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ABSTRACT

Simulation metamodeling has been used as an effective tool in predicting the mean performance of complex
systems, reducing the computational burden of costly and time-consuming simulation runs. One of the
successful metamodeling techniques developed is the recently proposed stochastic kriging. However,
standard stochastic kriging is confined to the case where the sample averages and sample variances of the
simulation outputs at design points are the main building blocks for creating a metamodel. In this paper, we
show that if each simulation output is further comprised of i.i.d. observations, then it is possible to extend
the original framework into a more general one. Such a generalization enables us to utilize estimation
methods including sectioning for obtaining point and interval estimates in constructing stochastic kriging
metamodels for performance measures such as quantiles and tail conditional expectations. We demonstrate
the superior performance of stochastic kriging metamodels under the generalized framework through some
examples.

1 INTRODUCTION

Simulation is known as a powerful tool for analyzing complex systems and predicting their performance
to support decision making. However, fast-changing business environments and ever more complicated
system designs are making maintain decision-making in a responsive and effective fashion increasingly
difficult even with state-of-the-art computing power. In this regard, simulation metamodels have gained
increasing popularity across engineering disciplines over recent years as efficient substitutes for simulation
models, thanks to their abilities in accurately capturing the relationships between inputs and outputs of
complex systems with less resources invested. Among the recent developments in the stochastic simulation
metamodeling literature, stochastic kriging proposed by Ankenman et al. (2010) has drawn some attention
as an effective metamodeling technique for approximating the mean response surface implied by a stochastic
simulation. However, the mean response as a performance measure fails to take into account uncertainties
or risks associated with the response of interest.

The main research question addressed in this paper is how to utilize existing methods for point and
interval estimation to improve the performance of stochastic kriging in predicting quantile-based performance
measures. To start, let us take quantile or percentile estimation as an example. The pth quantile is formally
defined by νp = inf{x : F(x) ≥ p} where F(·) denotes the underlying distribution function of a random
variable of interest, say L. There exists a rich body of literature in compliance with real-world applications of
the estimation techniques. For example, JPMorgan and Reuters (1996) explain the use of a quantile-based
risk measurement called value-at-risk (VaR) to monitor and control the riskiness of portfolios held by
banks; and the announcement of Baseball Prospectus (2013) on March 28, 2013 provides the method and
reasoning behind using percentiles in predicting baseball players’ performances. The importance of quantile
estimation has drawn considerable attention from the simulation research community over the last several
decades. Seila (1982), Chen and Kelton (1999), and Alexopoulos et al. (2012) study quantile estimation
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for regenerative or more general stationary processes; the applications of variance reduction techniques
are studied by Hsu and Nelson (1990) and Avramidis and Wilson (1998). More closely related to this
paper, Nakayama (2012) combines the sectioning method, introduced in Asmussen and Glynn (2007), with
importance sampling for building confidence intervals for quantiles.

In this paper, we are concerned with the problem of building more efficient metamodels for quantile-
based response measures in a design space of some design variables that parameterize the underlying
distribution function F(·). Based on a sample of i.i.d. outputs drawn from F(·) at each design point, the
default approach adopted by standard stochastic kriging in constructing response estimates and associated
variance estimates for building a metamodel is identified as batching in Section 2. We generalize the
standard formulation so that existing methods for point and interval estimation can be utilized to improve
the performance of stochastic kriging in predicting quantile-based performance measures. With regard to
estimation methods, we focus on sectioning, sectioning-batching, and jackknifing as they provide simple
ways of obtaining point and interval estimates using the same sample of i.i.d. outputs as used in the default
approach. Nakayama (2012) and Asmussen and Glynn (2007) are good references for sectioning and
sectioning-batching. Parr and Schucany (1982) and Shao and Wu (1989) are important for understanding
the jackknifing methods employed in this paper. Although quantile estimation is used as the primary example
for ease of exposition, the proposed approach in this paper applies to other quantile-based performance
measures such as conditional value-at-risk (CVaR) or tail conditional expectation (TCE). Such a statistical
measure has become particularly popular and useful in the field of quantitative risk management in recent
years. See, for instance, Acerbi and Tasche (2002) and Gordy and Juneja (2010) and references therein.
However, applications of metamodeling to risk management have been studied only recently (Chen et al.
2012; Liu and Staum 2010) and the simulation literature on the topic is still scarce.

The remainder of this paper is organized as follows. In Section 2, we review standard stochastic kriging
and generalize the model formulation. Estimation methods including sectioning, sectioning-batching and
jackknifing that we seek to incorporate into the stochastic kriging framework are examined in Section 3.
Two numerical examples, on a quadratic loss of a portfolio and a simple stochastic activity network,
respectively, with detailed analysis of the results when different estimation methods applied are given in
Section 4. Section 5 concludes the paper.

