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ABSTRACT

We use Gaussian random fields (GRFs) that we call generalized integrated Brownian fields (GIBFs), whose
covariance functions have been studied in the context of reproducing kernels, for Gaussian process modeling.
We introduce GIBFs into the fields of deterministic and stochastic simulation metamodeling, and give a
probabilistic representation of GIBFs that is not given in the literature on reproducing kernels. These GIBFs
have differentiability that can be controlled in each coordinate, and are built from GRFs which have the
Markov property. Furthermore, we introduce a new parameterization of GIBFs which allows them to be
used in higher-dimensional metamodeling problems. We also show how to implement stochastic kriging
with GIBFs, covering trend modeling and fitting. Lastly, we use tractable examples to demonstrate superior
prediction ability as compared to the GRF corresponding to the Gaussian covariance function.

1 INTRODUCTION

Stochastic simulations are often used to model complex systems in industrial engineering and operations
research. Although simulation models are typically not limited by the complexity of the underlying system,
simulation runs may be time-consuming to execute, especially when there are many scenarios that need
to be evaluated. This limits the use of simulation models for supporting real-time decision making. When
the simulation model can be run for a significant amount of time before decisions must be made, we can
use the output from the simulation to build a statistical model of the response surface, which is called the
simulation metamodel. Using the metamodel, quick predictions can be made at new scenarios.

A great deal of research has been directed towards experiment designs for fitting linear regression
models to simulation output. However, we are particularly interested in general metamodeling approaches
that assume less structure than linear models. In the deterministic computer experiments literature, the use
of Gaussian process models has been remarkably successful for global metamodeling (see, for example,
Santner, Williams, and Notz (2010)). Following the introduction of Gaussian process models into the design
and analysis of deterministic computer experiments, Mitchell and Morris (1992) introduced Gaussian process
models for representing the response surface in stochastic simulation. Since the predictions are made by
fitting a Gaussian process, we are able to obtain a measure of uncertainty in predictions, which gives rise to
confidence intervals. Furthermore, the measure of uncertainty in predictions facilitates sequential, adaptive
experiment designs, and can provide statistical inference about the fitted model (Ankenman, Nelson, and
Staum 2010).

In simulation metamodeling using Gaussian process models, the response surface is modeled as a
sample path of a GRF. A critical choice in fitting Gaussian process models is specifying the GRF that

543978-1-4799-2076-1/13/$31.00 ©2013 IEEE



Salemi, Staum, and Nelson

is used. To obtain better prediction accuracy, the GRF should have desirable properties and be flexible
enough to capture the characteristics of the response surface, such as smoothness in each coordinate.

Gaussian process models were initially used in geostatistics to model the amount of gold in underground
deposits (Krige 1951). For these applications, if we were interested in predicting the amount of gold in a
region, knowing the amount of gold along the boundary of the region would not be sufficient information
for our prediction. For example, if we also knew there was gold located just outside the region, but
not necessarily at the boundary, we would expect more gold in the region. We are mainly concerned
with response surfaces in operations research, which contrast with response surfaces in geostatistics. In
operations research applications, if we are interested in predicting the value of the response surface in a
region, then given sufficient information about the response surface on the boundary, information about the
response surface outside of the region would not assist in our predictions. By sufficient information, we
mean the level of the response surface and perhaps some derivatives. For GRFs, this property is analogous
to the Markov property: the GRF in a region, given sufficient information (level and derivatives) on the
boundary, is independent of the GRF outside of the region (Pitt 1971).

The ability to control the differentiability of the GRF is a characteristic that has received considerable
attention in the literature (see, for example, Santner, Williams, and Notz (2010)). A common class of GRFs
that are used for metamodeling corresponds to the power exponential covariance function, for which the
differentiability is controlled by a single parameter. However, these GRFs can only be non-differentiable
or infinitely differentiable, depending on the value of the parameter. The generalization of the power
exponential covariance function is the class of Matérn covariance functions, which also has a single
parameter that controls the differentiability of the GRF. In contrast to the power exponential covariance
function, the GRFs corresponding to the Matérn class can have differentiability of any order. However, the
differentiability cannot be controlled separately for each coordinate.

The GRFs that we use in this paper, which we call generalized integrated Brownian fields (GIBFs),
have differentiability that can be controlled in each coordinate, and are built from GRFs which have the
Markov property. The parameterization of GIBFs that we introduce allows for the easy use of GIBFs in
higher-dimensional metamodeling problems.

The use of Gaussian process models in stochastic simulation metamodeling has led to several different
metamodeling techniques. In the following section we discuss stochastic kriging, the simulation metamod-
eling technique we use in this paper. We present GIBFs using a probabilistic approach in Section 3, and
provide a guide to using these random fields with stochastic kriging in Section 4. We conclude the paper
with numerical experiments which show the improved prediction accuracy as compared to the well-known
and highly-used Gaussian covariance function.

