributions; we show the value of parameterizing (4)

using the mean and variance of each distribution below.
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Under Model (4), we can easily identify the input-uncertainty variance contribution (3) because

Var
[
Ȳ (F̂)

]
=

L

∑
`=1

{
β 2

` Var
[
µ(F̂̀ )

]
+ν2

` Var
[
σ2(F̂̀ )

]
+2β`ν`Cov

[
µ(F̂̀ ),σ2(F̂̀ )

]}
+

σ2

n
(5)

=
L

∑
`=1

V`(m`)+
σ2

n

remembering that F̂1, F̂2, . . . , F̂L are independent. This is our variance decomposition.

Cheng and Holland (1998) proposed a method for measuring the impact of input parameter uncertainty

when parametric input distributions and maximum likelihood estimators of those parameters are used.

Their expressions (9)–(10) for the variance of Ȳ reduce to (5) if each distribution has two parameters

(µ(F̀ ),σ2(F̀ ))—in other words the distributions are parameterized by their means and variances. One

way to describe our contribution is that we provide a much easier way to estimate the terms in this model

without requiring parametric input distributions or gradient estimates.

5 ASSESSING THE CONTRIBUTION

To use Expression (5) we need to estimate the model parameters β` and ν` and obtain values for Var
[

µ(F̂̀ )
]
,

Var
[
σ2(F̂̀ )

]
and Cov

[
µ(F̂̀ ),σ2(F̂̀ )

]
to plug into it. To do this we will take a bootstrapping approach: We

pretend that F̂ = Fc, where now F̂ is the collection of empirical cdfs (ecdfs) of the real-world data. Notice

that the nominal experiment to estimate E[Y(Fc)] can be executed with any sort of fitted distributions that

the analyst desires; we use the ecdfs here only to assess input uncertainty.

To keep the distinction clear, let X?
`1,X?

`2, . . . ,X?
`m`

represent an i.i.d. sample from the ecdf of the

real-world data F̂̀ (which we treat as fixed); this yields its own ecdf F̂?
` . If we pretend F̂ = Fc, then

X?
`1,X?

`2, . . .,X?
`m`

corresponds to a real-world sample from the `th distribution, and F̂?
` corresponds to the

fitted distribution that would be used in the simulation. Bootstrapping allows us to simulate the effect of

taking B “real-world” samples, which obviously we cannot do in reality.

The first useful insight from this approach is that the terms Var
[
µ(F̂?

` )
]
, Var

[
σ2(F̂?

` )
]

and

Cov
[

µ(F̂?
` ),σ2(F̂?

` )
]

are directly computable from F̂. They are

Var
[
µ(F̂?

` )
]

=
M2

`

m`

Var
[
σ2(F̂?

` )
]

=
M4

`

m`
− (M2

` )
2(m`−3)

m`(m`−1)
≈ M4

` − (M2
` )2

m`

Cov
[

µ(F̂?
` ),σ2(F̂?

` )
]

=
M3

`

m`

where Mk
` is kth central moment of F̂̀ : Mk

` = m`
−1 ∑

m`
i=1(X`i− X̄`)

k. This is one of the primary advantages of

using the ecdfs and formulating Model (4) as a function of the mean and variance of each input distribution.

The second useful insight is that we can fit Model (4) using the data from Ankenman and Nelson’s

overall assessment reviewed in Section 3. That is, we fit (4) via least-squares regression using the data

Yj(F̂?
b),

{
µ(F̂?

`b),σ2(F̂?
`b), ` = 1,2, . . .,L

}

for b = 1,2, . . .,B bootstraps from F̂ and j = 1,2, . . .,R replications of the simulation per bootstrap.
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Therefore, our estimate of the variance contribution from the `th input model is

V̂`(m`) = β̂ 2
` Var

[
µ(F̂?

` )
]
+ ν̂2

` Var
[
σ2(F̂?

` )
]
+2β̂`ν̂`Cov

[
µ(F̂?

` ),σ2(F̂?
` )

]
(6)

which is easily differentiated with respect to m` to obtain sensitivities. This also provides an alternative to

Ankenman and Nelson’s estimator γ̂ of γ =
√

nσI/σ : γ̃ =
√

nσ̃I/σ̃ where

σ̃2
I =

L

∑
`=1

V̂`(m`)

and σ̃2 is the residual variance from fitting the regression Model (4).