2 GENERALIZED STOCHASTIC KRIGING

Standard stochastic kriging models the simulation response estimate obtained at a design point x ∈ Ω ⊂Rd

on the jth simulation replication as

Y j(x) = Y(x)+ ε j(x) = f(x)⊤β +M(x)+ ε j(x) , (1)

where Y(x) represents the unknown true response that we intend to estimate at point x0 ∈ Ω, and the
term ε j(x) represents the mean zero simulation error realized on the jth replication. The simulation errors
ε1(x),ε2(x), . . . are assumed to be independent and identically distributed across replications at a given
design point. Notice that the variance of ε j(x) may depend on x. The terms f(·) and β are, respectively, a
p×1 vector of known functions of x and a p×1 vector of unknown parameters. The term M(·) represents
a mean zero stationary Gaussian random field such that E

[
|M(x)|2

]
< ∞ for all x ∈ Ω. One can think of

M(x) as being sampled from a space of mappings Rd → R, in which functions are assumed to exhibit
spatial correlation. Ankenman et al. (2010) refer to the stochastic nature of M as extrinsic uncertainty, in
contrast to the intrinsic uncertainty represented by ε j(x) that is inherent in a stochastic simulation output.
Specifically, the spatial covariance function between two points in the random field is typically modeled as

Cov(M(x),M(y)) = τ2R(x,y;θ) , (2)

where τ2 denotes the spatial variance of the random process and R(·, ·;θ) is the spatial correlation function.
The function R(x,y;θ) depends on x and y only through their difference; and the parameter vector
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θ = (θ1,θ2, . . . ,θd)
⊤ controls how quickly the spatial correlation between the two points diminishes as

they become farther apart in each direction.
An experimental design for stochastic kriging consists of {(xi,ni)

k
i=1}, a set of design points from the

design space Ω to conduct simulation experiments and the corresponding number of replications to apply
(or, the number of simulation response estimates to obtain) at each design point. Denote the k×1 vector
of the sample averages of simulation responses by Ȳ =

(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)⊤, and

Ȳ (xi) =
1
ni

ni

∑
j=1

Y j(xi) = Y(xi)+ ε̄(xi), i = 1,2, . . . ,k, (3)

in which ε̄(xi) = ni
−1 ∑ni

j=1 ε j(xi). Standard stochastic kriging builds a linear predictor of the form λ0+λ⊤Ȳ

to predict the true response Y(x0) at any given point x0, such that the location dependent weights λ0 and
λ are chosen to minimize the resulting MSE. Appendix EC.1 of Ankenman et al. (2010) shows that the
MSE-optimal predictor of Y(x0) is given by

Ŷ(x0) = f(x0)
⊤β +ΣM(x0, ·)⊤Σ−1 (Ȳ −Fβ

)
, (4)

and its corresponding mean square error follows as

MSE
(
Ŷ(x0)

)
= ΣM(x0,x0)−ΣM(x0, ·)⊤Σ−1ΣM(x0, ·),

where Σ = ΣM+Σε , and F =
(
f(x1)

⊤, f(x2)
⊤, . . . , f(xk)

⊤)⊤.
We now elaborate on the terms ΣM,ΣM(x0, ·) and Σε . The pairwise spatial covariances across the design

points are recorded in the k×k matrix ΣM, whose (i,h)th element is given by ΣM(xi,xh)=Cov(M(xi),M(xh))
as specified in (2). The k×1 vector ΣM(x0, ·) contains the spatial covariances between the design points and
the prediction point x0. Lastly, the k×k matrix Σε represents the variance-covariance matrix of the vector
of the averaged simulation errors, ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))

⊤. As Chen, Ankenman, and Nelson (2012)
show that the use of common random numbers (CRN) does not necessarily help improve the performance of
the stochastic kriging predictor, in this paper we assume that CRN is not applied in simulation experiments.
In addition, we assume that a common number of simulation replications n is used at all k design points,
in which case Σε is reduced to a k× k diagonal matrix n−1diag{σ2

10,σ2
20, . . . ,σ 2

k0} with σ 2
i0 := Var(ε j(xi)).

In implementing stochastic kriging, one has to estimate the unknown model parameters first. Under the
assumption that (Y(x0), Ȳ ⊤)⊤ follows a multivariate normal distribution, the standard practice is to obtain
estimates of the parameters τ2,θ and β through maximizing the resulting log-likelihood function. The
first step of the estimation procedure is to replace Σε with its estimate Σ̂ε whose ith diagonal element is
specified by (n−1)−1 ∑n

j=1
(
Y j(xi)− Ȳ (xi)

)2
, i = 1,2, . . . ,k. See Ankenman et al. (2010), Chen and Kim

(2013) and references therein for details.
We notice that constructing a stochastic kriging predictor given in (4) requires two building blocks,

namely, point estimates of the desired response measures at all k design points and the corresponding
variance estimates. In the case of standard stochastic kriging, they are simply given by the vector Ȳ and
the diagonal entries of Σ̂ε . Now let us consider alternative ways to create the two building blocks so that
better stochastic kriging predictors of quantile-based performance measures can possibly be achieved.