2 STOCHASTIC KRIGING

Gaussian process models have been used for approximating the output of deterministic computer experiments
following the work of Sacks, Welch, Mitchell, and Wynn (1989), which introduced kriging into the design
and analysis of deterministic computer experiments. In kriging, the response surface y(x) is modeled as a
sample path of the GRF

YM(x) = f(x)>β +M(x), (1)

where x is a design point in the design space X (the space of all possible design points), f(x) is a p×1
vector of known functions of x, β is a p×1 vector of unknown parameters, and M is a mean-zero GRF. In
other words, sample paths of M can be thought of as being randomly sampled from a space of functions
mapping Rd→R, according to a Gaussian measure. The GRF M is assumed to exhibit spatial covariance,
which is determined by the covariance function ΣM(·, ·;θ), where θ is a vector of parameters. Specifically,
for two design points xi and x j,

Cov[M(xi),M(x j)] = ΣM(xi,x j;θ).
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For deterministic computer experiments where the output of the experiment contains no noise, the response
surface can be observed exactly at each of the design points at which the computer experiment is run.
Kriging results in an interpolation of the data (the metamodel is equal to the computer experiment output
at each of the scenarios run), which fits the deterministic nature of the problem.

In the stochastic simulation case, we no longer observe the response surface without noise. Rather,
we run the simulation model at k design points x1,x2, . . . ,xk for a total of ni replications at design point
xi. Replication j at design point xi is denoted by Y j(xi). At design point xi we collect the sample mean
Ȳ (xi) = (1/ni)∑

ni
j=1 Y j(xi), and the sample standard deviation s2(xi) = (1/(ni−1))∑

ni
j=1(Y j(xi)−Ȳ (xi))

2.
Gaussian process methods in stochastic simulation utilize the sample means and sample standard deviations
at the design points to build the Gaussian process model.

In stochastic kriging, the response surface is modeled as a sample path of the GRF YM, given by
Equation (1), with mean f(x)>β and covariance function ΣM(·, ·;θ). The simulation output on replication
j at design point x is modeled as a realization of the random variable

YM,ε j(x) = YM(x)+ ε j(x),

where the mean-zero sampling noise in the replications ε1(x),ε2(x), . . . at a design point x is independent
and identically distributed across replications. We also assume that the sampling noise is independent
across design points, i.e., we do not use Common Random Numbers (CRN), although our method will still
work when CRN are used. The sampling noise is referred to as intrinsic uncertainty, since it is inherent
in the stochastic simulation. The stochastic nature of M is called extrinsic uncertainty, since it is imposed
on the problem to aid in the development of the metamodel.

Suppose that the simulation model has been run at the k design points x1,x2, . . . ,xk yielding the vector
of observed simulation output Ȳ = (Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk))

>, and we now want to predict the response
surface at x0. Let Σ̂M be the k×k variance-covariance matrix with i jth entry ΣM(xi,x j; θ̂), where θ̂ is the
maximum likelihood estimate of θ , let F = (f(x1), f(x2), . . . , f(xk))

> be the k× p regression matrix, and let
Σ̂M(x0, ·) be the k×1 vector of spatial covariances between the design points and the prediction point, i.e.,
the ith entry of Σ̂M(x0, ·) is ΣM(x0,xi; θ̂). Also, let Σ̂ε = diag{s2(x1)/n1,s2(x2)/n2, . . . ,s2(xk)/nk}. For
brevity, we write Σ̂ := Σ̂M+ Σ̂ε . The stochastic kriging predictor is

ŶM(x0) = f(x0)
>

β̂ + Σ̂M(x0, ·)>Σ̂
−1(Ȳ −Fβ̂ ), (2)

where β̂ = (F>Σ̂−1F)−1F>Σ̂−1Ȳ . The mean squared error (M̂SE) of the predictor ŶM(x0) is

M̂SE(ŶM(x0)) = ΣM(x0,x0; θ̂)− Σ̂M(x0, ·)>Σ̂
−1

Σ̂M(x0, ·)+η
>(F>Σ̂

−1F)−1
η , (3)

where η = f(x0)−F>Σ̂−1Σ̂M(x0, ·). The last term arises because the p×1 vector of regression coefficients
needs to be estimated, which inflates the MSE of the prediction; if β was known instead of estimated, the
last term of M̂SE(ŶM(x0)) would drop from the expression.

For stochastic kriging using derivative estimates, see Chen, Ankenman, and Nelson (2013), which
provides details on implementation and results. Using derivative estimates, the same results as in Equations
(2) and (3) follow, with the proper matrices substituted.