6 EXPERIMENT DESIGN

There are three experiment design questions that need to be addressed:

1. Our design points for fitting (4) are F̂?
1, F̂?

2, . . . , F̂?
B, which are randomly generated instead of being

“designed.” Why not used a designed experiment? There are at least two reasons:

(a) In the spirit of a “quick” assessment, random sampling allows us to use the results for estimating√
nσI/σ to also estimate V`.

(b) The design points F̂?
1, F̂?

2, . . . , F̂?
B will naturally be clustered in that part of the distribution space

that we need to model well: the most likely input distribution deviations from F̂. This space

is not one that we could know a priori. We do not expect, nor need, Model (4) to provide a

good global fit; we just need it to be locally correct near F̂.

2. The bootstrap design points F̂?
1, F̂?

2, . . ., F̂?
B must be sampled independently from F̂, but should

common random numbers (CRN) be assigned to the simulations conducted at each F̂?
b? Kleijnen

(1988) and others have shown that in least-squares regression CRN tends to reduce the variance of

the slope-parameter estimators, which are β̂`, ν̂`, ` = 1,2, . . .,L in Model (4). Since the variance

of V̂` is an increasing function of the variances of β̂` and ν̂`, it seems clear that using CRN is

desirable.

3. Given a budget of N simulation replications, how should it be divided between bootstrap samples

(B) and simulation replications per bootstrap (R) so that RB = N? Ankenman and Nelson (2012)

showed that if N is not too small, then B ≈ 10 is optimal in terms of minimizing the expected width

of the CI for
√

nσI/σ . Is this still a good design choice if the goal is to estimate V` as well? We

address this question below.

For the purpose of analyzing design question 3, we simplify Model (4) to only include the “mean

effects” and no common random numbers:

Yj(F̂) = β0 +
L

∑
`=1

β`µ(F̂̀ )+ε j. (7)

If we assume that both µ(F̂̀ ) and ε j are normally distributed—which is plausible since µ(F̂̀ ) is a sample

mean when F̂̀ is the ecdf—and force RB = N, then we can show that

Var
[
β̂`

]
=

1

N

(
B

B−L−2

)
σ2

Var
[

µ(F̂̀ )
] . (8)

If we extend this in the natural way to include the “variance effects” as in Model (4), then the L term in the

denominator of (8) becomes 2L, reflecting the incorporation of both mean and variance terms for each input
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model. This implies that B > 2L+2 is the minimum number of bootstraps required, and (B = N,R = 1) is

optimal in the sense of minimizing the variance of β̂` and ν̂`, in turn minimizing the variance of V̂`. This

differs from the recommendation of Ankenman and Nelson (2012) that has B small and R large.

How do we balance these two competing objectives? Figure 1 shows one way to view this problem.

We refer to the term B/(B−2L−2) of (8) as the “contribution precision factor” on this graph, since it

determines how precise the estimation of V` is. The smaller this factor, the more precise the estimation of

V`, and it converges to 1 as B → ∞. As Ankenman and Nelson (2012) pointed out, the expected length of

the 95% confidence interval for the uncertainty ratio σ2
I /σ2 is minimized at B = 11. Also plotted is the

relative increase from this minimum value of the expected length of the 95% CI for σ2
I /σ2. The plot is

for the specific case when there are L = 5 input models and N = 10,000 replications. Notice that B = 11

is not feasible since we need at least B = 13 to satisfy B > 2×5+2.

We observe that the contribution precision factor rapidly converges to its minimum as B increases,

whereas the expected length of the 95% CI for the uncertainty ratio increases as B increases in the feasible

range of B. Hence, the experiment design involves a trade-off between precise estimation of the uncertainty

ratio and that of the individual input model contributions. By using Figure 1 we can decide what B and

R values to use depending on what is most important. The choice we made was to allow the expected CI

length to increase by 50% relative to its minimum. In Figure 1 this corresponds to assigning B = 50 and

R = 200, which implies a 32% increase in the contribution precision factor from its minimum.

7 EMPIRICAL RESULTS

This section summarizes an empirical study of the proposed method and also an illustration on a realistic

problem.