Suppose that to obtain a single simulation response Y j(xi) is required a sample of ns i.i.d. basic
simulation outputs at design point xi. Mathematically speaking,

Y j(xi) = Φ
(

L( j)(xi)
)
, L( j)(xi) :=

{
L

( j)
h (xi)

}ns

h=1
, j = 1,2, . . . ,n; i = 1,2, . . . ,k.

For example, when estimating the pth quantile via simulations, Φ is the generalized inverse of the empirical
distribution constructed from L( j)(xi) at the p level. We then realize that the vector of the sample average
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responses Ȳ given in (3) can be regarded as derived from a single long sequence of i.i.d. basic simulation
outputs {Lq(xi)}N

q=1 with L( j−1)ns+h = L
( j)

h (xi) for 1 ≤ j ≤ n and 1 ≤ h ≤ ns (assuming n · ns = N). If
multiple estimation methods are available, it is possible for the analyst to use a different point estimate
Ỹ (xi) other than Ȳ (xi) based on {Lq(xi)}N

q=1 as long as a variance estimate of the proposed point estimate,
say σ̃2(xi), is available as well. Therefore, we are motivated to generalize the model for the simulation
response obtained at design point xi to

Ỹ (xi) = f(xi)
⊤β +M(xi)+ ε̃(xi), i = 1,2, . . . ,k , (5)

where ε̃(xi) represents the simulation error associated with the response point estimate at xi having mean zero
and variance σ̃ 2(xi). Given that simulation runs are conducted without using CRN across the design points,
the intrinsic variance-covariance matrix Σ̃ε under this generalized model is expected to maintain the diagonal
form. Moreover, we recognize that (3) is just one instance of the generalized model (5). Clearly, as long
as a method for processing basic simulation outputs is available to set up the vector of simulation response
estimates Ỹ :=

(
Ỹ (x1), Ỹ (x2), . . . , Ỹ (xk)

)⊤ and the corresponding estimated variance-covariance matrix̂̃Σε = diag
(̂̃σ2

(x1), ̂̃σ 2
(x2), . . . , ̂̃σ 2

(xk)
)

, the metamodel parameter estimation and subsequent prediction
can be accomplished in a similar fashion as presented for standard stochastic kriging.

3 METHODS FOR POINT AND VARIANCE ESTIMATION

The generalized modeling formulation suggested by (5) in Section 2 opens up new avenues for exploiting
existing methods to obtain point and interval estimates to build potentially better stochastic kriging predictors
of quantile-based performance measures. In this section, we review some of the well-known techniques
through investigating the problem of estimating quantiles of an unknown distribution of a random variable
L whose realizations can be obtained via simulations. For simplicity of exposition, we assume that the
underlying distribution function F(·) is continuous and strictly increasing.

Given a sample of i.i.d. simulation outputs L := {Lq}N
q=1, the classical point estimate of the pth quantile

based on the entire sequence L as
ν̂all

p = L⌈pN⌉:N , (6)

where L1:N ≤L2:N ≤ ·· · ≤LN:N represent the ordered sequence of elements in L. If we define an operator
Φ that maps a sample of size m to its ⌈pm⌉th order statistic, then (6) can be rewritten as ν̂all

p = Φ(L).
Although (6) provides a consistent quantile estimate, it is not immediate how to give a variance estimate
for ν̂all

p based on the single sequence L.
Several techniques have been proposed to give point and interval estimates for quantiles in the literature.

The method known as batching suggests to divide the sample L into n non-overlapping batches each of
size ns (assuming N = n · ns), and construct the pth quantile point and interval estimates based on the
n quantile estimates obtained from the n batches. Denoting the jth batch of simulation outputs by
L( j) := {L( j−1)ns+h}ns

h=1 and the resulting n quantile estimates by Φ
(
L( j)

)
, j = 1,2, . . . ,n, we have the

quantile estimate and its associated variance estimate due to batching follow as

ν̂batch
p =

1
n

n

∑
j=1

Φ
(

L( j)
)
, σ̂ 2

batch =
1

n(n−1)

n

∑
j=1

(
Φ
(

L( j)
)
− ν̂batch

p

)2
. (7)

It is known that Φ
(
L( j)

)
is asymptotically normal as long as the batch size ns is sufficiently large, and