3 GENERALIZED INTEGRATED BROWNIAN FIELDS

In stochastic kriging, the response surface is modeled as a sample path of the GRF YM, given by Equation
(1), with mean f(x)>β and covariance function ΣM(·, ·;θ). We use GRFs that are built from m-order
Markov random fields, in an effort to obtain better prediction accuracy. A random field M is called an
m-order Markov random field, where m = (m1,m2, . . . ,md), if

E[M(x)|M(α)(z), ∀z ∈ C {,∀α ≤m] = E[M(x)|M(α)(z), ∀z ∈ ∂C ,∀α ≤m],
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for any x ∈ C and every open set C ⊆ Rd with smooth boundary, where ∂C = C ∩ (C {) is the boundary
of C , and M(α)(x) = ∂ |α|M(x)/∂xα . For a more precise, measure-theoretic definition, see Pitt (1971).

Furthermore, we require the ability to control the differentiability in each coordinate. A popular choice
of GRF corresponds to the so-called Gaussian covariance function ΣM(x,y;θ) = exp{−∑i θi(xi− yi)

2},
where θi, xi, and yi are the ith coordinates of θ , x, and y, respectively. This GRF has the Markov property
of infinite order, i.e., infinitely many derivatives are required at the boundary for conditional independence,
and is infinitely differentiable in each coordinate.

GIBFs are generalized versions of integrated Brownian fields, which are multivariate versions of
integrated Brownian motions introduced in Fill and Torcaso (2004). These GIBFs have differentiability
that can be controlled in each coordinate, and are built from GRFs which have the Markov property.
The parameterization of GIBFs that we introduce here is new, and allows for use in high-dimensional
metamodeling problems.

Definition and Properties

ONE-DIMENSIONAL CASE: Consider one-dimensional Brownian motion B = (B(x;θ) : x ∈ [0,1]) with
volatility θ . Brownian motion is a real-valued, 0-order Gaussian Markov random process with continuous,
non-differentiable sample paths, mean function E[B(x;θ)] = 0, and covariance function ΣB(x,y;θ) =
θ min{x,y} for x,y ∈ [0,1]. An m-times differentiable stochastic process can be obtained by integrating
Brownian motion m times, which gives us m-integrated Brownian motion Bm(x;θ) with volatility θ , an
m-order Gaussian Markov random process. The integral representation of m-integrated Brownian motion
is

Bm(x;θ) :=
∫ x

0
Bm−1(u;θ)du =

∫ x

0

(x−u)m

m!
dB(u;θ), (4)

where the first equality expresses Bm(x;θ) recursively with B0(x;θ) = B(x;θ), and the second equality
follows from using integration by parts, which expresses Bm as an integral with respect to Brownian
motion. From the first integral in Equation (4), it is clear that the process Bm and its m derivatives B(i)

m
for all i = 1,2, . . . ,m are zero at the boundary x = 0. These boundary conditions make Bm unsuitable for
metamodeling, since the response surface and its derivatives may not be zero on the boundary x = 0. We
modify Bm by adding a random polynomial whose coefficients are m+ 1 independent standard normal
random variables Z0,Z1, . . . ,Zm scaled by some parameters. This process is denoted by Xm(x;θ) and is
called generalized m-integrated Brownian motion and is defined as

Xm(x;θ) =
m

∑
n=0

√
θnZnxn +Bm(x;θm+1), (5)

where θ has been relabelled as θm+1 for convenience, θ = (θ0,θ1, . . . ,θm+1), and Bm is independent of Zn
for all n = 1,2, . . . ,m. Directly from the definitions of Bm(x;θ) and Xm(x;θ), it follows that the covariance
function of Xm(x;θ) is

ΣXm(x,y;θ) =
m

∑
k=0

θk
xkyk

(k!)2 +θm+1

∫ 1

0

(x−u)m
+(y−u)m

+

(m!)2 du.

The random polynomial given by the first term on the right hand side of Equation (5) is the linear com-
bination of standard normal random variables with coefficients that are monomials of degree at most m.
Thus, the random polynomial is an m-order Gaussian Markov random process. By specifying m, we are
able to control the differentiability of the GIBF.

MULTI-DIMENSIONAL CASE: In the multi-dimensional case, let B =
(
B(x;θ) : x ∈ [0,1]d

)
be d-

dimensional Brownian field (see, for example, Holden, Øksendal, Ubøe, and Zhang (2010)) with volatility
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(a) (0,0)-GIBF (b) (1,1)-GIBF (c) (2,2)-GIBF

Figure 1: Sample paths of GIBFs (on the two-dimensional unit hypercube).