We first evaluate the method of Section 5 using a well-known example, a stochastic activity network

(SAN); see Figure 2. The goal is to estimate the mean time to complete the network. We defined a set

of correct, real-world input distributions for the activity times Fc = {Fc
1 ,Fc

2 , . . . ,Fc
5 } and then generated

m` samples from each Fc
` , which we treat as the “real-world” data. Experiments under different settings

of sample size and mean and variance of the activity-time distributions were conducted and the variance

contribution and sensitivity of each was estimated. To evaluate our method, we precisely estimated the

true contributions of the input models from side experiments. These side experiments exploit the fact that

the true, correct real-world distributions are known, which is obviously not the case in practice.
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Figure 1: The trade-off between contribution precision factor and the expected width of the 95% CI for

the uncertainty ratio as a function of number of bootstraps B when L = 5 input models and N = 10,000

replications.
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Figure 2: A small stochastic activity network.

We then introduce a more realistic example of simulating a remote order taking system to illustrate

the practical application of our method.

7.1 SAN

For each activity time X` we have a correct real-world distribution Fc
` which we pretend is unknown. The

total time to finish the project is Y = max{X1 +X4,X1 +X3 +X5,X2 +X5} and the purpose of the simulation

is to estimate the expected value of Y . In the remainder of the section we describe empirical results

for contribution and sensitivity of the input distributions under two experimental settings: (i) different

real-world sample sizes, and (ii) different means and variances of the activities. We also compare two

different designs for the follow-up experiment, (B = 50,R = 200) and (B = 10,000,R = 1). The latter

design does not permit us to calculate the point estimate and confidence interval for γ =
√

nσI/σ suggested

by Ankenman and Nelson (2012) since R = 1. Instead, we report the point estimate γ̃ based on Model (4).

To evaluate how well our method measures the input-uncertainty variance contribution of each input

model, a series of side experiments was conducted for each experimental setting:

Side Experiment

1. Given the true distributions Fc
1 ,Fc

2 . . . ,Fc
5 for activity times X1,X2, . . . ,X5, do the following:

2. For b from 1 to B

(a) Generate m1 samples from Fc
1 and construct ecdf F̂1 from the samples.

(b) Run R replications Yj(F̂1,Fc
2 , . . . ,Fc

5 ), j = 1,2, . . .,R using the ecdf F̂1 and true distributions

Fc
2 ,Fc

3 . . .,Fc
5 as the input models.

(c) Calculate sample mean Ȳb(F̂1,Fc
2 , . . .,Fc

5 ) from the replications.

3. Calculate the sample variance of Ȳb(F̂1,Fc
2 , . . . ,Fc

5 ),b = 1,2, . . .,B

1

B−1

B

∑
b=1

{
Ȳb(F̂1,Fc

2 , . . . ,Fc
5 )− ¯̄Y (F̂1,Fc

2 , . . . ,Fc
5 )

}2

(9)
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to estimate the true input uncertainty contribution V1 of X1, where

¯̄Y (F̂1,Fc
2 , . . .,Fc

5 ) =
1

B

B

∑
b=1

Ȳb(F̂1,Fc
2 , . . . ,Fc

5 ).

4. Conduct Steps 2–3 for each distribution Fc
2 ,Fc

3 , . . . ,Fc
5 in turn.

A key point is that we make R large enough that

Var
[
Ȳb(F̂1,Fc

2 , . . . ,Fc
5 )

∣∣∣F̂1

]
≈ 0.

This implies that for each F̂1, Ȳb(F̂1,Fc
2 , . . .,Fc

5 ) ≈ E
[
Ȳb(F̂1,Fc

2 , . . . ,Fc
5 )

∣∣∣ F̂1

]
and we can treat the sample

variance (9) as an estimate of the variance due to different real-world samples; i.e., input uncertainty only.

We used (B = 100,R = 5,000) which gives relative errors of less than 2%. Notice that B and R in these

side experiments have nothing to do with the choices we make for uncertainty analysis.

7.1.1 Exponential SAN

In this experiment setting all activity times have exponential real-world distributions with mean 1. Under

this setting, the second path, X1 + X3 + X5, is likely to be the longest. To see the effect of different

real-world sample sizes on V̂`, we conducted simulations for two cases: (a) m` = 100, ` = 1,2, . . .,5, and

(b) m` = 100, ` = 1,2,4,5, and m3 = 50.