(ν̂batch
p −νp)/

√
σ̂ 2

batch approximately follows a t-distribution with n−1 degrees of freedom. This leads to an
asymptotically valid confidence interval for νp. We realize that batching is the (default) approach adopted
by standard stochastic kriging in building metamodels for performance measures including quantiles. Given
that the bias of a point estimator of νp is of order O(m−1) if the sample size m used to construct this
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estimator is sufficiently large, we expect that the bias of the point estimator ν̂batch
p due to batching is of

order O(n−1
s ) whereas for ν̂all

p its bias has an order of O(N−1). Furthermore, the bias problem of ν̂batch
p

becomes more salient as the number of batches n increases given a fixed total sample size N.
Due to the bias consideration, we study the second estimation technique known as sectioning. See,

for example, Asmussen and Glynn (2007) and Nakayama (2012). It is quite similar to batching in that it
provides a variance estimate of the point estimate utilizing the n batches (or equivalently, sections). The
main difference is that sectioning replaces the point estimate ν̂batch

p with the quantile estimate ν̂all
p given in

(6). Specifically, the quantile estimate and its corresponding variance estimate due to sectioning are given
by

ν̂sect
p = Φ(L), σ̂ 2

sect =
1

n(n−1)

n

∑
j=1

(
Φ
(

L( j)
)
− ν̂sect

p

)2
. (8)

An asymptotically valid confidence interval due to sectioning can be established in a similar fashion as for
batching. The third approach we consider is a variation of sectioning which is referred to as sectioning-
batching in Nakayama (2012). This approach uses ν̂sect

p as the pth quantile point estimate and adopts σ̂ 2
batch

as the corresponding variance estimate.
The last two techniques of interest relate to jackknifing, which is known as a bias-reduction and variance

estimation technique for more than half a century. Recently, jackknifing has been applied to risk management
as well (Gordy and Juneja 2010). We consider two versions of jackknifing based on sections. One is the
jackknifing bias-corrected estimation method and the other is the jackknifing variance estimation method.
Given a sample of size N, say, i.i.d. outputs L in our problem context, the basic idea is to generate n data
sets of size ns(n− 1) by systematically eliminating each section one at a time, and construct point and
variance estimates from those data sets. Specifically, the estimates due to the jackknifing bias-corrected
method (e.g., Chapter 1 of Efron 1982, Efron and Stein 1981) follow as

ν̂ jack-b
p =

1
n

n

∑
j=1

Ψ( j), σ̂2
jack-b =

1
n(n−1)

n

∑
j=1

(
Ψ( j)− ν̂ jack-b

p

)2
(9)

where Ψ( j) := nΦ(L)− (n−1)Φ
(

L̃( j)
)

are sometimes called pseudovalues and L̃( j) := L\L( j). It can be

shown that if the bias order is correctly specified, then the bias of ν̂ jack-b
p can be effectively reduced to less

than O(N−1). Nevertheless, attempting jackknifing bias reduction is not guaranteed to help; we will learn
more about this from the examples in Section 4. On the other hand, the jackknifing variance estimation
method (Efron and Stein 1981) adopts ν̂ jack

p = Φ(L) as its point estimate and approximates its variance by

σ̂ 2
jack =

n−1
n

n

∑
j=1

(
Φ
(

L̃( j)
)
− ν̂ jack

p

)2
. (10)

In fact, one can show that σ̂ 2
jack-b given in (9) is asymptotically equivalent to σ̂ 2

jack given in (10), since

σ̂ 2
jack-b =

1
n(n−1)

n

∑
j=1

(
Ψ( j)− ν̂ jack-b

p

)2
=

n−1
n

n

∑
j=1

(
Φ
(

L̃( j)
)
− 1

n

n

∑
j=1

Φ
(

L̃( j)
))2

,

provided that sufficient conditions such as those specified in Proposition 1 and Corollary 3 in Shao and
Wu (1989) hold.

In summary, the aforementioned approaches give both point estimates and their variance estimates; in
particular, the point estimates ν̂•

p provided above are approximately normal as long as n and ns are suitably
large. It follows that the two building blocks required to apply (5) are readily available. Lastly, we notice
that the methods in this section can be applied to operators other than Φ(·) for sample quantiles, as will
be demonstrated by the examples in Section 4.
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Before ending this section, we make some comments on the impact of the possible bias induced in
finite-sample estimates Ỹ (xi). Standard stochastic kriging assumes that the simulated responses obtained
at the design points are unbiased and so does the generalized formulation given in (5). However, like
quantiles, simulated point estimates can be biased and this might affect the predictive performance of the
stochastic kriging predictor. Chen and Kim (2013) consider the impact of biased estimates by modifying
(1) so that a bias term is explicitly incorporated. They show that the number of batches n cannot be too
large in order to achieve a good predictive performance if batching is used. Through a parallel analysis we
expect to obtain some results regarding performance differences of stochastic kriging when other methods
are implemented.

