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ABSTRACT

Most of the efficient rare event simulation methodology for heavy-tailed systems has concentrated on
processes with stationary and independent increments. Motivated by applications such as insurance risk
theory, in this paper we develop importance sampling estimators that are shown to achieve asymptotically
vanishing relative error property (and hence are strongly efficient) for the estimation of large deviation
probabilities in Markov modulated random walks that possess heavy-tailed increments. Exponential twisting
based methods, which are effective in light-tailed settings, are inapplicable even in the simpler case of
random walk involving i.i.d. heavy-tailed increments. In this paper we decompose the rare event of interest
into a dominant and residual component, and simulate them independently using state-independent changes
of measure that are both intuitive and easy to implement.

1 INTRODUCTION

In this paper, we develop efficient importance sampling algorithms that employ simple state-independent
changes of measure for computing the large deviation probabilities in random walks with heavy-tailed
increments that are modulated by an ergodic Markov chain. To be specific, let Sn := X1 + . . .+Xn. The
increments Xn have regularly varying heavy tails and they are modulated by an independent Markov chain
ξ = (ξn : n ≥ 1) (see Section 3 for precise problem statement). We assume that the steady-state drift of
the walk is zero. We are interested in the efficient computation of large deviation probabilities P{Sn > b}
when n and b are large. Because of the analytical intractability in arriving at exact expressions for such
probabilities, and since the asymptotic approximations might have a large error when computed for a finite
n, we develop a fast simulation algorithm that computes estimates which stay within a pre-specified relative
error with high probability.

Stochastic models involving random walks with heavy-tailed increments have received substantial
attention in queuing and insurance risk theories because of their ability to explain long-range dependence in
tele-traffic data, and highly variable claim sizes in insurance (see (Resnick 1997), (Embrechts, Klüppelberg,
and Mikosch 1997), and (Adler, Feldman, and Taqqu 1998)). Because of their relative simplicity, random
walks with independent increments have been analysed well in the literature to obtain various tail asymptotics
and efficient simulation algorithms. On the other hand, it has been observed that the less studied case of
random walks with dependent increments, particularly the kind of dependence where we have an underlying
stochastic process that modulates the increments, are of importance in the study of risk in changing economic
environments (see (Delbaen and Haezendonck 1987), (Paulsen 1993) and (Paulsen and Gjessing 1997)) and
in the analysis of certain queuing networks (see (Baccelli, Schlegel, and Schmidt 1999) and (Huang and
Sigman 1999)). Algorithms for the estimation of the large deviation probabilities P{Sn > b} are particularly
important because they act as building block to many complex rare event problems involving combinations
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of renewal processes: for examples in queueing, see (Parekh and Walrand 1989) and in financial credit
risk modeling, see (Glasserman and Li 2005) and (Bassamboo, Juneja, and Zeevi 2008).

In light-tailed settings, exponential twisting based importance sampling methods, both state-independent
(as in (Bucklew, Ney, and Sadowsky 1990)) and dynamic (as in (Dupuis and Wang 2005)), are shown to work
for the simulation of large-deviation probabilities involving additive functionals of Markov chains. Whereas
in heavy-tailed settings, exponential twisting is inapplicable because of the absence of a neighborhood
around zero where the log-moment generating function of the increments is finite; a list of other difficulties
in arriving at an importance sampling measure even for the simple case of i.i.d. increments can be found
in (Asmussen, Binswanger, and Højgaard 2000). For the case of i.i.d. increments, we have a parametrized
state-dependent sampler for the estimation of P{Sn > b} due to (Blanchet and Liu 2008), and two recent
state-independent algorithms in (Murthy and Juneja 2012) and (Murthy, Juneja, and Blanchet 2013). In
(Blanchet and Liu 2008), the parameters to sample increments based on the current position of the walk is
carefully done in every step by ensuring that a certain Lyapunov inequality holds; here the fact that each
increment has zero mean has been used crucially to enforce the Lyapunov inequality. However in the case
of modulated walks, increments need not have zero mean, and the generalization of such a method does
not seem straightforward. The means of overcoming such difficulties by testing for Lyapunov inequalities
in more than one time step in the context of simulation of certain level crossing probabilities has been
studied in (Lam 2011).

The algorithm that we develop in this paper is optimal in the sense that it achieves asymptotically
vanishing relative error (see Section 2.2 for a definition) uniformly throughout the moderate and large
deviations regime. We also allow increments to have infinite variance, a situation which can very well happen
when dealing with practical applications demonstrating heavy-tailed behaviour. One more interesting aspect
of our importance sampling changes of measure is that it does not involve any change in the transition
probabilities of the modulating Markov chain, unlike the case of modulated walks with light-tailed increments
where exponential twisting is performed to favour certain states over others. As in (Murthy, Juneja, and
Blanchet 2013), we partition the event of interest into a dominant and residual component, and prescribe
simple, intuitive sampling measures, that are easy to implement and offer a wide scope for generalizing to
complex multi-dimensional settings.