Figure 3 displays the simulation results when (B = 50,R = 200) averaged over 1,000 macro replications

to provide a relative error of less than 3%. Plotted are the relative contributions V̂`(m`)/∑L
i=1 V̂i(mi), and

the sensitivities scaled so that the greatest sensitivity has value −1. In case (a), X1 and X5 have the largest

contributions and are more sensitive to additional real-world data since these two activity times are involved

in two out of three paths on the network. On the other hand, X2 and X4 have the smallest contributions

and sensitivities since they are only involved in one path that is likely to be dominated by X1 + X3 + X5.

The higher contribution/sensitivity of X3 compared to X2 and X4 can be explained by the same reasoning.

This trend changes slightly when m3 decreases to 50 in case (b): since there are fewer real-world samples

for X3 in this case, X3 shows the largest contribution and sensitivity.

Table 1 provides estimates of the uncertainty ratio γ for case (a) under two different designs for the

follow-up experiment: (B = 50,R = 200) and (B = 10,000,R = 1). In the (B = 50,R = 200) case, γ̃ is

contribution

sensitivity

X1 X2 X3 X4 X5

−
1

−
0

.5
0

0
.1

5
0

.3

(a) m` = 100,` = 1,2, . . . ,5.

contribution

sensitivity

X1 X2 X3 X4 X5

−
1

−
0

.5
0

0
.2

0
.4

(b) m` = 100,` = 1,2,4,5, and m3 = 50.

Figure 3: Scaled contributions (positive) and sensitivities (negative) of input models for the exponential

SAN.
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Table 1: Comparison of simulation results for case (a) when n = 10,000 under two experimental designs

using 100 macro replications. “AN” refers to Ankenman and Nelson’s (2012) γ̂ and corresponding CI =

[LCL, UCL], while “SN” refers to our estimator γ̃.

(B,R) Contribution Uncertainty Ratio

(50,200) X1 X2 X3 X4 X5 AN γ̂ LCL UCL SN γ̃
average 0.00901 0.00334 0.00739 0.00276 0.00855 9.778 7.146 13.298 10.392

stderr 0.00045 0.00030 0.00043 0.00021 0.00047 0.145 0.138 0.167 0.115

(10,000,1)

average 0.00859 0.00290 0.00644 0.00312 0.00901 - - - 10.243

stderr 0.00036 0.00022 0.00039 0.00023 0.00041 - - - 0.092

contained in the confidence interval of Ankenman and Nelson (2012). Notice that the standard errors of

the contribution and sensitivity estimates are not always reduced by using the (B = 10,000,R = 1) design.

This shows that using the optimal choice (B = 10,000,R = 1) does not have much effect on the precision,

and under this design we cannot provide the confidence interval for the uncertainty ratio. Therefore, we

conclude that the gain from setting B = N is not significant enough to give up providing the confidence

interval for γ in this particular example.

Figure 4 compares the estimated input contributions from our method and the side experiments for cases

(a) and (b). Notice that the contributions are not scaled in this graph. Clearly the estimated contributions

from the two approaches are close, which implies Model (4) successfully represents the exponential SAN.

7.1.2 Gamma SAN

In this section, Gamma distributions are the true distributions for the activity times. Two sets of experiments

were conducted to investigate the effect of different mean and variance values on the contribution of X3.

In the first set of experiments, we fixed the variance of all activity times to 0.5 and set X1,X2,X4,X5 to

have mean 1 and X3 to have mean 10. In the second set, the means of all activities are fixed to 10, but

X1,X2,X4,X5 have variance 1 while X3 has variance 5. In all cases m` = 100 “real-world” samples were

collected for each activity time. For the follow-up experiment we used (B = 50,R = 200) and the results

are averaged over 1,000 macroreplications.

Figure 5 shows the experiment results. Observe that in the first set the trend in contribution/sensitivity

is not much different from case (a) in Section 7.1.1. This might not seem intuitive since one might think
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Figure 4: Comparison of estimated input model contributions and the true contributions for the exponential

SAN.
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Figure 5: Scaled contributions (positive) and sensitivities (negative) of input models for the gamma SAN.

that the large mean value of X3 would increase its contribution. However, a large mean for X3 only makes

the path X1 +X3 +X5 more likely to be dominant and, therefore, the input uncertainty due to X1 and X5 still

has a significant impact on output variability since they are also included in other paths. In the second set,

X3 has the largest contribution and is more sensitive to additional data collection, which can be explained

by its relatively large variance.

