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ABSTRACT 

Computer models are widely used to simulate complex and costly real processes and systems.  In the cali-

bration process of the computer model, the calibration parameters are adjusted to fit the model closely to 

the real observed data. As these calibration parameters are unknown and are estimated based on observed 

data, it is important to estimate it accurately and account for the estimation uncertainty in the subsequent 

use of the model. In this paper, we study in detail an empirical Bayes approach for stochastic computer 

model calibration that accounts for various uncertainties including the calibration parameter uncertainty, 

and propose an entropy based criterion to improve on the estimation of the calibration parameter.  This 

criterion is also compared with the EIMSPE criterion.  

1 INTRODUCTION 

Computer models are commonly used as a tool to study and evaluate the performance of complex sys-

tems.  When the computer model is applied to evaluate various policy scenarios or is used to predict the 

behavior of the real system, it is important to obtain accurate calibration parameters and also to improve 

the model’s predictive accuracy and capability.  In computer model analysis, both validation and calibra-

tion are closely related to the model’s predictive performance.  Validation is the process of ensuring that 

the computer model accurately represents the real process, while calibration is the process of adjusting the 

unknown input parameters of the computer model to fit the real observed data.  This is done by compar-

ing the computer model output with the observed data.  These unknown input parameters are usually un-

observable or unmeasurable in the real process but need to be specified in the computer model.  Trucano 

et al. (2006) and Oberkampf and Roy (2010) provide comprehensive discussions about the differences be-

tween calibration and validation for computational science and engineering.  In this paper, we focus on 

studying calibration procedures to update the model.   

In many practical applications, calibration parameters can significantly influence the performance of 

the computer model.  The importance of model calibration has been recognized in many practical prob-

lems, such as in macroscopic traffic simulation model calibration, Lee and Ozbay (2009), node calibration 

of wireless sensor networks, Cho et al. (2010), and healthcare microsimulation model calibration, Rutter 

et al. (2009).  

Various approaches have been proposed for computer model calibration. One approach is to use an 

effective and efficient search algorithm that is directly applied to the computer model, such as stochastic 

approximation methods discussed by Yuan et al. (2013a).  However, this approach may not be efficient 
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when the computer models are extremely time consuming and computationally expensive as it usually 

requires a relatively large number of simulation runs.  Another popular and much more efficient approach 

is to use surrogates. These simpler and faster statistical approximations are used in the calibration process 

instead of the original complex computer models.  More discussion on developing surrogates for comput-

er models can be found in Kennedy and O’Hagan (2001), Santner et al. (2003).  

 In the development and use of the surrogate, various sources of uncertainties are introduced.  These 

include parameter uncertainties (including calibration parameter uncertainty), model inadequacy, residual 

variability and observation error.  When the model is subsequently used for evaluation and decision mak-

ing, not only the point estimator but also the uncertainty information about the estimator is required to 

better reflect the overall confidence in the estimator and to provide for more informed decisions.  There-

fore, it is important to account for various uncertainties in predicting the behavior of the real process.  

Within these uncertainties, calibration parameter uncertainty sometimes can have significant effects on 

overall predictive uncertainty. Therefore, it is important to consider this uncertainty and its effects on the 

subsequent prediction in many applications.  Yuan and Ng (2013b) proposed a Bayesian approach for sto-

chastic computer model calibration using the Gaussian process (GP) as a surrogate model.  Their ap-

proach accounts for all sources of uncertainty in the computer model analysis including the calibration pa-

rameter uncertainty.  To provide for faster analytical calibration and prediction results, an approximation 

based on the estimation of several hyperparameters was also provided.  The effects of these estimations 

under various data and noise scenarios however were not well studied.  

 The purpose of this article is to study in more detail the model calibration approach developed in Yu-

an and Ng (2013b), and study the effects of estimating certain parameters in the approximated approach 

with the fully Bayesian MCMC approach.  In addition a new sequential criterion is proposed to improve 

on some of the shortcomings observed in the approximation method. This paper is organized as follows. 

In section 2, we review the model for calibration and prediction for stochastic computer models. In sec-

tion 3, we study in detail the effects of noise and design size on the predictive performance.  In section 4, 

we propose a new calibration design criterion to improve the performance of the approach.  Finally in sec-

tion 5, a numerical example is provided to illustrate the new criterion within the approach.  A comparison 

is also made with the previously proposed EIMSPE criterion. 

