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ABSTRACT 

Metamodeling of large-scale simulations consisting of a large number of input parameters can be very 

challenging.  Neural Networks have shown great promise in fitting these large-scale simulations even 

without performing factor screening.  However, factor screening  is an effective method for logically re-

ducing the dimensionality of an input space and thus enabling more feasible metamodel calibration .  Ap-

plying factor screening methods before calibrating Neural Network metamodels or any metamodel can 

have both positive and negative effects.  The critical assumption for factor screening under investigation 

involves the prevalence of two-way interactions that contain a variable without a significant main effect 

by itself.  In a simulation with a large parameter space, the prevalence of two-way interactions and their 

contribution to the total variability in the model output is far from transparent.  Important questions there-

fore arise regarding factor screening and Neural Network metamodels: (a) is this a process worth doing 

with today’s more powerful computing processors, which provide a larger library of runs to do metamod-

eling; and (b), does erroneously screening these buried interaction terms critically impact the level of 

metamodel fidelity that one can achieve.  In this paper we examine these questions through the construc-

tion of a case study on a large-scale simulation. This study projects regional homelessness levels per 

county of interest based on a large array of budget decisions and resource allocations that expand out to 

hundreds of input parameters. 

 

1 INTRODUCTION 

Analysts routinely use simulation modeling to evaluate real-world systems.  As the complexity of real-

world systems increases, the modeling techniques employed to meaningfully capture their detailed char-

acteristics also increase in complexity and time of execution.  When model-execution times impede on 

decision-making timeframes, analysts often make a key tradeoff involving precision versus timeliness by 

resorting to simulation metamodels, or models of simulation models, to expedite analysis.   Metamodels 

are best understood as mathematical functions with the relationship  )()( xx gfy , where y and 

x  are  scalar output and vector valued inputs to the simulation model, respectively.  Moreover, consider 

)(xf  to be an implicit function representing the mapping between input parameters of the simulation 

model and the output performance measures of the simulation.   The simulation metamodel )(xg  is an 

approximation of )(xf  with some error term .     
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There is good body of literature on the topic of simulation metamodeling; see Barton and Meckesheimer 

(2006) for a recent review of techniques. A few key techniques are highlighted here, which have all been 

applied towards simulation metamodeling: 
 

 

(a) Response Surface techniques (Myers 1976; Box and Draper 1987; Myers et al. 2009),  

(b) Splines (Eubank 1988; Deboor 1978; Myers et al. 1996), 

(c) Radial Basis Functions (Shin et al. 2002; Dyn et al. 1986; Meghabghab 2001; Hussain et al. 

2002), 

(d) Stochastic Kriging (Sacks et al. 1989; Kleijnen 2000; Staum 2009; Kleijnen 2009; Ankenman et 

al. 2010), 

(e) Neural Networks (Lippman 1987; Fonseca 2003; Al-Hindi 2004), Inductive Learning (Michalski 

1983), and 

(f) Genetic Programming (Koza 1992). 

 

 In the metamodeling literature, a metamodeling technique is often defined by one attribute, which can 

cause confusion. Radial basis functions serve as an example of this.  Radial basis functions are a type of 

basis function that are used within a metamodel technique.  However, they do not fully define the meta-

model technique itself or fully classify it into a unique family as the basis functions can be expanded or 

mapped together in a variety of ways.  A comprehensive definition of a metamodel technique must entail 

several factors including the form of the underlying basis functions, the structure for which they are inte-

grated together, and  the fitting strategy for achieving the metamodel with the smallest error. 

 When addressing large scale simulations, basis functions of complex shapes are needed along with a 

complex structure for piecing together these basis functions.  The most intuitive method that provides this 

feature is the metamodel family of Neural Networks.  In our past research on applying simulation meta-

modeling for cases with a high input parameter space, we have observed Neural Networks to yield very 

high fidelity  and a superior goodness-of-fit to simulations over other metamodel families (Rosen et al. 

2013).   The flexibility of Neural Networks to repeatedly fit under a variety of network structures makes 

them suitable to handle a large-scale simulation consisting of many input parameters.  Since  a large  pa-

rameter space is a realistic representation of a typical real-world scenario, research in metamodeling 

needs to encompass  this type of problem. Such efforts with real-world scenarios will be complementary 

to the study of new methods that often deal with very limited number of input parameters.   