4 NUMERICAL EXAMPLES

4.1 Quadratic Loss (QL) of Two Assets and Its Risk Measurements

In this subsection, we consider a two-dimensional problem borrowed from Hong and Liu (2009). Our
objective is to construct the response surfaces of two popular risk measures, namely, VaR and CVaR. Here,
we assume that the random loss L(µ) is given by L(µ) = a0 +a⊤∆S+∆S⊤H∆S where µ = (µ1,µ2)

⊤, and

a0 = 0.3, a = (0.8,1.5)⊤, H =

(
1.2 0.6
0.6 1.5

)
. Further, we assume that the risk factor ∆S is a bivariate

normal random vector with mean µ and variance-covariance matrix Σs = 0.02
(

1 0.5
0.5 1

)
. Writing VaR

and CVaR at the level p as vp(µ) and cp(µ) respectively, we have

cp(µ) = E
[
L(µ)

∣∣∣L(µ)≥ vp(µ)
]
= vp(µ)+

1
1− p

E [L(µ)− vp(µ)]+ .

Hong and Liu (2009) suggest using the following consistent estimators: given ns i.i.d. simulated random
losses Lh(µ) for a given mean vector µ ,

v̂p(µ) = L⌈nsα⌉:ns(µ), ĉp(µ) = v̂p(µ)+
1

ns(1− p)

ns

∑
h=1

[Lh(µ)− v̂p(µ)]+ , (11)

where Lk:ns(µ) is the kth order statistic of {Lh(µ)}ns
h=1.

Experiments. The experimental design space is Ωµ = [0.001,0.1]2 from which we select k = 16 design
points, i.e., choose a set of µ vectors, {µ i}k

i=1. Specifically, a “maxmin” Latin-hypercube sample of 12
design points from Ωµ plus its four corner points are used. At each design point we conduct N simulation
runs to obtain a sample of simulated random losses {Lq(µ)}N

q=1, based on which we construct n pairs of
estimates of vp(µ) and cp(µ) using the estimation methods discussed in Section 3, namely, batching (Batch),
sectioning (Section), sectioning-batching (SB), and the two jackknifing methods. Notice that at a given
design point µ the jth pair of estimates of vp(µ) and cp(µ) is calculated based on L( j) := {L( j−1)ns+h}ns

h=1
using (11), j = 1,2, . . . ,n. One decision to be made by the experimenter is how to utilize the entire collection
of N simulated random losses at each design point, that is, how to allocate N between the number of
pairs of estimates to obtain (i.e., n) and the sample size used to obtain one such pair (i.e., ns). Different
allocation rules of N are expected to lead to different predictive performances of standard stochastic kriging
when each of the estimation methods is applied; this is investigated through varying the number of pair of
estimates n in {5,25,100,200,400} for a fixed N.

A total number of 1601 check-points are chosen for evaluation. They are regularly spaced in Ωµ and
we add the extra testing point from Hong and Liu (2009) for a sanity check. We use the estimated root
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mean squared error (ERMSE) over the check-point grid as our predictive performance measure:

ERMSE(v̂p) =

√√√√ 1
1601

1601

∑
l=1

(vp(µ l)− v̂p(µ l))
2, ERMSE(ĉp) =

√√√√ 1
1601

1601

∑
l=1

(cp(µ l)− ĉp(µ l))
2, (12)

where vp(µ l), cp(µ l) are true VaR, CVaR, and v̂p(µ l), ĉp(µ l) are their predicted values at µ l by stochastic
kriging. As the closed-form expressions are not available, the true values are approximated by simulations
with a sample size ns = 106 at each of the check-points. Experiments for p = 0.99 are conducted and the
results are as follows.

Results. The entire experiment is repeated for 100 macro-replications, and the resulting quartiles of the
ERMSEs for estimating v0.99(µ) and c0.99(µ) with N = 104 are summarized in Tables 1 and 2. The results
for N = 5×104 and 105 convey similar information, hence for the sake of brevity we will only mention
the impact of increasing N without showing details.

From Table 1, we observe that sectioning methods outperform the other ones, followed by the jackknifing
variance estimation and then batching. When comparing sectioning-batching with sectioning, the latter
seems to perform better when the total number of simulation runs N is 104; but as N increases, the
performances of the two methods quickly become indistinguishable. Batching, on the other hand, leads to
much larger ERMSEs relative to both sectioning methods and the jackknifing variance estimation method.
Furthermore, the ERMSEs of batching seem to increase as n increases given a fixed sample size N. In
fact, the minimum ERMSEs of batching are found to be obtained by using a moderate n value, which is
consistent with the conclusion reached by Chen and Kim (2013). Regarding jackknifing, the ERMSEs given
in the 6th and 12th columns of Table 1 are due to the jackknifing variance estimation method (Jack). This
method seems as competitive as sectioning methods, especially in terms of estimating c0.99. Furthermore,
its performance relative to sectioning methods improves as N becomes larger. Table 2 provides some
interesting results regarding the performances of Jack and the jackknifing bias-corrected estimation method
(Jack-b). We see that in terms of estimating ν0.99 the results due to Jack-b deteriorate considerably as
n becomes greater than 100. In sharp contrast, when estimating c0.99 Jack-b performs consistently well
given a fixed number of simulation runs N.