2 MODEL FORMULATION 

2.1 Stochastic Model 

Based on the model proposed by Kennedy and O’Hagan (2001), the relationship between the real obser-

vation and simulation output can be represented by  

        ( ) ( , ) ( )i i i i i iz x e S x x e       ,          

where zi is the ith real observation at input level xi, ζ(xi) is the true output from the real process, S(xi,θ) 

represents the “true” simulation output at xi and the optimum calibration parameter θ. Similar to previous 

works, the optimum θ is viewed as the value that best fits the computer model output to the real process. 

δ(xi) is the model inadequacy or discrepancy term, which is considered to be independent of S(xi,θ), and ei 

is the observation error. More discussions about this relationship can be found in Kennedy and O’Hagan 

(2001); Yuan and Ng (2013b).  

 S(xi,θ) is considered deterministic in most studies, where the computer model output is always identi-

cal with the same inputs xi and θ. In many practical applications, the computer models built are stochastic. 

This means that simulations at the same input levels give different outputs. One typical way to represent 

the relationship between the observed and expectation of the stochastic simulation output (Yuan and Ng, 

2013b) is  

         ( , ) ( , )i i iy x S x    ,             
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where S(xi,θ) denotes the expectation of the stochastic simulation output for a given xi and θ, ( , )iy x   is 

the observed stochastic simulation output or the average of several stochastic simulation output replica-

tions under a specified xi and θ, and εi is the sampling variability inherent in the stochastic simulation. 

2.2 Gaussian Process Model 

Gaussian process (GP) models have been widely used as surrogates of computer models because of their 

flexibility and convenience (Kennedy and O’Hagan, 2001), and comprehensive details of this form ap-

plied to computer models can be found in Santner et al. (2003).  In this paper, the Gaussian process model 

is used as a surrogate model for the computer model and the following assumptions are made:  

1) The computer model output S(x,t) is a Gaussian process with mean μS(x,t)=hS(x,t)
T
βS and covari-

ance function 2
SS R , where t denotes the specified input calibration parameter value which can be 

controlled in the computer model. Here t is used to distinguish between the optimum unknown 

calibration parameter value  that we want to calibrate for the computer model. 

 ,1 ,( , ) ( , ),..., ( , )
S

T

S S S kh x t h x t h x t  is a vector of kS functions of x and t and  ,1 ,,...,
S

T

S S S k    is 

a vector of kS unknown coefficients. The correlation function RS has an exponential form  

2 2
, , , , , ,

1 1

(( , ),( , )) exp{ ( ) } exp{ ( ) }
x

p q

S i i j j S u i u j u S v i v j v
u v

R x t x t x x t t


 
 

       ,  

where p is the dimension of x, q is the dimension of θ. The parameters , 0
xS u  and , 0S v

  . We 

write  ,1 , ,1 ,,..., , ,...,
x x

T

S S S p S S q 
     . εi is treated as a nugget effect with εi~N(0, 2

  ) for all i. It 

should be noted that this is just one possible form assumed for illustrative purpose and other 

forms can also be used. More details on various different correlation forms can be found in Cres-

sie (1993). 

2) The model inadequacy term δ(x) is a Gaussian process with mean μδ(x)=hδ(x)
T
βδ and covariance 

function σδ
2
Rδ, where  ,1 ,( ) ( ),..., ( )

T

kh x h x h x
    is a vector of kδ functions of x, 

 ,1 ,,...,
T

k      is a vector of kδ unknown coefficients, and Rδ has an exponential form 

2
, , ,

1

( , ) exp{ ( ) }
p

i j u i u j u
u

R x x x x 


   , where ϕδ,u>0. We write ϕδ=(ϕδ,1,…,ϕδ,p)
T
. 

3) The observation error e has a normal distribution with mean 0 and variance σe
2
. 

4) S(x,θ), δ(x), ε and e are mutually independent. 