θ , where θ = (θ1,θ2, . . . ,θd). Brownian field is a real-valued 0-order Gaussian Markov random field
(GMRF) with continuous, non-differentiable sample paths, mean function E[B(x;θ)] = 0, and covariance
function ΣB(x,y;θ) = ∏

d
i=1 θi min{xi,yi} for x,y ∈ [0,1]d , which is the tensor product of d copies of

one-dimensional Brownian motions with varying volatilities. Similar to the one-dimensional case, we can
integrate Brownian field over each coordinate to get a differentiable process. In the multi-dimensional
case, each coordinate can be integrated a different number of times. If we integrate mi times in the ith
coordinate, for all i = 1,2, . . . ,d, the resulting GMRF is called m-integrated Brownian field Bm, where
m = (m1,m2 . . . ,md), which is an m-order GMRF. Using integration by parts, Bm can be expressed as a
multiple integral with respect to Brownian field,

Bm(x;θ) :=
∫ x1

0
· · ·
∫ xd

0

d

∏
i=1

(xi−ui)
mi

mi!
dB(u;θ).

It follows immediately from this representation that the covariance function of Bm is

ΣBm(x,y;θ) =
d

∏
i=1

θi

∫ 1

0

(xi−ui)
mi
+ (yi−ui)

mi
+

(mi!)2 dui.

Note that ΣBm is the tensor product of the covariance functions of the one-dimensional processes Bm1 ,Bm2 , . . . ,Bmd .
As in the one-dimensional case, m-integrated Brownian field has boundary conditions Bm(x;θ) = 0 and
B|n|m (x;θ) = 0 for all n such that |n| ≤ |m| and x ∈ {y ∈ [0,1]d : ∃i,yi = 0}. We define a new process
Xm whose covariance function is the tensor product of the covariance functions of the one dimensional
processes Xm1 ,Xm2 , . . . ,Xmd , given by Equation (5), in the same way that the covariance function of Bm
is the tensor product of the covariance functions of Bm1 ,Bm2 , . . . ,Bmd . The process Xm(x;θ) has mean
function E[Xm(x;θ)] = 0 and covariance function

ΣXm(x,y;θ) =
d

∏
i=1

(
mi

∑
k=0

θi,k
xk

i yk
i

(k!)2 +θi,mi+1

∫ 1

0

(xi−ui)
mi
+ (yi−ui)

mi
+

(mi!)2 dui

)
, (6)

where θ = (θ1,0, . . . ,θ1,m1+1,θ2,0, . . . ,θd,md+1).
The GRF Xm is called generalized m-integrated Brownian field (m-GIBF) on [0,1]d . Figure 1 shows

sample paths of (0,0)-GIBF, (1,1)-GIBF, and (2,2)-GIBF. We have defined Xm in terms of its mean and
covariance functions which is all that is required to fully define a GRF. To get a better understanding of
m-GIBF, an equivalent formulation of Xm is given by

Xm(x) :=
m

∑
n=0

Cn(θ)xnZn + ∑
1≤i≤d

1≤ j1< j2<...< ji≤d

∑
0≤k j≤m j

j 6= jl ,∀l

Cji,kd−i(x,θ)B
ji,kd−i
(m j1 ,...,m ji )

(x j1 , . . . ,x ji ;1), (7)
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where ji = { j1, j2, . . . , ji}, kd−i = {k j : j 6= jl,∀l}, and the multidimensional sum is over all n=(n1,n2, . . . ,nd)
such that 0 ≤ n ≤m. The functions Cn(θ) and Cji,kd−i(x,θ) are deterministic functions of x and θ , and
although closed-form expressions can be obtained for each, they are not needed for implementation and
do not add any insight into the process, so they are omitted. Equation (7) is the multi-dimensional analog
of Equation (5). The first term in Equation (7) is a random polynomial of degree m, which is the linear
combination of standard normal random variables with coefficients that are monomials of degree at most
m. Thus, the random polynomial is an m-order GMRF. The second term is the sum of integrated Brownian
fields over every i-face (for all i = 1,2, . . . ,d) of the unit hypercube that contains the origin. In other words,
we sum integrated Brownian fields over each edge, face, cell, 4-face, 5-face, etc. of the unit hypercube that
contains the origin. Since the functions Cn(θ) and Cji,kd−i(x,θ) are deterministic functions of x and θ , the
randomness in Xm is due to the standard normal random variables Zn and the integrated Brownian fields
Bji,kd−i
(m j1 ,...,m ji )

, which are all independent from each other. From the formulation of Xm given by Equation
(7), it is clear that m-GIBF does not have any boundary conditions. Furthermore, we are able to control
the differentiability in each coordinate by specifying each entry of the vector m = (m1,m2, . . . ,md).