The rest of the paper is organized as follows: After a brief discussion of certain preliminary concepts
in Section 2, we explain the simulation problem in Section 3, develop our sampling methodology and
prove its efficiency in Section 4. We demonstrate the performance of our simulation methods on certain
numerical examples in Section 5. Some of the technical proofs are presented in the appendix.

2 PRELIMINARIES

We briefly review the notion of regular varying tails, the use of importance sampling in rare event simulation
for the computation of rare event probabilities, and efficiency notions of associated algorithms. Before
that we explain certain notations that recur: For any distribution function F(·), we use F̄(·) := 1−F(·)
to denote the tail of F(·). For any random variable X , CV [X ] :=

√
Var[X ]/EX denotes the coefficient of

variation of X . For given functions f : R+→ R+ and g : R+→ R+, we say f (x) = O(g(x)) if there exists
B > 0 and x1 large enough such that f (x)≤ Bg(x) for all x > x1; we use f (x) = o(g(x)) if f (x)/g(x)→ 0,
and f (x)∼ g(x) if f (x)/g(x)→ 1, as x↗ ∞.

2.1 Regularly Varying Tails

A function L : R+→ R+ is said to be slowly varying (at infinity) if limx→∞ L(tx)/L(x) = 1 for any t > 0.
Some examples of slowly varying functions include log(x), log log(x) and 1− e−x. A random variable X
is said to be regularly varying with index −α if P{X > x} = x−αL(x) for some slowly varying function
L(·). It can be easily verified that for a random variable X with regularly varying tail, E[exp(θX)] = ∞

for any θ > 0. These distribution functions capture the concept of polynomially decaying tails, and they

565



Murthy, Juneja, and Blanchet

form an important class of heavy-tailed distributions. See (Embrechts, Klüppelberg, and Mikosch 1997)
or (Borovkov and Borovkov 2008) for a detailed account on regular variation.

2.2 Use of Importance Sampling in Rare Event Simulation

Let (An : n≥ 1) be a sequence of events in the probability space (Ω,F ,P) such that zn := P(An)↘ 0, as
the rarity parameter n grows to infinity. Exact computation of the rare event probabilities motivated by
practical applications is often impossible, and one resorts to obtaining approximate estimates via Monte-
Carlo methods. So given ε and δ > 0, we aim to obtain estimators ẑn for zn such that the relative error
|ẑn− zn|/zn is at most ε with probability at least 1−δ .

In importance sampling for rare event simulation, the general objective is to come up with a sequence
of changes of measure (Pn(·) : n ≥ 1) from which samples of the random variables (Zn : n ≥ 1) can be
obtained that satisfy En[Zn] = zn; here En[·] denotes the expectation operator associated with the measure
Pn(·). Such a sequence of measures (Pn(·) : n≥ 1) and the corresponding unbiased estimators (Zn : n≥ 1)
are collectively referred to as an importance sampling algorithm in this paper. Given an unbiased estimator
Zn for zn, the following procedure yields estimates ẑn that satisfy the above specified relative precision
criterion: Take N i.i.d. replications of Zn and take ẑn as their sample mean. If the number of replications
N is larger than

N(n) =
CV 2[Zn]

δε2 , (1)

we obtain estimators with desired performance due to Chebyshev’s inequality as below:

P
(
|ẑn− zn|

zn
> ε

)
≤ Var(ẑn)

z2
nε2 =

CV 2[Zn]

N(n)ε2 < δ .

The procedure of drawing samples from the original measure P(·) and having Zn = I(An) as the estimator
is referred to as naive simulation. From (1), it can be seen that naive simulation requires zn

−1 ↗ ∞

replications, and hence is not a practically attractive solution. As is well known, the choice P∗n(·) := P(·|An)
as an importance sampling measure yields zero variance for the associated estimator Zn = znI(An) (see e.g.,
(Asmussen and Glynn 2007)). Then, every sample obtained in simulation equals zn with P∗n(·) probability
1. However, the explicit dependence of Zn on zn, the quantity which we want to estimate, makes this
method impractical. Nevertheless it provides useful guidelines in choosing importance sampling change
of measures. Motivated by (1), we have the following efficiency notions that quantify the performance of
importance sampling algorithms:
Definition 1 The sequence (Zn : n≥ 1) of unbiased importance sampling estimators is said to achieve

(a) asymptotically vanishing relative error if CV [Zn] = o(1),
(b) strong efficiency if CV [Zn] = O(1), and
(c) weak efficiency if for every ε > 0,Var [Zn]/z2−ε

n = o(1), as n↗ ∞.