2.3 Bayesian Calibration 

In the stochastic model defined in Section 2.1 and the GP model defined in Section 2.2, the parameters 

that need to be specified are: {βS, σS
2
, ϕS, βδ, σδ

2
, ϕδ, σε

2
, σe

2
, θ}.  One advantage of using the Bayesian ap-

proach is that we can use the prior knowledge about the computer model and the real process to quantify 

the uncertainties of these parameters by assigning prior distributions on these parameters.  Therefore, we 

can quantify various uncertainties including model inadequacy, observation error, inherent stochastic er-

ror, surrogate model uncertainty and calibration uncertainty.  Further assuming that θ is an independent 

parameter and with assumption 4 above, we have that {θ}, {βS, σS
2
, ϕS}, {βδ, σδ

2
, ϕδ}, {σε

2
} and {σe

2
} are 

mutually independent.  We further assume that {βS, σS
2
} and {ϕS} are independent; {βδ, σδ

2
} and {ϕδ} are 

independent.  Then we can write the prior distribution as  

          
2 2 2 2 2 2 2 2( , , , , , , , , ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( )S S S e S S S ep p p p p p p p                         .      

We further define τ1
2
=σε

2
/σS

2
, τ2

2
=σδ

2
/σS

2
, and τ3

2
=σe

2
/σS

2
, which are reparameterized for the conven-

ience of integrating out σS
2
 in the posterior analysis.  We let τ

2
={τ1

2
,τ2

2
,τ3

2
}, β=(βS

T
,βδ

T
)

T
, 

σ
2
={σS

2
,σε

2
,σδ

2
,σe

2
} and ϕ={ϕS,ϕδ}.  There are two sets of observable data in the stochastic model calibra-

tion, which are the real observations z = (z1, z2,…, zN)
T
 at N input points from the real process and the ob-
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served stochastic simulation outputs 1 2( , ,..., )T
ny y y y  at n input points from the stochastic computer 

model.  Then the full set of observed data is ( , )T T Td y z , which is assumed to be normally distributed 

given {θ,β,σ
2
,ϕ}.  This will yield the likelihood function p(d|θ,β,σ

2
,ϕ). With the given prior distributions, 

the full posterior distribution of all the parameters can be obtained. 

   2 2 2 22 2( , , , , , , , , ), , , | , , ,|S S S ep d p dp                  

Furthermore, the marginal of   |p d , describes the uncertainty surrounding the calibration parameter, 

and is important for determining the estimate of  (e.g. in the setting of  for future computer runs).  Fu-

ture predictions can be made for the computer model and the real process.  

                         
2 2 2( | ) ( | , , , , ) ( , , , | )p Z d p Z d p d d d d d                                               (1) 

 Different priors can be adopted in the Bayesian analysis, depending on the prior information availa-

ble.  The advantage of this Bayesian approach is that with the observed data, it provides a quantification 

of the uncertainty about θ, and accounts for the parameter uncertainties in the subsequent predictions with 

the model.  In this paper, we adopt mathematical convenient priors, where βS and βδ are assumed to have 

multivariate normal distributions conditional on σS
2
 and σδ

2
 respectively, σS

2
, σδ

2
, σε

2
 and σe

2
 are assumed 

to have inverse gamma distributions, ϕS and ϕδ are assumed to have gamma distributions.  A uniform prior 

is placed on the calibration parameter θ.  More details about these prior distributions can be found in Yu-

an and Ng (2013b). 

 With the given prior distributions, a closed form joint posterior distribution of θ, τ
2
 and ϕ 

2( , , | )p d   can be obtained.  However, it is not practical to further integrate out the parameters ϕ and τ
2
 

to obtain the posterior distribution of the calibration parameter p(θ|d) for a fully Bayesian analysis.  Alt-

hough the MCMC approach can be used to integrate numerically, it significantly increases the computa-

tional cost while the improvement on the model predictive performance may not be significant. Therefore, 

the parameters ϕ and τ
2
 are first estimated and an empirical Bayes approach taken instead.  These parame-

ters can then be estimated by the modes of the joint density.  Yuan and Ng (2013b) proposed an approach 

to estimate them in two steps.   

 In the first step, data y  is used to estimate parameters ϕS and τ1
2
 by maximizing their posterior 

distribution.  

 In the second step, data d is used to estimate the remaining parameters ϕδ, τ2
2
 and τ3

2
 by the EM 

algorithm given the estimated ϕS and τ1
2
 from the first step.  In this procedure,  is treated as a la-

tent parameter.  The complete procedure is detailed in Yuan and Ng (2013b).  

 With the estimated parameters ̂  and̂ , the conditional posterior distribution p(θ|̂ ,̂ ,d) can be used 

to make inference about θ, such as quantifying the calibration parameter uncertainty.  This uncertainty 

can be accounted for in the subsequent prediction by integrating out θ with respect to p(θ| ̂ ,̂ ,d) in (1).  