 The focus of this paper is on the application of metamodeling of a large-scale simulation.  More spe-

cifically, we consider the problem of factor screening for Neural Network metamodels and examine the 

validity of some of the inherent assumptions. The objective is to gain insight into the consequences in 

metamodel fitting capability when the assumptions may not be valid.   A case study is performed to study  

metamodel fitting of large scale simulations with and without factor screening methods.  The simulation 

model used in this case study evaluates regional homelessness for a given area of interest.   

 Section 2 provides more background on Neural Network metamodeling and also provides background 

on techniques for factor screening in simulation experiments.  A description of the scenario / simulation 

used for the case study is given in Section 3.   Section 4 presents a case study involving the fitting of a 

Neural Network metamodel with and without factor screening.  Conclusions and summary of the main re-

sults are presented in Section 5. 

2 NEURAL NETWORK METAMODELS AND FACTOR SCREENING 

The two topics of Neural Networks and factor screening have not been intertwined much before in the lit-

erature.  In this section an overview of Neural Network metamodels and the topic of factor screening is 

provided.  Factor screening has the inherent capability to save the amount of simulation runs required for 

fitting a Neural Network, especially for a large number of input parameters. The key research question 

needing further investigation is when to do factor screening with Neural Network metamodels and wheth-
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er or not the screening methods hinder a Neural Network fitting ability.   More attention needs to be given 

to this issue by the simulation research community since Neural Networks are such a powerful method for 

doing simulation metamodeling.  

2.1 Neural Network Metamodeling for Large Scale Simulations 

We have applied Neural Networks for the metamodeling of large scale simulations in several case studies; 

one of the recent applications pertain to the configuration of a standoff detection system (Rosen et al. 

2013).  In these cases Neural Networks achieved the best goodness of fit over all of the other metamodel 

families tested, which included Response Surface methods, Stochastic Kriging, and Genetic Algorithms.  

We have also successfully applied Neural Networks to a complex metamodeling problem involving time 

series inputs and outputs (Rosen el al. 2012). 

 Neural Networks  provide a complex integration of basis functions, embedded in neurons, that is em-

blematic of the structure of neurons in the human brain (Al-Hindi 2004, Fonseca 2003). The basis func-

tions in Neural Networks are connected through complex mappings coupled with varying weight coeffi-

cients;  Figure 1 shows a generic illustration. 

 

 
 

Figure 1: Neural network for simulation metamodeling with multiple layers.  
 

  

 Figure 1 presents a graph of a multiple layer, feed-forward Neural Network structure for a vector of 

simulation inputs x and performance measure of interest y . In this network structure, m is the number of 

hidden nodes and  and  represent the connection weights of the network.  The input layer is the col-

umn of nodes on the left-hand side of the network.  Each node pertains to a single input parameter of the 

simulation. The hidden layer is contained in the middle column of nodes, which constitute a transfor-

mation from some subset of the input nodes in the network through weight terms 
,i j with the first sub-

script referring to the hidden layer of the Neural Network and the second subscript referring to the node 

within the hidden layer.   

 Within each node in the hidden layer is a threshold transfer function ( , , )k kp x   . It is common 

(Lippman 1987) to apply a sigmoid form here controlled by a threshold  , but there are many other basis 

functions  to consider, such as radial basis functions, or more generic polynomial functions.  The network 

then maps each of the function outputs 
kp  to a single-valued numerical output y , which is targeting the 
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value of the simulation model under the input parameters x .   Training or calibrating the network in-

volves the use of sampled simulation runs and solving for the coefficients  and that minimize the er-

ror between the simulation response and the Neural Network response.    

2.2 Factor Screening 

Since Bettonvil (1990) factor screening has gained more recognition as an important, preliminary step in 

performing simulation-based analysis, metamodeling, or optimization.  The screening problem is more 

relevant for simulation experiments than real-word experiments as it is easier to control combinations of 

parameters in a simulated setting.   The common traditional approaches for screening experimental pa-

rameters involve Factorial and Fractional Factorial designs (Montgomery 2008) and Group Screening de-

signs (Watson 1961), which involve dividing parameters into groups and then performing a fractional fac-

torial experiment with the parameters in that group.   Screening methods applied to simulation models 

adapt these traditional approaches.  Methods include Latin hypercube sampling for first-order metamodel 

generation, Sequential Bifurcation, Controlled Sequential Bifurcation, and Cheng’s method and its many 

variations.   

 Latin Hypercube sampling (Mckay et al. 1979) can be used in factor screening by building a linear 

first-order metamodel from the sample simulation responses of the generated Latin Hypercube design.  

Based on the level of the estimated coefficients, factors can be recognized as important or unimportant.  