The significance of these definitions can be seen from (1): if an algorithm is strongly efficient, the
number of simulation runs required to guarantee the desired relative precision stays bounded even as n↗∞.
If Var(Zn) = o

(
z2

n
)
, then (Zn : n≥ 1) satisfies asymptotically vanishing relative error property. As a result,

it is enough to generate o(δ−1ε−2) i.i.d. replications of the estimator. As is apparent from the definition,
all strongly efficient algorithms are weakly efficient, and vanishing relative error is the strongest notion
among all three. Also it can be verified that naive simulation is not even weakly efficient.
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3 THE RARE EVENT SIMULATION PROBLEM

Consider a discrete-time ergodic Markov chain ξ = {ξn : n ≥ 1} taking values in a finite state space
χ = {1,2, . . . ,s}. It has a stationary distribution π; that is, for any i, j ∈ χ, there exists limits:

lim
n↗∞

P{ξn = j|ξ1 = i}= π j > 0, satisfying
s

∑
j=1

π j = 1.

We consider the random walk (Sn : n≥ 1) in R with

S0 := 0 and Sn := X1 + . . .+Xn, for n≥ 1

satisfying the following properties:

(a) The increments (Xn : n≥ 1) are conditionally independent given the Markov chain ξ ,
(b) There exists a family of distribution functions {Fk(·) : k∈ χ},whose tail probabilities F̄k(x)= 1−Fk(x)

are regularly varying at infinity, and they satisfy,

P{Xn > x|ξ}= P{Xn > x|ξn}= F̄k(x).

We allow the regularly varying functions to have different indices and slowly varying functions: for
k ∈ χ, the tails F̄k(·) are of the form F̄k(x) = x−αk Lk(x),x ∈ R for slowly varying functions Lk(·)
and indices αk > 1.

For k ∈ χ, name the expectations
∫

∞

−∞
xFk(dx) as µk and define the steady-state mean µπ :=∑

s
j=1 µ jπ j. Under

these conditions we have, Sn/n→ µπ a.s. We are interested in the rare event probabilities P{Sn > nµπ +b},
for large values of n and b. To be precise: Define α := min{α1, . . . ,αs} and β := (α∧2)−1. While studying
these probabilities, without loss of generality, we can take µπ to be zero. From (Borovkov and Borovkov
2008), we have the following asymptotics: for any b > nβ+ε ,

P{Sn ≥ b} ∼ nF̄π(b), as n↗ ∞, (2)

where F̄π(·) = π1F̄1(·)+ . . .+πsF̄s(·) is a regularly function with index α > 1. Given any ε > 0, we are
interested in developing important sampling algorithms for efficiently computing the moderate and large
deviation probabilities P{Sn > b}, for values of b > nβ+ε , as n↗∞. We make the following non-restrictive
technical assumption:

Assumption 1 If
∫

∞

−∞
x2F̄π(dx) = ∞, then limx→∞

Fπ (−x)
F̄π (x)

< ∞.

This assumption just encodes that in case of increments having infinite variance, the heaviest of the
left tails is lighter than the heaviest of the right tails in the family {Fk(·) : k ∈ χ}. If this is not the case, we
just take −α to be the the maximum of the indices of regular variation of all the tails (both left and right)
in the family, set β = α−1, and look for estimating probabilities P{Sn > b} with b > nβ+ε . For example,
if the heaviest tail index in the family is −3/2, then we consider values of b larger than n2/3+ε .

4 SIMULATION METHODOLOGY

In random walks involving heavy tails, it has been well understood that the sum becomes large, most
likely because, one of the increments take a large value; that is, the partial sum sequence witnesses a large
positive jump. This idea, famously referred to as “the big jump principle” has been a recurrent theme in the
simulation of rare events in heavy-tailed random walks. To use this appropriately, we partition the event
of interest {Sn > b} into two components,

Adom(n,b) :=
{

Sn > b,max
k≤n
≥ b
}

and Ares(n,b) :=
{

Sn > b,max
k≤n

< b
}
,
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and estimate their probabilities separately. (Juneja 2007) considered such a decomposition for the estimation
of tail probabilities P{Sn > b} as b↗∞ for a fixed n. We also have, as in (Borovkov and Borovkov 2008),
that:

P{Sn > b} ∼ P
{

Sn > b,max
k≤n
≥ b
}
, as n↗ ∞.

Asymptotically the most likely way for Sn to exceed b is via Adom; thus for large values of n and b, P(Ares)
is vanishingly small compared to P(Adom), which explains naming the events as Adom and Ares.