Remark: The covariance function of Xm is the reproducing kernel of the tensor product Hilbert space
H =

⊗d
i=1 Hmi(0,1), where Hmi(0,1) = {φ : φ ,φ (1), . . . ,φ (mi−1)absolutely continuous, φ (mi) ∈ L2[0,1]},

endowed with the norm ||φ ||2 = ∑
mi−1
k=0 θkφ (k)(0)2 +θi,mi+1

∫ 1
0 φ (mi)(t)2dt. Therefore, the same results can

be obtained by considering multi-dimensional tensor product smoothing splines on the space H (see
Berlinet and Thomas-Agnan (2004) for more information).

4 STOCHASTIC KRIGING WITH GENERALIZED INTEGRATED BROWNIAN FIELDS

For stochastic kriging with m-GIBF, the response surface is modeled as a sample path of the GMRF

YXm(x) = f(x)>β + X̂m(x), (8)

where f(x) and β are as before, and X̂m is a modified version of m-GIBF, which is discussed in Section
4.1. To implement stochastic kriging with GIBFs, we need to choose the vector of basis functions f to be
used for trend modeling, and values for the parameters m, β , and θ . This section discusses these aspects
of fitting GIBFs: we discuss trend modeling in Section 4.1, followed by the choice of order of the GIBF in
Section 4.2. Maximum likelihood estimation of the parameters is presented in Section 4.3, assuming that
the vector of basis functions and order have been fixed. The properties of metamodels built using m-GIBF
are given in Section 4.4.

4.1 Trend Modeling

To maintain the differentiability of the metamodel, we assume that each basis function in the p×1 vector
of basis functions f is mi times continuously differentiable in the ith coordinate. Any function can be a
basis function as long as it satisfies this differentiability condition.

For certain basis functions, the covariance function needs to be modified: for stochastic kriging with
m-GIBF, when a basis function is the monomial xα , where α = (α1,α2, . . . ,αd)

> and αi ≤ mi for all
i = 1,2, . . . ,d, we need to subtract ∏

d
i=1 θi,αi x

αi
i yαi

i /(αi!)2 from the covariance function given by Equation
(6). The need for this modification of the covariance function is the following: for stochastic kriging with
the GRF YM, the residuals Ȳ −Fβ are modeled as a sample path of the mean-zero GRF M, plus Monte
Carlo noise. When xα is a basis function, the deviation of the residuals from the mean of M (zero) is
eliminated in the subspace spanned by xα . To avoid redundancy when we use m-GIBF, we need to subtract
from m-GIBF the variability associated with the subspace spanned by xα , and this variability results from
the GMRF whose covariance function is ∏

d
i=1 θi,αi x

αi
i yαi

i /(αi!)2, i.e., the GMRF Cα(θ)xαZα in the random
polynomial in Equation (7).

Another explanation for the modification of the covariance function can be given in terms of boundary
conditions. The formulation of m-GIBF given by Equation (7) is the sum of Bm and other terms that
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compensate for the boundary conditions of Bm. When the basis function xα is included in f, we do not need
the termCα(θ)xαZα in the random polynomial ∑

m
n=0Cn(θ)xnZn, since the corresponding boundary condition

is being compensated for in the trend function. In other words, since the response surface is modeled as a
sample path of YXm , we want YXm to have no boundary conditions, and when xα is a basis function for
the trend, we no longer need the corresponding boundary condition compensated for in Bm. For example,
consider the process YXm(x) with f = (1), i.e., YXm(x) = β + X̂m(x), where X̂m(x) = Xm(x)−C0(θ)Z0.
Although X̂m has the boundary condition X̂m(0) = 0, YXm has no boundary conditions since the constant
trend compensates for the boundary condition of X̂m at the origin, i.e., YXm(0) = β .

The random field X̂m is the (mean-zero) GMRF whose covariance function is the modified covariance
function of m-GIBF. For example, if we use stochastic kriging with (1,1)-GIBF and the vector of basis
functions f(x) = (1,x1)

> used for trend modeling, the response surface would be modeled as the sample
path of the GRF Y(1,1)(x) = (1,x1)

>β + X̂(1,1)(x), where

ΣX̂(1,1)
(x,y;θ) =

2

∏
i=1

(
θi,0 +θi,1xiyi +θi,2

∫ 1

0
(xi−ui)+(yi−ui)+dui

)
−θ1,0θ2,0−θ2,0θ1,1x1y1

is the covariance function of the GMRF X̂(1,1) = X(1,1)−C0,0(θ)Z0,0−C1,0(θ)x1Z1,0. Thus, using the vector
of basis functions f(x) = (1,x1)

> results in the loss of the random polynomial terms corresponding to the
monomials 1 and x1.