In fact, among the five estimation methods considered, Section, SB and Jack provide the same point
estimates of νp and cp using the N simulated random losses at each design point; the difference lies in
the way that the variance estimates are given, and hence disparate performances of the three methods
follow. The variance estimates σ̂2

batch and σ̂ 2
sect given by (7) and (8) become fairly close as long as N is

sufficiently large. As to the jackknifing variance estimate σ̂ 2
jack given in (10), the requirements to achieve

good performance differ for different types of point estimators under consideration. Shao and Wu (1989)
classify the sample pth quantiles as “nonsmooth” estimators, and they claim that more stringent conditions
have to be satisfied by ns and n as N → ∞ for Jack to achieve consistency and asymptotic unbiasedness.
On the other hand, the sample estimate ĉp is considered to be “smoother” than sample quantiles, and hence
its jackknifing variance estimator is consistent with bounded ns. The interested reader is referred to Shao
and Wu (1989) or Chapter 2 of Shao and Tu (1995) for details. This helps explain why Jack is dominated
by sectioning methods in estimating νp, but nevertheless seems equally competent in estimating cp.

Regarding the poor performances of Batch and Jack-b, Figures 1 (a) and (b) provide some illuminating
explanations. The boxplots in Figures 1 (a) and (b) summarize 1000 point estimates of ν0.99 and c0.99
at design point µ = (10−3,10−3)⊤, obtained by batching, sectioning (or equivalently, SB and Jack) and
Jack-b with n = 100 and N = 104. Recall that a stochastic kriging metamodel is built upon point estimates
at the design points, therefore the efficiency of the point estimates determines the goodness of the resulting
stochastic kriging predictor. From Figure 1 (a), we see that the variances of the point estimates due to
batching and sectioning are pretty similar, which to some extent justifies the sectioning-batching method.
However, the point estimates of ν0.99 and c0.99 due to batching are more biased. Although Jack-b yields
point estimates that are less biased, the resulting bias reduction is not effective as expected. A closer look
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Table 1: QL: Summary of ERMSEs (×10−3) for estimating v0.99 and c0.99 with N = 104.

v0.99 c0.99

n quartiles Batch Section SB Jack n quartiles Batch Section SB Jack

2
25th 25.9 13.7 14.0 13.7

2
25th 33.2 22.0 21.9 22.0

50th 31.6 19.1 19.5 19.1 50th 39.2 26.8 26.9 26.8
75th 38.2 25.0 24.8 25.0 75th 48.1 33.6 33.6 33.6

5
25th 23.8 8.90 9.10 9.80

5
25th 30.1 11.9 11.9 11.9

50th 28.3 11.8 12.0 13.3 50th 34.4 18.2 18.1 18.4
75th 34.7 16.5 16.8 17.2 75th 43.3 24.0 24.0 24.3

25
25th 26.9 7.70 7.90 9.70

25
25th 28.4 10.6 10.6 10.1

50th 29.7 10.0 10.4 11.7 50th 33.6 14.2 14.3 13.8
75th 33.1 12.5 13.0 14.4 75th 39.5 18.2 19.0 17.8

100
25th 98.4 7.60 8.20 10.1

100
25th 92.2 10.1 10.4 10.2

50th 101 9.60 10.3 13.4 50th 96.4 13.1 13.7 13.5
75th 104 13.0 14.4 18.3 75th 100 17.5 18.3 18.2

200
25th 31.8 7.80 7.80 10.8

200
25th 248 10.6 12.3 10.2

50th 34.9 9.90 9.90 14.0 50th 252 13.4 17.4 13.4
75th 38.5 13.1 13.1 19.4 75th 255 18.0 23.6 17.4

400
25th 193 8.30 9.20 11.4

400
25th 411 10.9 18.3 10.1

50th 196 10.4 13.7 15.2 50th 413 13.7 25.5 13.3
75th 199 14.7 19.5 20.2 75th 416 18.7 32.6 17.2

reveals that this method introduces extra bias for estimating ν0.99 as n further increases for a fixed N.
What’s worse, Jack-b leads to point estimates of ν0.99 that are much more variable than those given by
batching or sectioning. Shao and Tu (1995) point out two facts that deserve our attention. Firstly, the point
estimate given by Jack-b is less biased than the estimate obtained without applying bias reduction only
when the bias order is correctly specified. Hence the formula given in (9) may not apply to estimating
ν0.99 with the values of N and n specified. Secondly, if the point estimate given by Jack-b has a much
larger variance which results in a considerably inflated mean squared error, then the performance may be
adversely affected, especially in situations where the bias is not a major concern. When estimating ν0.99
with a sufficiently large N, the impact of bias indeed diminishes much faster than variance. On the other
hand, Figure 1 (b) shows that unlike in the case of estimating ν0.99, Jack-b is able to provide point estimates
ĉ0.99 as efficient as those due to sectioning. Therefore its good predictive performance follows.