4.1 Simulation of Adom

When one of the increments X1, . . . ,Xn is large, according to the big jump principle, the sum is also large
with high probability. For efficiently simulating the event Adom, we should choose an importance sampling
measure that induces large positive jumps in the sum with appropriate probabilities that reflect the large
deviations behaviour of Sn. Consider the following sampling procedure:

Algorithm (given n and b > nβ+ε )
Step 1: Simulate a realization {ξ1, . . . ,ξn} according to the original dynamics of the Markov chain ξ

Step 2: Set q←− ∑
n
i=1 F̄ξi(b)

Step 3: Choose I ∈ {1,2, . . . ,n} such that P{I = i}= F̄ξi(b)/q.
Step 4: For j ∈ {1,2, . . . ,n}−{I}, generate independent samples Xj from Fξ j(·)

Step 5: Generate sample XI following distribution
FξI

(dx)

F̄ξI
(b) 1(x≥ b)

Step 6: Set S←− X1 + . . .+Xn and COUNT←− #{i≤ i≤ n : Xi ≥ b}
Step 7: RETURN q ·1(S > b)/COUNT

Let P̃(·) be the probability measure induced in the path space by the above sampling procedure, and
let Ẽ[·] denote the associated expectation operator; for brevity, the dependence on n and b has not been
highlighted in the notation. Note that P(·) is absolutely continuous with respect to the importance sampling
measure P̃(·) when restricted to Adom. The above algorithm might be surprising in the sense that we simulate
the modulating Markov chain according to the original dynamics, and not from some other importance
sampling transition probabilities that favour sampling the increments often from the heaviest of the tails.
But we will show that sampling according to the original dynamics will suffice. We need to argue that
the values returned by the above algorithm are unbiased, and have low variance. The sampling procedure
induces the following probabilities conditional on the realization of the modulating Markov chain ξ :

P̃{X1 ∈ dx1, . . . ,Xn ∈ dxn|ξ1, . . . ,ξn}=
n

∑
i=1

P{I = i} ·
∏

n
j=1P{Xj ∈ dx j}

F̄ξi
(b)

1(xi > b)

=
n

∑
i=1

F̄ξi
(b)

q(ξ1, . . . ,ξn)
· P{X1 ∈ dx1, . . . ,Xn ∈ dxn}

F̄ξi
(b)

1(xi > b),

where q(ξ1, . . . ,ξn) := ∑
n
i=1 F̄ξi

(b). Therefore conditional on the Markov chain realization (ξ1, . . . ,ξn), the
likelihood ratio of P(·) with respect to P̃(·) on the set Adom is q(ξ1, . . . ,ξn)/∑

n
i=1 I(Xi > b). Thus for given

n and b > nβ+ε , the random variable

Zdom(n,b) :=
q(ξ1, . . . ,ξn)

#{1≤ i≤ n : Xi > b}
I(Adom)

is an unbiased estimator of P(Adom) under measure P̃(·). Here Lemma 1 establishes that the estimator has
low variance.
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Lemma 1 Given ε > 0, uniformly for b > nβ+ε ,

Var[Zdom(n,b)] = o
(
P{Sn > b}2) , as n↗ ∞.

Proof. For every k ∈ χ, let Nk := #{1≤ i≤ n : ξi = k}. Then q(ξ1, . . . ,ξn) = ∑
n
i=1 F̄ξi

(b) can alternatively
be written as: q(ξ1, . . . ,ξn) = ∑

s
k=1 NkF̄k(b). Further define,

Yn :=
∑

s
k=1

Nk
n F̄k(b)

F̄π(b)
.

Since #{1≤ i≤ n : Xi > b} is at least 1 on Adom, we have Zdom(n,b)≤ q(ξ1, . . . ,ξn), and hence,

Zdom(n,b)
nF̄π(b)

≤ Yn. (3)

Recall that F̄π(b) = ∑
s
k=1 πkF̄k(b). Therefore,

Yn =
∑

s
k=1

Nk
n F̄k(b)

∑
s
k=1 πkF̄k(b)

≤ ∑
s
k=1 F̄k(b)

∑
s
k=1 πminF̄k(b)

≤ 1
πmin

,

where πmin := min{k ∈ χ : πk}, which is non-zero because of the ergodicity of the Markov chain ξ . For
the same reason, the occupation measures of the Markov chain converge to the stationary distribution π as
in: Nk/n→ πk, as n↗ ∞, for all k ∈ {1,2, . . . ,s}. Thus uniformly for all b, Yn→ 1, as n↗ ∞; and since
|Yn| is uniformly bounded, because of bounded convergence theorem, we have Ẽ[Y 2

n ]∼ 1, as n↗ ∞. Then
given ε > 0, from (3), for large enough values of n, we have:

Ẽ
[
Z2

dom(n,b)
]
≤ (1+ ε)(nF̄π(b))2.