The advantage of the Latin Hypercube sampling approach is that it can be performed through the execu-

tion of a single batch of runs.  For simulations requiring complicated scenario configurations or embedded 

cluster computing environments, this can be one of the primary reasons for choosing this approach.   The 

critical assumption for Latin Hypercube designs is that the design matrix has orthogonal columns; this en-

ables uncorrelated estimates of the metamodel first order polynomial coefficients.  See Sanchez (2005) 

for Latin Hypercube design tables. 

Sequential Bifurcation (Bettonvil 1996) is a group screening method, and this is known as a supersat-

urated experimental design in that the total number of experimental design points used is less than then 

total number of factors being estimated.  Sequential Bifucation (SB) is well-known for its efficiency espe-

cially when comparing to first-order polynomial metamodel generation via Latin Hypercube sampling.  

The basic idea is to start with a single group containing all to be screened factors.  The analyst tests for a 

significant effect on the response due to variation of each factor in the group.  If there is a significant ef-

fect of the group, the group is then split into two subgroups.  Then the significant effect of the two sub-

groups is tested and if the group is found to be significant, it is split into two further subgroups.  If a sub-

group is found to not have a significant effect on the response, those factors contained in the subgroup are 

then found to be insignificant and can be screened out for consideration when doing metamodel calibra-

tion.  This iterative process of splitting of subgroups continues until all factors are classified as significant 

or insignificant.  There are some assumptions that can be questioned when applying Sequential Bifurca-

tion.  One of these assumptions is that a first-order polynomial is an approximation with negligible error.  

Through a fold-over design to achieve resolution IV design (main effects not confounded with two way 

interactions) adaption to Sequential Bifurcation, Bettonvil relaxed this assumption and included a poly-

nomial with interaction effects.  However, there still exists an assumption that states that if a factor is un-

important, then every interaction effect containing that factor is marked as unimportant as well. This is 

questionable, and it is this assumption that we will focus on during the study within this paper. 

 Controlled Sequential Bifurcation (Wan et al. 2003) is an extension of Sequential Bifurcation and it 

accounts for the uncertainty present with this method while applying it to a stochastic situation. This kind 

of situation is commonly faced in the simulation metamodeling problem.  The Controlled Sequential Bi-

furcation incorporates a two-phase hypothesis testing approach in the Sequential Bifurcation procedure in 

order to measure the Type I error involved in classifying unimportant factors as important as well as de-

termining the power involved for determining critical factors.  Cheng’s method (1997) is another exten-

sion of Sequential Bifurcation to address the stochastic nature of simulation models.  Similar assumptions 
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involving the adequacy of a first-order polynomial are still present in Controlled Sequential Bifurcation 

and Cheng’s method. 

 The assumptions in these factor screening methods can be drastic and yield significant errors because 

the analyst can unknowingly remove strong two-way interaction effects; other higher-order interactions 

are not discussed here.  In large-scale simulations with very high-dimensional input parameter spaces, 

these interactions may be more prevalent than a subject matter expert is initially led to believe.  So, the 

question investigated by this case study is expected to shed light on performing factor screening.  There is 

a tradeoff in the benefits of  screening.  Screening can reduce the total number of simulation runs for met-

amodel fitting at the potential cost of a loss in fidelity.   

3 LARGE-SCALE TESTING SIMULATION 

We describe here  a large-scale simulation consisting of 191 input parameters.  Even with subject matter 

expert examination, it is very difficult to screen the role of any of these parameters out of the model.  The 

large input space and unknown number of significant factors and interactions makes it an ideal test-bed 

for this case study on factor screening for Neural Network metamodels.  We briefly describe the modeling 

of the scenario in Section 3.1, and in Section 3.2 we provide an overview of the input parameters that 

were involved in the model. 

3.1 Description of the Large Scale Simulation 

The simulation model under examination  evaluates regional homelessness for a given area of interest.  

Homelessness is a very complicated state that involves environmental factors, physical and mental health 

conditions, personal and public support chains, econometric impacts, and above all, homelessness support 

program capabilities.  The objective function related to this model determines how to minimize the 

amount of people residing in the street.  This naturally involves the right combination of resources and 

capacities to shelter people, to assist people back into contributing to the community, and to find perma-

nent housing.   This simulation model assists decision makers in estimating the impact of budget deci-

sions for programs and for resource levels on homelessness levels in order to find the best tradeoff be-

tween the two. 