4.2 Choosing Order

The parameters for stochastic kriging with GIBFs are (m,β ,θ), whose optimal values are given by the
maximum likelihood estimates (m̂, β̂ , θ̂). Thus, the optimal order would be given by its maximum likelihood
estimate m̂. However, finding the maximum likelihood estimates (m̂, β̂ , θ̂) involves solving an integer
programming problem, since m must be a vector of integers. To simplify the optimization, we use a
heuristic, stepwise procedure that considers each coordinate one at a time, and increases the order of the
GIBF in a coordinate if the log-likelihood increases. Let Dj, for all j = 1,2, . . . ,d, be the highest order
derivative estimate obtained from the simulation output for the jth coordinate. We assume that every
derivative estimate obtained from running the simulation model is to be used in building the metamodel.
The procedure is given by the following:

1. Initialize i = 1, j = 0, and mk = Dk for all k = 1,2, . . . ,d.
2. Fit (m1,m2, . . . ,md)-GIBF using the procedure given in Section 4.3. Denote the log-likelihood by

L j. Set mi = mi +1, and go to 3.
3. Fit (m1,m2, . . . ,md)-GIBF using the procedure given in Section 4.3. Denote the log-likelihood by

L j+1. If L j < L j+1, set j = j+1, mi = mi +1 and go to 3. Otherwise, set mi = Di + j, i = i+1, j = 0,
and go to 2.

4.3 Parameter Estimation

Assuming that the trend vector and order of the GIBF have been fixed, the parameters β and θ are found
using maximum likelihood estimation. For stochastic kriging with derivative estimates, parameter fitting
is exactly the same as below, with the proper matrices substituted. Given fixed values for θ , the maximum
likelihood estimate of β is β̂ (θ) :=

(
F>Σ(θ)−1F

)−1 F>Σ(θ)−1Ȳ , where Σ(θ) = ΣX̂m
(θ)+ Σ̂ε , ΣX̂m

(θ)

is the k× k variance-covariance matrix with i jth entry ΣX̂m
(xi,x j;θ), and β̂ and Σ have been written as

functions of θ to explicitly show dependence. If we profile over the MLE of β , the profile log-likelihood
function (see, for example, Shao (2010)) is given by

L (θ) :=−k
2

log(2π)− 1
2

log(|Σ(θ)|)− 1
2
(Ȳ −Fβ̂ (θ))>Σ(θ)−1(Ȳ −Fβ̂ (θ)),
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where k is the number of design points, and Ȳ is the vector of simulation output. The maximum likelihood
estimate of θ is the solution to the constrained minimization problem min {−L (θ)|θ ∈Rd

+}, where Rd
+ is

the set of feasible values of θ for m-GIBF. To solve this constrained optimization problem, we first search
for the best starting solution by evaluating −L (θ) at a low-discrepancy sequence of points, and take the
point in the sequence that minimizes this quantity as the starting solution. Instead of searching over Rd

+,
which is unbounded, we add a dummy parameter τ which allows θ to be restricted to the unit hypercube
[0,1]d . In other words, only the magnitude of the parameters in θ relative to each other are important since
the actual magnitude is absorbed in τ . The re-parameterized covariance function for m-GIBF is

ΣXm(x,y;θ ,τ) = τ

d

∏
i=1

(
mi

∑
k=0

θi,k
xk

i yk
i

(k!)2 +θi,mi+1

∫ 1

0

(xi−ui)
mi
+ (yi−ui)

mi
+

(mi!)2 dui

)
,

where now θ ∈ [0,1]d , and τ ≥ 0. The maximum likelihood estimate of θ is now found by solving the
constrained optimization problem min {−L (θ ,τ∗(θ))|θ ∈ [0,1]d}, where

L (θ ,τ) :=−k
2

log(2π)− 1
2

log(|Σ(θ ,τ)|)− 1
2
(Ȳ −Fβ̂ (θ ,τ))>Σ(θ ,τ)−1(Ȳ −Fβ̂ (θ ,τ)) (9)

is the re-parameterized profile log-likelihood function, β̂ and Σ have been written as functions of θ and τ

to explicitly show dependence, and τ∗(θ) is the value of τ that minimizes L (θ ,τ) with θ fixed. Finding
τ∗(θ) can be done very efficiently using a line search method, and supplying the solver with the gradient
∂L (θ ,τ)/∂τ , which can be easily computed using matrix calculus.

The solution to the constrained minimization problem min {−L (θ ,τ∗(θ))|θ ∈ [0,1]d} is obtained
using the following procedure based on the R package mlegp (Dancik 2012).

1. Generate m points {pi}m
i=1 from a low-discrepancy sequence.

2. Evaluate L (θ ,τ∗(θ)) at each point in the low discrepancy sequence {pi}m
i=1. Let p∗ be the point

in {pi}m
i=1 that minimizes L (θ ,τ∗(θ)).