Since Ẽ [Zdom(n,b)] = P{Sn > b} ∼ nF̄π(b) because of (2), we have the desired result on variance of
Zdom(n,b) :

Var[Zdom(n,b)] = o
(
P{Sn > b}2) , as n↗ ∞.

4.2 Simulation of Ares

All the increments X1, . . . ,Xn are bounded (by b) in the set Ares. So we can apply ideas similar to exponential
twisting. Given b > 0, for every k ∈ χ, define Λk(θ) := log

(∫ b
−∞

exp(θx)Fk(dx)
)
, for θ ≥ 0. Consider the

following family of ‘truncated’ and ‘exponentially titled’ distributions:

F̂k(dx) = exp(θn,bx−Λk(θn,b))Fk(dx)1(x≤ b), x ∈ R,k ∈ χ,

with θn,b given by,

θn,b :=
− log(nF̄π(b))

b
. (4)

The sampling procedure will involve simulation of the Markov chain ξ according to its original dynamics
as in the simulation of Adom. Now given the realization {ξ1, . . . ,ξn} of the modulating process, generate
the increments Xi independently according to the exponentially twisted law F̂ξi(·), for i = 1, . . . ,n. This
will result in the following unbiased estimator for P(Ares) :

Zres(n,b) := exp

(
−θn,bSn +

n

∑
i=1

Λξi(θn,b)

)
I(Ares).
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Algorithm (given n and b > nβ+ε )
Step 1: Simulate a realization {ξ1, . . . ,ξn} according to the original dynamics of the Markov chain ξ

Step 2: Set θn,b←−− log(nF̄π(b))/b and C←− Λξ1(θn,b)+ . . .+Λξn(θn,b)

Step 3: For j = 1, . . . ,n, generate independent samples Xj from F̂ξ j(·)
Step 4: Actualize S←− X1 + . . .+Xn
Step 5: RETURN exp(−θn,bS+C)1(S≥ b)

Let P̂(·) be the measure induced by drawing samples according to the above algorithm and let Ê[·] be
the expectation operator associated with P̂(·). Lemma 2, which is proved in the appendix, gives an upper
bound on the normalizing constants exp(Λk(θn,b)).

Lemma 2 Given ε > 0, uniformly for b > nβ+ε and k ∈ χ,

exp(Λk(θn,b))≤ 1+θn,bµk +
F̄k(b)

nF̄π(b)
(1+o(1)), as n↗ ∞.

Lemma 3 Given ε > 0, uniformly for b > nβ+ε ,

Var[Zres(n,b)] = o
(
P{Sn > b}2) , as n↗ ∞.

Proof. Since Sn > b on Ares and bθn,b =− log(nF̄π(b)),

Zres(n,b)≤ exp

(
−θn,bb+

n

∑
i=1

Λξi(θn,b)

)
I(Ares)≤ nF̄π(b)exp

(
n

∑
i=1

Λξi(θn,b)

)
I(Ares).

The second moment can be evaluated as below:

Ê
[
Z2

res(n,b)
]
= E [Zres(n,b)]≤ nF̄π(b)E

[
exp

(
n

∑
i=1

Λξi(θn,b)

)
;Ares

]
. (5)

As before, define Nk := ∑
n
i=1 I(ξi = k), for k ∈ χ. Then ∑

n
i=1 Λξi(θn,b) = ∑

s
k=1 NkΛk(θn,b). Now due to

Jensen’s inequality,

exp

(
n

∑
i=1

Λξi(θn,b)

)
= exp

(
n

s

∑
k=1

Nk

n
Λk(θn,b)

)
≤

(
s

∑
k=1

Nk

n
exp(Λk(θn,b))

)n

.

Given δ > 0, from Lemma 2 we have, exp(Λk(θn,b)) ≤ 1+θn,bµk +(1+ δ ) F̄k(b)
nF̄π (b)

, for large values of n,
and k ∈ χ. We have also used that bθn,b =− log(nF̄π(b)). Since N1 + . . .+Ns = n,

s

∑
k=1

Nk

n
exp(Λk(θn,b))≤ 1+θn,b

s

∑
k=1

Nk

n
µk +

1+δ

nF̄π(b)

s

∑
k=1

Nk

n
F̄k(b).