However, with  present in the joint posterior density, and treated as a latent parameter in the EM ap-

proach, the accuracy of these estimated parameters is closely related to the accuracy of the estimated cali-

bration parameter value.  More specifically, it is closely related to the estimated posterior mode of the cal-

ibration parameter.  Due to the dependency of the parameters in this estimation approach, the selection of 

data points and accuracy of the calibration parameter can affect estimated parameters and the predictive 

performance of the model.   

In the next section, we study in detail the effects of estimating these parameters on the calibration pa-

rameter and on the subsequent use of the model for predictions under different initial data scenarios.  

3 A NUMERICAL STUDY 

In this section, we numerically examine the effects of different initial data and process on the calibration 

and prediction performance. Specifically, we vary the random noise level and design size. 
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3.1 A Kinetic Model Example 

The model used in this example is based on Loeppky et al. (2006), which predicts the concentration y(x) 

of the chemical as a function of time x, with mean response governed by the equation 

ϕ(x|T)=u+r0exp(−Tx), where u represents the residual concentration of the chemical at the end of the reac-

tion process, r0 is the initial concentration of the chemical and T is an unknown decay rate that is specific 

to the chemical reaction under consideration.  The real process model is assumed to be 

z=ϕ(x|T=1.7)=1.5+3.5exp(-1.7x)+e, where x∈[0,3] and e~N(0,0.1). We further suppose that the stochastic 

computer model is coded as y=κ(x,θ)=5exp(-θx)+ε, where ε~N(0,σ
2
). In modeling, the Gaussian process 

surrogate model is assumed to have a constant mean, which is reasonable in many practical applications 

(Santner et al., 2003). Similar to Qian and Wu (2008), we select the “location-flat” priors N(0,σS
2
) and 

N(0,σδ
2
) for βS and βδ. The “vague” prior IG(2,1) is chosen for σS

2
, σδ

2
, σε

2
 and σe

2
, and G(2,0.1) is chosen 

as prior for each element in ϕ. 

We vary the value of the variance σ
2
 and the number of initial data points to assess their effects on the 

calibration accuracy and the predictive performance. The experimental data for the real process is collect-

ed at different input points that are evenly distributed between 0 and 3.  Only one observation is taken at 

each input point. The latin hypercube design method is used to collect the initial computer experimental 

design input sets with x∈[0,3] and t∈[0,2]. Each input has 100 replications and the mean is taken as the 

simulation output.  

First, we examine the effects of different values of the variance σ
2
 on calibration and prediction per-

formance. We choose initial 15 real process design points and 30 computer model design points. The val-

ue of variance σ
2
 is set to be low (100) and high (10000). The posterior distribution of the calibration pa-

rameter for different variance values together with the target posterior distribution obtained with a large 

set of data (50 real process design points and 150 computer model design points) are shown in Figure 1a.  

As expected, the results show that the posterior distribution of the calibration parameter for low variance 

scenario is closer to the target posterior than the posterior for high variance scenario. To further assess the 

effects on the predictive performance, we first compute the average values and the variances of the esti-

mated parameters of the surrogate model over 10 macroreplications for different variance levels.  The re-

sults are given in Table 1 which shows that the accuracy of the parameters are significantly affected when 

the variance is high.  The average root mean square prediction error (RMSPE) of the real process over 10 

macroreplications of the design is also provided.  The results show that the predictive performance is sig-

nificantly worse in the high variance case.  The average RMSPE is also computed when the MCMC ap-

proach is applied in both cases, with results 1.453 (low variance case) and 2.327 (high variance case).  In 

summary, the results show that the inherent noise in the computer model will influence the accuracy of 

the calibration parameter and can affect the accuracy of the plug-in parameters and the model predictive 

performance.  

Next, we assess the effects of the size of the initial data on the calibration and prediction performance. 