3. Use the Nelder-Mead method (Nelder and Mead 1965) on L (θ ,τ∗(θ)), with the starting solution
p∗. Let the optimal solution returned from the Nelder-Mead method be denoted by θ

′.
4. Use the Limited-Memory BFGS method (Liu and Nocedal 1989) on L (θ ,τ∗(θ)), with the starting

solution θ
′. The optimal solution is the MLE θ̂ .

Roughly speaking, we search the unit hypercube for the best starting point p∗, for which we then use
the Nelder-Mead and Limited-Memory BFGS methods to find the MLE θ̂ .

4.4 Properties

The properties of metamodels built using stochastic kriging with m-GIBF can be analyzed by viewing the
stochastic kriging predictor as a linear combination of the k basis functions ΣX̂m

(·,xi; θ̂), for all i= 1,2, . . . ,k.
Indeed, we can rearrange Equation (2) for x ∈ X into the following form:

Ŷ(x) = f(x)>β̂ +
k

∑
i=1

ciΣX̂m
(x,xi; θ̂),

where c = Σ̂−1(Ȳ −Fβ̂ ). The only terms that depend on x in this expression are f and ΣX̂m
, so the

differentiability of the metamodel is determined by f and ΣX̂m
. Since we are assuming that each function

in the trend vector is mi times differentiable in the ith coordinate, and the fact that the covariance function
ΣX̂m

(x,xi; θ̂) is mi times differentiable in the ith coordinate, the metamodel is mi times differentiable in the
ith coordinate.

The invariance properties of the metamodel are determined by the properties of GIBFs. The metamodel
is not invariant to rotations of the design space, since GIBFs are non-stationary. However, since we are
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assuming that the design space is the d-dimensional unit hypercube, which can be obtained from scaling
and shifting the original design space, the metamodel is translation invariant. Furthermore, from directly
inspecting the covariance function in Equation (6), we can see that the metamodel is invariant to permutations
of the coordinates.

5 EXPERIMENTS

The purpose of the experiments is to assess the performance, in terms of prediction accuracy, of stochastic
kriging with GIBFs. We are mainly concerned with the affect on performance of different types of response
surfaces and whether or not we incorporate derivative information. We use two examples, and compare our
results to stochastic kriging with the GRF corresponding to the Gaussian covariance function. The GRF
corresponding to the Gaussian covariance function can result in metamodels that have mean reversion.
Since we are interested in comparing to the Gaussian covariance function when mean reversion is not a
factor, we use an experiment design that results in no mean reversion.

Each example is two-dimensional. The design points are the first 50 points of a scrambled Sobol
sequence, and the prediction points p1,p2, . . . ,p1,000 are 1,000 points uniformly sampled from the unit
hypercube [0,1]2, re-scaled to fit inside the hypercube [0.05,0.95]2. We re-scale the prediction points to
avoid boundary effects, since stochastic kriging (and interpolation and smoothing methods in general) is
known not to predict well near the boundary of the design space. We repeat the experiment 50 times to
get 50 metamodels for each response surface. We evaluate the predictions using the Root Empirical Mean
Squared Error

REMSE =

√√√√ 1
50,000

50

∑
j=1

1,000

∑
i=1

(ŷ j(pi)− y(pi))
2,

where ŷ j is the metamodel built during the jth experiment. A constant trend is used in all of the experiments,
and the estimates of the gradients are based on infinitesimal pertubation analysis (IPA). The two response
surfaces are described below.

5.1 Multi-factor Portfolio Credit Risk

This example is taken from Glasserman, Kang, and Shahabuddin (2008). We are interested in estimating
the expected credit loss of a portfolio, given values of latent variables that trigger the default of the obligors.
Consider a portfolio with m obligors, and let Yk be the default indicator (= 1 for default, = 0 otherwise) for
the kth obligor, pk be the marginal probability that the kth obligor defaults, and lk be the loss resulting from
default of the kth obligor. The dependence among the default indicators Yk is modeled by a multifactor
Gaussian copula model with a finite number of types, i.e. Yk = 1{Xk > Φ−1(1− pk)}, where Φ is the
cumulative normal distribution, and X1,X2, . . . are correlated standard normal random variables. To model
the correlation of the standard normal random variables, we assume that there are d factors and t types of
obligors. If obligor k is of type j, then the latent variable is given by Xk = a>j Z+b jεk, where a j ∈ Rd , Z

is a d-dimensional standard normal random vector, b j =
√

1−a>j a j, and the εk are independent standard
normal random variables. The total loss from defaults is Lm = ∑

m
i=1 liYi.