≤ 1+θn,b

s

∑
k=1

(
Nk

n
−πk

)
µk +

1+δ

nF̄π(b)

s

∑
k=1

(
Nk

n
−πk

)
F̄k(b)+

1+δ

n
,

because ∑
s
k=1 πkµk = µπ = 0 and ∑

s
k=1 πkF̄k(b) =: F̄π(b). Since 1+ x≤ exp(x),(

s

∑
k=1

Nk

n
exp(Λk(θn,b))

)n

≤ exp

(
nθn,b

s

∑
k=1

(
Nk

n
−πk

)
µk +

1+δ

F̄π(b)

s

∑
k=1

(
Nk

n
−πk

)
F̄k(b)+1+δ

)
.
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For δ ′ > 0, define sets B0 :=
⋃

k∈χ{Nk ≤ nπk + n1/2+δ ′} and B j :=
⋃

k∈χ{2 j−1n1/2+δ ′ < Nk − nπk ≤
+2 jn1/2+δ ′}, j ≥ 1. We also have, F̄π(b)≥ πmin ∑k F̄k(b). Then from (5),

Ê
[
Z2

res(n,b)
]
≤ nF̄π(b)exp

(
(1+δ )

(
1+

1
πmin

))
∑
j≥0

exp
(

2 jn1/2+δ ′
θn,b

)
P(B j ∩Ares). (6)

Since the ergodic chain ξ takes values in a finite state space, we have for any j≥ 1,P(B j)≤ cexp(−22 j−1n2δ ′)

for some constant c (Hoeffding-type inequality). Since b > nβ+ε ≥ n1/2+ε , we have n1/2+δ ′θn,b = o(1) if
δ ′ < ε. Therefore,

∑
j≥0

exp
(

2 jn1/2+δ ′
θn,b

)
P(B j ∩Ares)≤ exp

(
n1/2+δ ′

θn,b

)
P(Ares)+ c ∑

j≥1
exp
(
−22 j−1n2δ ′+2 jn1/2+δ ′

θn,b

)
≤ P(Ares)(1+o(1))+O(exp(−n2δ ′)).

Combining this with (6) and the asymptotics that P{Sn > b} ∼ P{Sn > b,Mn ≥ b} ∼ nF̄π(b) as n↗∞, we
have: Var[Zres(n,b)] = o

(
P{Sn > b}2

)
.

Now we have Theorem 1 that comments about the efficiency of the overall estimation procedure.
Theorem 1 If the realizations of the estimators Zdom and Zres are generated respectively from the measures
P̃(·) and P̂(·), and if we let,

Z(n,b) := Zdom(n,b)+Zres(n,b),

then under Assumption 1, the family of estimators (Z(n,b) : n ≥ 1,b > nβ+ε) achieves asymptotically
vanishing relative error for the estimation of P{Sn > b}, as n↗ ∞; that is,

Var [Z(n,b)]

(P{Sn > b})2 = o(1),

as n↗ ∞, uniformly for b > nβ+ε .

Proof. Since the realizations of Zdom and Zres are generated independent of each other, the variance of
Z is just the sum of variances of Zdom and Zres; the proof is now evident from Lemmas 1, 3 and Equation
(2).

A consequence of the above theorem is that, due to (1), the number of i.i.d. replications of Z(n,b)
required to achieve ε-relative precision with probability at least 1−δ is at most o(ε−2δ−1), independent
of the rarity parameters n and b. In our algorithms, each replication demands O(n) computational effort,
thus requiring a overall computational cost of O(n), as n↗ ∞.

5 NUMERICAL EXPERIMENTS

We present the results of numerical simulations for computing large deviation probabilities P{Sn > b} using
our algorithms for the following examples:
Example 1: Consider the time-homogeneous Markov chain ξ taking values in {0,1} with transition
probabilities given by: P{ξn+1 = 1− i|ξn = i}= 2/3, for i= 0,1. The tail probabilities of the corresponding
increment when the Markov chain is in state i is given by, P{Xn > x|ξn = i}= F̄i(x)= (17/12+x)−αi , for x≥
−5/12, with α0 = 3 and α1 = 4; Consider the random walk (Sn : n ≥ 0) with Sn = X1 + . . .+Xn, whose
increments are modulated by the Markov chain ξ . It can be verified that the stationary distribution π of the
Markov chain ξ is πi = 0.5, i ∈ {0,1}, and that the steady-state drift of the random walk Sn is 0. In Table
1, we present the results of our estimation procedure for N = 10000 simulation runs for the computation
of P{Sn > n} for values of n = 100,500 and 1000. From 1, it can be seen that the empirically observed
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Table 1: Numerical result for Example 1 - here Std. error denotes the standard deviation of the estimator of
P{Sn > n} based on 10,000 simulation runs; CV denotes the empirically observed coefficient of variation

n Asymptotic
expression
nF̄π(b)

Proposed estimator
(ẑ) for P{Sn > n}

Std. error CV of ẑ

100 4.84×10−5 4.64×10−5 7.48×10−8 0.16
500 1.99×10−6 1.95×10−6 2.79×10−9 0.14
1000 4.98×10−7 4.92×10−7 6.04×10−10 0.12

coefficient of variation of the estimates is small, and it decreases as n increases.