In summary, we recommend to use sectioning in simulation experiments for building stochastic kriging
metamodels for VaR and CVaR.

4.2 A Simple Stochastic Activity Network (SAN)

We consider the following example of a simple stochastic activity network (SAN), much of which was
constructed based on the one used in Nakayama (2012), Chu and Nakayama (2012) and Hsu and Nelson
(1990). There are 5 activities involved in the completion of the project; let Ti represent the time to finish
activity i for i = 1,2, . . . ,5. In this example we assume that the activity times Ti are i.i.d. exponential random
variables with rate 1. Independent of the other activity times, T3 is distributed as an exponential random
variable with rate x. The duration of the longest one among 3 possible activity paths determines the project
time. Let L(x) represent the observed project time, i.e., L(x) = max{T1 +T2,T1 +T3(x)+T5,T4 +T5}. We
are interested in estimating the pth quantile νp(x), and the conditional expectation of the project duration
beyond the pth quantile (or, tail conditional expectation), cp(x), as functions of the rate parameter x. Given
any x > 0, the CDF Fx of L(x) can be derived via a sequence of conditioning arguments whose form is
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Table 2: QL: Comparisons of ERMSEs (×10−3) obtained by the two jackknifing estimation methods for
estimating v0.99 and c0.99 with N = 104.

v0.99 c0.99

n quartiles Jack Jack-b n quartiles Jack Jack-b

2
25th 13.7 14.9

2
25th 22.0 21.7

50th 19.1 21.0 50th 26.8 27.0
75th 25.0 27.0 75th 33.6 33.6

5
25th 9.80 12.2

5
25th 11.9 11.9

50th 13.3 16.3 50th 18.4 18.3
75th 17.2 22.0 75th 24.3 23.9

25
25th 9.70 22.9

25
25th 10.1 10.2

50th 11.7 31.0 50th 13.8 13.8
75th 14.4 42.7 75th 17.8 18.5

100
25th 10.1 79.8

100
25th 10.2 10.2

50th 13.4 97.4 50th 13.5 13.3
75th 18.3 116 75th 18.2 18.0

200
25th 10.8 291

200
25th 10.2 10.2

50th 14.0 359 50th 13.4 13.4
75th 19.4 439 75th 17.4 17.1

400
25th 11.4 812

400
25th 10.1 10.2

50th 15.2 1020 50th 13.3 13.2
75th 20.2 1220 75th 17.2 17.0

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Batch Section Jack-b

(a) 1000 estimates of ν0.99

1.35

1.4

1.45

1.5

1.55

Batch Section Jack-b

(b) 1000 estimates of c0.99

Figure 1: Boxplots of 1000 point estimates of ν0.99 and c0.99 at design point µ = (10−3,10−3)⊤ with
n = 100 and N = 104. The horizontal dash dotted lines show the respective true values.
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given as follows. For t ≥ 0,

Fx(t) =


1− (1− x)−2e−xt +

(
(1− x)−2 +(3x−2)(1− x)−1t +1+2x−1

)
e−t

−2x−1(1− x)−1e−(1+x)t +
(
2x(1− x)−1 + x−2 − tx−1 + t2/2

)
e−2t − x−2e−(2+x)t if x ̸= 1,

1+(3−3t − t2/2)e−t +(−3−3t + t2/2)e−2t − e−3t , if x = 1 .

(13)

It can be shown that for a fixed x > 0, Fx(t) is twice continuously differentiable with respect to t. Denote
the derivative of Fx(t) with respect to t by fx(t), we also know that both Fx(t) and fx(t) are continuous in
x for a fixed t ≥ 0.

Experiments. The experimental design space for the rate parameter x is Ωx = [1/2,10/3], from which a grid
of 7 equally spaced design points is chosen. At each design point N simulation runs are conducted to obtain
N simulated project completion times {Lq(x)}N

q=1. We construct n pairs of estimates {ν i
p(x),c

i
p(x)}n

i=1
for p = 0.99 based on {Lq(x)}N

q=1 using the estimation methods as discussed in Section 3. Given a
fixed number of simulation runs N, we conduct simulations with varying n in {2,5,25,100,200,400} to
investigate the impact of different allocation rules on the predictive performance of stochastic kriging with
each estimation method applied. A total number of 193 equally spaced check-points are selected from Ωx,
the true ν0.99 and c0.99 at each of which are obtained by numerically inverting the CDF given in (13) and
integration afterwards. The ERMSEs over the 193 check-points are adopted as the performance measure,
as defined in (12).