Figure 6 presents the estimated input contributions from the side experiments and compares them to

the results from our method. As in the exponential SAN case in Section 7.1.1, the two estimated values

are close in both cases (a) and (b).

7.2 Illustration: Remote Order-Taking System

In this section we apply our method to a more realistic simulation. The problem, which is taken from

Nelson (2013), is to evaluate replacing the current drive-through order windows for a chain of fast-food

restaurants with the equivalent of a call center. The current store design has two fully staffed windows, one

for order taking and another for food delivery. The proposal is to replace the first window with a remote

order-taking service in which agents communicate with customers through the electronic order board and

then relay the order to the store. The fast-food chain has high standards for customer service and requires

that the average waiting time for a customer to be greeted by an agent once they reach the order board be
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Figure 6: Comparison of estimated input model contributions and the true contributions for the gamma

SAN.
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Table 2: Scaled contribution and sensitivity results for the remote order-taking system.

` Input data m` Average Contribution Sensitivity

1 Interarrival 1 351 307.0 0.01558 -0.00717

2 Interarrival 2 153 701.3 0.02079 -0.02195

3 Interarrival 3 421 256.1 0.01139 -0.00437

4 Interarrival 4 261 413.0 0.00691 -0.00428

5 Interarrival 5 342 308.9 0.00262 -0.00124

6 Interarrival 6 354 304.4 0.00868 -0.00396

7 Interarrival 7 472 228.5 0.00209 -0.00071

8 Order taking 150 84.8 0.92882 -1.00000

9 Moving 70 5.4 0.00312 -0.00719

less than 3 seconds. The proof-of-concept simulation uses data from 7 stores to investigate whether the

call center can meet this standard with substantially fewer agents than the number of stores served.

There are 9 sets of real-world data: customer interarrival times from the 7 stores; order-taking times;

and the time for a car to pull away from the order board and the next one in line (if there is one) to pull

up to the order board. Interarrival times were collected during the busiest 3-hour period over 10 days. The

numbers of observations of order-taking time and car moving time available were 150 and 70, respectively.

To evaluate busy-period performance, steady-state simulations were conducted using a replication-deletion

experiment design employing n = 1,000 replications.

To analyze input uncertainty and the contribution from each data source, we generated B = 50 bootstrap

samples from each of the L = 9 real-world data sets and ran R = 200 replications for each, using the ecdfs

from the bootstrap samples as the driving input distributions. Below we report results from the simulation

with 4 agents, which seemed to be adequate to achieve the desired standard.

Using the method of Ankenman and Nelson (2012) a 95% CI for γ =
√

nσI/σ is [15.5,19.4]. Thus, input

uncertainty is significantly larger than simulation uncertainty, so we are interested in which distributions

are the largest contributors.

Table 2 displays the estimated scaled contribution and sensitivity of each input model, as well as its

real-world sample size and its sample mean (in seconds). Clearly the input model for order-taking time

makes the largest contribution to input uncertainty, and it is the most sensitive to collecting additional data.

This makes sense: every customer requires an order-taking time, and the real-world sample size for this

input is relatively small. If it is possible to collect additional input data, this is the distribution for which

we would achieve the most benefit.

Notice that the rank order of contribution and sensitivity do not always coincide. For instance, the

interarrival time distribution of the 4th store has a larger relative contribution, but smaller sensitivity, than the

moving-time distribution. This can be explained by the real-world sample sizes: Although the contribution

of the moving-time input model is smaller, the sample size is also smaller; hence, one additional real-world

sample of moving time can reduce the variability in the simulation result by a relatively large amount.

8 CONCLUSIONS

In this paper we presented a method to quantify the overall impact of input-model uncertainty on simulation-

based performance estimates, to identify which input models make the largest contribution to this uncertainty,

and to identify the input data sources from which additional observations would lead to the greatest reduction

in input uncertainty. Our approach builds on Ankenman and Nelson (2012) by obtaining the contribution

and sensitivity results from the same experiment that they used to measure overall input uncertainty.

Open questions remain about the design of the follow-up experiment, and in particular the total budget

N that should be expended on this experiment to obtain reliable results.
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