Example 2: To highlight the superior numerical performance of our state-independent algorithms, we
consider the simple case of i.i.d. increments and compare it with existing algorithms in the literature. Take
X = ΛR, where P{Λ > x} = 1∧ x−4,R ∼ Laplace(1), and Λ is independent of R. Consider the random
walk (Sn : n ≥ 0) with independent increments having the same distribution as that of X . We again use
N = 10,000 simulation runs to estimate P{Sn > n} for n = 100,500 and 1000. In Table 2, we compare
the numerical estimates obtained by our simulation procedure with the true values of P{Sn > n} evaluated
in (Blanchet and Liu 2008) via inverse transform techniques; further, a comparison of performance of
our methodology with Algorithms 1 and 2 in (Blanchet and Liu 2008) (referred to as BL1 and BL2) has
also been presented. From the columns CV, CV of BL1, and CV of BL2, it can be inferred that our
state-independent simulation procedures yield estimators with substantially lower coefficient of variation
throughout the range of values considered.

Table 2: Numerical result for Example 2 - here Std. error denotes the standard deviation of the estimator of
P{Sn > n} based on 10,000 simulation runs; CV denotes the empirically observed coefficient of variation

n P{Sn > n} Proposed Estimator
(ẑ) for P{Sn > n}

Std. error CV of ẑ CV of BL1 CV of BL2

100 2.21×10−5 2.17×10−5 4.31×10−7 1.97 10.3 4.7
500 1.04×10−7 1.05×10−7 6.91×10−10 0.66 1.0 4.1
1000 1.25×10−8 1.29×10−8 6.91×10−11 0.53 1.1 3.8

6 Conclusions

In this paper we have presented the first provably efficient rare event simulation estimator for large deviations
probabilities in the context of heavy-tailed Markov random walks. In contrast to recent estimators that
have been developed, using state-dependent importance sampling, and Lyapunov inequalities, our estimator
is based on static mixtures of state-independent importance sampling distributions. These mixtures are
obtained by decomposing the large deviations event of interest into components that can be treated easily
either by the so-called principle of the big jump or by applying standard exponential tilting to suitably
truncated random variables. We believe that the principles developed in this paper have further applicability
beyond our current settings.

A APPENDIX

Here we prove Lemma 2 after establishing the following sequence of results.
Lemma 4 The distribution function F(·) is such that F̄(x) := 1−F(x) = x−αL(x) for some slowly varying
function L(·) and α > 1. Let µ :=

∫
∞

−∞
xF(dx). Then for any pair of sequences {xn},{φn} satisfying xn↗∞
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and φnxn↗ ∞, the integral,∫ xn

−∞

eφnxF(dx)≤ 1+φnµ + cφ
κ
n + e2α F̄

(
2α

φn

)
+ eφnxn F̄(xn)(1+o(1)), as n↗ ∞,

for any 0 < κ < α ∧2, and some constant c which does not depend on n and b.

Proof. Let I1 :=
∫ γ/φn
−∞ eφnxF(dx) and I2 :=

∫ xn
γ/φn

eφnxF(dx). Then we have,

I1 ≤
∫

γ/φn

−∞

F(dx)+φn

∫
γ/φn

−∞

xF(dx)+φ
κ
n

∫
γ/φn

−∞

|x|κeφnxF(dx)

≤
∫

∞

−∞

F(dx)+φn

∫
∞

−∞

xF(dx)+φ
κ
n eγ

∫
∞

−∞

|x|κF(dx)

= 1+φnµ + cφ
κ
n , (7)

where c := eγ
∫

∞

−∞
|x|κF(dx) < ∞ because E|X |κ < ∞, which in turn is true because κ < α and from

Assumption 1. We have also used EX = 0 to arrive at (7). Integrating by parts for the second integral I2 :

I2 =−
∫ xn

γ/φn

eφnxF̄(dx) = eφnγ/φn F̄(γ/φn)− eφnxn F̄(xn)+φn

∫ xn

γ/φn

eφnxF̄(x)dx

≤ eγ F̄(γ/φn)+ I′2, (8)

where, I′2 := φn
∫ xn

γ/φn
eφnxF̄(x)dx. Now changing variable to u = φn(xn− x) results in:

I′2 = eφnxn

∫
φnxn−γ

0
e−uF̄

(
xn−

u
φn

)
du = eφnxn F̄(xn)

∫
φnxn−γ

0
e−ugn(u)du, (9)

where gn(u) := F̄ (xn−u/φn)/F̄(xn) = F̄ (xn (1−u/φnxn))/F̄(xn). Since L(·) is slowly varying and φnxn→
∞, given any δ > 0, for all n large enough we have:

(1−δ )

(
1− u

φnxn

)−α+δ

≤ gn(u)≤ (1+δ )

(
1− u

φnxn

)−α−δ

.