 Due to model size and complexity, it takes a significant amount of time to perform a batch of runs, 

with a single replication taking 15 minutes.  More concerning is the setup time for the model.  It takes the 

analyst a considerable amount of time to setup the model to evaluate a single scenario.  If harnessed suc-

cessfully, metamodeling not only alleviates lengthy run times of the simulation model, but it also allows 

for easier scenario configuration; this is another benefit of metamodeling that is often overlooked, espe-

cially in the context of very high-dimensional input parameters. 

3.2 Characterization of Model Inputs 

As stated earlier, there are 191 input parameters for the user to consider.  Table 1 below lists the main 

groups of input parameters for the user to consider.   The majority of parameters pertained to resources 

for housing services that enabled a greater capacity and effectiveness for sheltering homelessness and 

budget levels of various programs.   Parameters on budgets impact the quality of the resources and ser-

vices provided while parameters on specific services reflect the density or amount throughout the area of 

interest.   
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Parameter Grouping Number of Parameters 

Housing Services 81 

Budget Levels by year 45 

Support Services  33 

Domiciliary Care  12 

Economic forecasts 8 

Healthcare benefits 6 

Work Finding Assistance 6 

 

Table 1: Breakdown of input parameters in large scale simulation. 

 

4 NEURAL NETWORK METAMODELING WITH AND WITHOUT FACTOR SCREENING 

The focus of this study is to examine the merit of performing factor screening before fitting a Neural 

Network metamodel of a large-scale simulation.  Benefit in this experiment is measured by the goodness 

of fit of the metamodel.   The screening technique applied was Latin Hypercube sampling to perform es-

timation of first-order coefficients as discussed in Section 2.  Due to the limited availability of the compu-

ting environment, Sequential Bifurcation was not performed. Specifically speaking, the limitations are 

due to the interactive requirements for scenario configuration of this large scale simulation, requirement 

of repeated batches of runs and repeated reservations of the equipment.  However, both the Latin Hyper-

cube sampling and Sequential Bifurcation technique make the same assumption which is, if including an 

input parameter does not cause  a significant main effect, then this parameter is not part of any significant 

two way or higher interactions in the  metamodel. Therefore, the lessons learned from this study can pos-

sibly be applied to Sequential Bifurcation as well.  

 In this experiment 382 runs are reserved to perform the factor screening such that main effects main-

tain orthogonality with each other.  After the factor screening phase, the number of input parameters was 

reduced from 191 to 42.  Neural Network metamodels are then fitted under varying levels of simulation 

design points; at 1000, 2000, 3000, 4000, and 5000 runs.  A Latin Hypercube design is also used for the 

fitting of the metamodels after factor screening.  In these Latin Hypercube designs the number of divi-

sions is dependent on the computing resource constraints and the varying level of simulation design 

points that were utilized.  Each of these designs had significantly more runs enabling complex order terms 

and interactions to be estimated   In Section 4.1, we provide the Neural Network metamodel results when 

fitting to all 191 input parameters as well as the results under strictly the set of 42 screened parameters.  

Section 4.2 discusses error at different amounts of metamodel fitting data for both cases.   

The Neural Network employed was a multiple hidden layer, feed forward Network.  The number of 

hidden layers was kept variable.  Each node contained a threshold function of sigmoid form and a pre-

specified threshold value.  For each metamodel calibration, multiple Neural Networks were fit under 

varying numbers of hidden layers, threshold values and network structures and the best fitting Neural 

Network was retained.   The fitting procedure applied was the backpropagation method, which has shown 

(Hect_Nielsen 1989 ) to have success in training Neural Networks. This fitting procedure was kept con-

stant when fitting to all 191 input parameters and the screened set of 42 input parameters. 

4.1 Metamodeling Results for the Complete Set of Design Points 

The results are first presented by providing regression plots of metamodel versus actual simulation values 

for the fitting case involving all 5000 simulations.  The performance measure of interest targeted by these 

metamodels is the number of homeless people served, which can imply either permanent housing or tem-

porary shelter with food and other resources.  These regression plots are first provided on the data used to 
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train the model and then with an extra set of data reserved specifically for validation.  A uniform random 

generation of design points across the design space is performed to obtain data for validation.  The regres-

sion plot in Figure 2 is shown below for the fitting case involving all 191 input parameters. 

 

 
 

Figure 2: Metamodel vs. simulation regression plots for unscreened input space; left plot is on data used 

to train the model, right plot is on data not used to train the model. 

 

The metamodel versus simulation regression plots for the fitting case involving only the screened data 

are provided in Figure 3.  It can be seen by examination of the regression / goodness of fit plots that the fit 

is marginally better for the screened data.  

 

 

 
 

Figure 3: Metamodel vs. simulation regression plots for screened input space; left plot is on data used to 

train the model, right plot is on data not used to train the model. 