For our experiments, consider the case with two factors and four types of obligors: a>1 = (0.85,0),a>2 =
(0.25,0),a>3 = (0,0.85), and a>4 = (0,0.25). Each type has the same number of obligors, with E[lk] = 1
and pk = 0.01. The response surface, which is twice-differentiable everywhere for x ∈ [−10,30]2, is

ycr(x) = E[Lm|Z = x] =
1
4

t

∑
j=1

Φ

a>j x+Φ−1(0.01)√
1−a>j a j

 .
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Table 1: REMSE using no derivative information, with varying amounts of Monte Carlo noise, for the
credit risk (CR) and expected profit (EP) examples.

GMRF CR EP
(0,0)-GIBF 0.019 0.492
(1,1)-GIBF 0.014 0.272
(2,2)-GIBF 0.038 0.264

Gaussian 0.089 0.752

(a) No noise.

GMRF CR EP
(0,0)-GIBF 0.026 0.546
(1,1)-GIBF 0.021 0.392
(2,2)-GIBF 0.054 0.323

Gaussian 0.119 0.894

(b) 100 replications.

GMRF CR EP
(0,0)-GIBF 0.041 0.746
(1,1)-GIBF 0.034 0.643
(2,2)-GIBF 0.067 0.609

Gaussian 0.169 1.19

(c) 25 replications.

Table 2: REMSE using gradient information, with varying amounts of Monte Carlo noise, for the credit
risk (CR) and expected profit (EP) examples.

GMRF CR EP
(1,1)-GIBF 0.006 0.197
(2,2)-GIBF 0.021 0.142

Gaussian 0.037 0.403

(a) No noise.

GMRF CR EP
(1,1)-GIBF 0.014 0.317
(2,2)-GIBF 0.039 0.245

Gaussian 0.073 0.685

(b) 100 replications.

GMRF CR EP
(1,1)-GIBF 0.025 0.573
(2,2)-GIBF 0.056 0.415

Gaussian 0.116 0.871

(c) 25 replications.

5.2 Expected Profit from a Two-Product Assortment

This example is taken from Aydin and Porteus (2008). We are interested in estimating the expected profit
from a two-product assortment, as a function of the prices, where the stock levels are chosen optimally for
each price pair. We assume the demand model of Aydin and Porteus (2008), and consider the two-product
inventory and pricing problem with stochastic logit demand, with α1 = 10,α2 = 25,c1 = 6,c2 = 20, and
the random error terms being uniformly distributed between 100 and 500. The response surface, which is
continuously differentiable everywhere for x ∈ [5,20]× [15,50], is

yep(x) =
200(x1−6)2 exp(10− x1)

x1(1+ exp(10− x1)+ exp(25− x2))
+

200(x2−20)2 exp(25− x2)

x2(1+ exp(10− x1)+ exp(25− x2))
.

5.3 Experiment Results

Table 1 shows the REMSE of the predictions without derivative information, with varied amounts of noise,
for different orders of GIBF and the GRF corresponding to the Gaussian covariance function. From the
table, we can see that (1,1)-GIBF and (2,2)-GIBF gave the best predictions for the response surfaces ycr and
yep, respectively. Although ycr is twice-differentiable, some areas of the response surface have very large
changes in the first derivative (see Figure 2a). Even though (1,1)-GIBF is only once-differentiable, it can
handle the very large changes in the first derivative. Similarly, the infinitely-differentiable response surface
yep has areas where the second derivative changes very rapidly, and the twice-differentiable (2,2)-GIBF
can handle the very rapid changes. Table 2 shows the results of the experiments using gradient information
(first-order partial derivatives), for various amounts of noise. From the table, we can see that a significant
improvement is obtained when gradient information is included in the predictions.

6 CONCLUSION

In this paper, we introduced GIBFs into the fields of deterministic and stochastic simulation metamodeling.
We gave a probabilistic representation of GIBFs, and discussed several properties including the differen-
tiability of the resulting metamodel. Using stochastic kriging, a simulation metamodeling technique which
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(a) ycr (b) (1,1)-GIBF (c) Gaussian

Figure 2: The credit risk response surface, and fitted metamodels using noiseless data with (1,1)-GIBF
and the Gaussian covariance function.

characterizes and takes into account the intrinsic error inherent in a stochastic simulation, we showed
how to implement GIBFs, and used two examples to assess the performance of stochastic kriging with
GIBFs. These examples exhibited the benefit gained from using stochastic kriging with GIBFs instead of
the GRF associated with the Gaussian covariance function. The examples also showed the improvement
in performance when gradient estimates were included in the prediction. Additional properties of GIBFs
require further investigation, as well as additional numerical experimentation to assess for which response
surfaces GIBFs work best.
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