Results. The entire experiment is repeated for 100 macro-replications and the quartiles of the resulting
ERMSEs obtained with N = 104 are summarized in Table 3. The results for N = 5×104 and 105 are similar
in spirit and hence are omitted. To economize on space, the results for SB are also omitted since they are
close to those for sectioning and the performances of both methods become very similar as N increases.
From Table 3 we observe that Section (also SB) leads to superior predictive performance followed by Jack
and then Batch. In fact, Jack is a little less efficient in terms of estimating the 0.99th quantile ν0.99 when
compared with sectioning methods, but it becomes more competitive in estimating the tail conditional
expectation c0.99. As to the impact of increasing n given a fixed simulation runs N, batching is found to
result in even poorer predictive performances whereas those of Section and Jack seem to be pretty stable
as long as N is sufficiently large and n is not too small. The last two columns of each of two panels in
Table 3 provide a comparison of Jack and Jack-b. As in Section 4.1, we see that the latter leads to very
poor performance in predicting ν0.99, especially when n becomes large. Nevertheless, it seems to perform
consistently well for predicting c0.99, as long as the total number of simulation runs N is sufficiently large.

We do, however, have to mention that jackknifing methods are typically not as economical as other
estimation methods in terms of computational resources, i.e., the computation time and memory space
needed to do a similar simulation experiment. Notice that the two jackknifing methods implemented in
this paper are based on sections for efficiency improvement. As suggested in Section 4.1, when conducting
simulations for building metamodels for quantiles and tail conditional expectations, we recommend to use
sectioning rather than batching or jackknifing.

5 CONCLUSIONS

We proposed to generalize standard stochastic kriging to improve its performance in predicting quantile-
based performance measures. More specifically, we modified the way in which standard stochastic kriging
exploits a sample of i.i.d. simulation outputs from the underlying distribution. This allows us to take
advantage of existing estimation methods to obtain point estimates of pth quantile and tail conditional
expectation and their corresponding variance estimates. We investigated sectioning, sectioning-batching,
and jackknifing methods and compared their performances with batching, which is recognized as the
current approach adopted by standard stochastic kriging. Two examples, respectively, demonstrated a
quadratic loss of two assets and a simple stochastic activity network. Sectioning methods (sectioning and
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Table 3: SAN: Summary of 100 ERMSEs (×10−2) for estimating ν0.99 and c0.99 with N = 104.

v0.99 c0.99

n quartiles Batch Section Jack Jack-b n quartiles Batch Section Jack Jack-b

2
25th 10.1 8.29 8.29 8.19

2
25th 15.5 13.2 13.2 13.0

50th 13.4 12.2 12.2 12.0 50th 19.3 16.2 16.2 16.1
75th 16.3 15.2 15.2 16.0 75th 21.9 20.6 20.6 20.6

5
25th 9.77 6.61 7.03 8.23

5
25th 14.0 9.97 9.84 9.89

50th 12.7 8.99 9.33 10.7 50th 16.7 13.1 13.1 13.2
75th 14.8 11.2 11.9 14.1 75th 21.1 16.4 16.6 16.6

25
25th 17.2 6.82 6.94 13.1

25
25th 19.7 10.4 10.6 10.2

50th 20.5 8.82 9.14 18.0 50th 23.1 13.4 13.1 13.2
75th 25.0 12.5 13.3 26.5 75th 29.0 15.9 15.8 16.0

100
25th 58.4 5.56 6.56 37.0

100
25th 58.0 8.62 8.66 8.46

50th 61.2 8.03 9.89 48.1 50th 61.5 12.3 12.5 12.1
75th 64.2 12.1 13.7 65.2 75th 66.5 17.0 16.8 16.7

200
25th 16.3 6.59 8.61 117

200
25th 154 9.57 10.0 9.87

50th 19.1 8.77 10.5 176 50th 157 13.1 13.2 13.2
75th 23.1 11.4 12.4 257 75th 162 17.2 15.9 16.5

400
25th 114 7.48 9.22 370

400
25th 255 9.22 9.25 9.07

50th 116 9.54 12.1 475 50th 257 12.9 12.5 12.6
75th 119 12.2 16.8 599 75th 260 18.2 16.7 16.6

sectioning-batching) are identified as the most efficient ones to apply at least for building stochastic kriging
metamodels for quantile-based measures; while batching is found to work best with a moderate number
of batches used. The jackknifing bias-corrected method surprisingly leads to poor prediction results when
applied to quantile estimation, which is largely due to the unduly large variance of the resulting point
estimate. The proposed metamodeling technique combined with estimation methods such as sectioning is
only one example of many other ways that standard stochastic kriging can be extended. Variance reduction
techniques and quasi-Monte Carlo methods can be potentially incorporated to make further improvements.
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