 

The regression plots above depict the R value for the Neural Network metamodels.   The R value for 

the Neural Network metamodel trained on the unscreened input space is 0.9945.  The R value for the 

Neural Network metamodel trained on the screened input space is 0.9961.   These R values were comput-

ed on data points not used to train the Neural Networks and the simulation model still required input from 

the variables screened from the model.  The R values are very close, but it can be seen here that the 

screened data provides a slightly better fit when working with 5000 simulation runs.   The root mean 
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squared error (RMSE) between the metamodels and the simulation model is 1.812% for the screened data 

and 2.289% for the unscreened data.   This reveals in this case that the interaction effects of screened out 

terms from the model do not significantly limit the fidelity of the fitted metamodel. 

This study shows that the impact of the factor screening assumption in two way interactions involving 

a screened variable does not lead to fitting of a metamodel with an increase in error.  The removal of in-

significant main effects did not reduce the goodness of fit of the metamodel under a large set of runs.  In 

fact, the removal of insignificant main effects provides the extra degrees of freedom to derive more com-

plex interaction terms in the metamodel. 

4.2 Metamodeling Results under Different Quantities of Training Data 

Here we study how the relative goodness of fit of the metamodel changes with respect to the number of 

simulation runs used to fit the metamodel.  The plot below depicts the RMSE estimate under increasing 

levels of simulation design points: 1000, 2000, 3000, 4000, and 5000 simulation runs. 

 

 

 
 

Figure 4: Neural network RMSE over varying number of simulation runs for fitting with the red line rep-

resenting fitting done with the unscreened inputs and the blue line representing fitting done with the 

screened inputs. 

 

 The graph depicted in Figure 4 illustrates how the metamodel RMSE reduces as a function of the 

number of simulation runs used for fitting.  The blue line represents fitting done with screened inputs and 

the red line represents the fitting done with the screened inputs.   First the Neural Network metamodel 

trained on the screened data achieves a lower RMSE for each number of simulation runs used.   For a 

batch of 1000 runs, the discrepancy in RMSE is not significantly larger than what it is for 5000 runs: the 

difference is 0.30% for 1000 runs and 0.42% for 5000 runs.   This result shows that the interaction effects, 

for which there is concern about prematurely screening out, do not appear to be overly prevalent in this 

case.  If these effects were significant, then the discrepancy between the RMSE values at the 5000 simula-

tion run level would be smaller than it is at the 1000 run point.  This is because at the 5000 level, there are 

adequate runs for the Neural Network to explore and integrate these interaction effects into the model.   

 An interesting finding emerges from this figure concerning the rate at which the RMSE decreases for 

both Neural Networks.  For the Neural Network metamodel trained with screened data, the highest de-
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crease in RMSE occurs between 1000 and 2000 runs with the RMSE starting to level off and reach its 

limit at around 3000 runs.  For the Neural Network trained on unscreened data, the drop in RMSE seems 

to be linearly decreasing and it is unknown how and when the RMSE would likely start leveling off.   

This finding can have an important practical relevance in terms of the relationship among error, the num-

ber of runs, and role of factor screening. 

5 CONCLUSIONS 

Neural Networks have shown to be an effective technique in metamodeling of large scale simulations.   

However, there are still unexplored areas as far as how to best fit Neural Network metamodels when do-

ing simulation metamodeling for scenarios with a very large number of input parameters.   The issue of 

factor screening and its role in Neural Network metamodeling is explored in this paper.  From the case 

study performed it is observed that factor screening not only saves the amount of simulation runs required 

for fitting a Neural Network, but it also does not erroneously screen too many significant interaction ef-

fects from the model such that the fidelity of the metamodel is lowered.   Furthermore, the extra degrees 

of freedom obtained from factor screening can be applied towards finding complex interactions amongst 

the significant main effects.   In this case study this is shown to be beneficial to metamodel fidelity as 

RMSE was lower for the metamodel trained on the screened simulation inputs. Another important obser-

vation involved the rate of change of metamodeling error with respect to the number of simulation runs 

between the cases with and without factor screening; RMSE drops off at a faster rate initially and then it 

levels off for the screened case while it drops off  almost linearly with number of simulation runs for the 

unscreened case.  

More case studies and explorations are necessary to gain further insight into the role of factor screen-

ing; this paper raises questions and stimulates further research on performing factor screening with Neural 

Network metamodels. Because of its value as a good metamodeling technique, further studies are war-

ranted by the simulation community. The details of our work will be presented at the conference.  
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