This preliminary fact about slowly varying functions can be found in, e.g., Theorem 1.1.4 of (Borovkov
and Borovkov 2008). So for any fixed u, we have gn(u)→ 1 as n↗ ∞. Now fix δ = α

2 . Then for n

large enough, gn(u) ≤ (1+α/2)(1−u/φnxn)
− 3α

2 . Let h(u) = (1−u/φnxn)
− 3α

2 . Since logh(0) = 0 and
d
du (log(h(u))≤ 3α

2γ
for 0≤ u≤ φnxn−γ, we have h(u)≤ e

3αu
2γ on the same interval. Therefore if we choose

γ = 2α, the integrand in I′2 is bounded for large enough n by an integrable function as below:∣∣e−ugn(u)1{0≤u≤φnxn−γ}
∣∣≤ ∣∣∣e−u

(
1+

α

2

)
h(u)1{0≤u≤φnxn−γ}

∣∣∣≤ (1+
α

2

)
e−u+ 3αu

2γ =
(

1+
α

2

)
e−

u
4 .

Applying dominated convergence theorem, we get
∫ φnxn−γ

0 e−ugn(u)du∼ 1 as n↗∞. Since
∫ xn
−∞

eφnxF(dx) =
I1 + I2, combining this result with (7), (8) and (9), completes the proof.

Lemma 5 Given any ε > 0, for θn,b as in (4), uniformly for b > nβ+ε and k ∈ χ,

(a) nθ κ
n,b↘ 0 for some κ ∈ (0,α ∧2), and (b) F̄k

(
2α

θn,b

)
= O

( 1
n

)
, as n↗ ∞.
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Proof. (a) We have F̄π(x) = x−αLπ(x), for some slowly varying function Lπ(·). Given any δ > 0 for
sufficiently large values of b, we have b−δ ≤ Lπ(b) ≤ bδ because of the slowly varying nature of Lπ(·).
Therefore we have Lπ(b) = bo(1) as b↗ ∞. Further noting that b > nβ+ε helps us to write:

nθ
κ
n,b =

n
bκ

logκ

(
1

nF̄(b)

)
≤ n1−κ(β+ε) logκ

(
bα

nLπ(b)

)
.

Take κ :=

{
2, if α > 2
(1+ ε)/( 1

α
+ ε), if 1 < α ≤ 2.

(10)

Then κ < α, and κ(β + ε)≥ 1+ ε/2. Then nθ κ
n,b↘ 0 as n↗ ∞, uniformly for b > nβ+ε .

(b) Since θn,b =− log(nF̄π(b))/b, and F̄k(·) is regularly varying, given any δ > 0, for n large enough,

F̄k

(
2α

θn,b

)
F̄k(b)

=
F̄k

(
2αb

− log(nF̄π (b))

)
F̄k(b)

≤
(
− log(nF̄π(b))

2α

)α+δ

.

The above inequality is just an application of Theorem 1.1.4 of (Borovkov and Borovkov 2008). Therefore,

nF̄k

(
2α

θn,b

)
≤ n

Lk(b)
bαk

(
− log(nF̄π(b))

2α

)α+δ

= o(1), uniformly for b > nβ+ε as n↗ ∞.

Here the convergence to 0 is justified because αk ≥ α and b > nβ+ε .

Proof of Lemma 2
From the definition of Λk(·) and Lemma 4, we have:

exp(Λk(θn,b)) =
∫ b

−∞

exp(θn,bx)Fk(dx)

≤ 1+θn,bµk + cθ
κ
n,b + e2α F̄k

(
2α

θn,b

)
+ exp(θn,bb)F̄k(b)(1+o(1)),

for κ as in (10). Usage of Lemma 4 is justified because θnb =− log(nF̄π(b))↗ ∞. From Lemma 5, we
have nθ κ

n,b = o(1) and F̄k

(
2α

θn,b

)
= o

( 1
n

)
, uniformly for b > nβ+ε . Therefore,

exp(Λb(θn))≤ 1+θn,bµk +
F̄k(b)

nF̄π(b)
(1+o(1)) , as n↗ ∞,

thus proving the result. 2
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