The value of the variance σ2
 is set at 100. We compare the calibration and prediction performance for 

small initial data design (with 10 real process design points and 20 computer model design points) and 

large initial data design (with 20 real process design points and 50 computer model design points). The 

posterior distributions of the calibration parameter for different set of initial data together with the target 

posterior are shown in Figure 1b. As expected, the posterior distribution of the calibration parameter with 

more initial data is closer to the target posterior than with less initial data. Table 2 gives the average value 

and variance of the estimated parameters. The average RMSPE over 10 macroreplications for different 

sets of initial data are also provided.  Here we observe that with a larger initial design, more accurate 

model parameter estimates can be obtained, providing for a more accurate empirical Bayes approach in 

modeling and prediction.  The average RMSPE is also computed for the MCMC approach with 0.213 

(less initial data) and 0.105 (more initial data).  It can be seen that more initial data results in better cali-

bration performance and also results in more accurate estimated parameters. Hence better surrogate model 

593



Yuan and Ng 

 

 

and better predictive performance can be obtained. When the initial data is small, the calibration accuracy 

will significantly influence the accuracy of the estimated parameters and also the predictive performance.  

 
Figure 1. (a) Posterior distributions of the calibration parameter for different variances of the stochastic 

error together with target posterior. (b) Posterior distributions of the calibration parameter with different 

number of initial data together with target posterior 

Table 1. Mean (variance) of the plug-in parameters estimated for different variance and the target values 

obtained with sufficient data. 

Variance 

level xS  S    τ1 τ2 τ3 
 

RMSPE 

Low 
0.625

*† 

(0.0122) 

1.587
*† 

(0.0621) 

4.595
*† 

(0.6757) 

0.152
*†  

(7.710
-4

) 

0.349†  

(1.810
-4

) 

0.293
*†  

(6.310
-4

) 

 

1.487
**

 

High 
0.826* 

(0.0164) 

4.283* 

(0.1137) 

8.778* 

(1.0123) 

0.351*  

(8.910
-4

) 

0.098*  

(1.910
-4

) 

0.086*  

(7.910
-4

) 

 

2.364 

Target  0.504 1.145 3.512 0.103 0.378 0.342  

*Significantly different from Target at =0.05; †Significantly different from (High) at =0.05; 
**

Significantly smaller than 

(High) at =0.05 

Table 2. Mean (variance) of the plug-in parameters estimated for different number of initial data and the 

target values obtained with sufficient data. 

No. of ini-

tial data xS  S    τ1 τ2 τ3 
 

RMSPE 

Large 
0.525† 

(0.0122) 

1.139† 

(0.0512) 

3.682
*† 

(0.8147) 

0.109†  

(6.910
-4

) 

0.369†  

(1.310
-4

) 

0.348†  

(6.210
-4

) 

 

0.109
**

 

Small 
0.893

*
 

(0.0176) 

5.843
*
 

(0.1472) 

7.176
*
 

(1.1738) 

0.289
*
  

(8.310
-4

) 

0.093
*
  

(1.410
-4

) 

0.087
*
  

(7.210
-4

) 

 

0.217 

Target  0.504 1.145 3.512 0.103 0.378 0.342  

*Significantly different from Target at =0.05; †Significantly different from (Small) at =0.05; 
**

Significantly smaller than 

(Small) at =0.05 

 

The above results indicate that when the initial set of data is sufficient and/or stochastic noise is 

small, the empirical Bayes approach (with the partially estimated model parameters) perform reasonably 

well, and the additional computational time required for a fully Bayesian MCMC approach is not neces-

sary.  However, when the initial data is insufficient (not enough simulation replications when the stochas-
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tic error is large or the number of the initial data is limited), the accuracy of the calibration parameter and 

the partially estimated model parameters can be affected in the Bayesian approach.  These will further af-

fect the predictive performances of the model.  In such cases, the MCMC approach may provide more ac-

curate predictions (with slightly smaller RMSPE values), but the time required to obtain the calibration 

and prediction results is about 23 times longer. 

From these observations, we see that if the set of initial data can be increased and/or noise reduced 

(by potentially increasing the replications), the model calibration and predictions can be improved without 

requiring time consuming MCMC analysis.  In the next section, we propose a follow-up design criterion 

that can be used to improve the model and its predictive performance.   

4 AN ENTROPY BASED CRITERION 

As seen in the previous section, in situations where the results from initial experiments indicate that the 

data is insufficient (resulting in a poor fit) or the uncertainty in the calibration parameters are still high, 

further data can be collected to improve on the model before it is applied.  Furthermore, due to the de-

pendencies of the parameters in the EM estimation approach, the accuracy of the calibration parameters  

can affect the estimation and use of the model.  In this section, we propose an entropy based criterion that 

balances the selection of computer design points and real process design points in a way that improves on 

the uncertainty in the calibration parameter.  This not only provides for better model estimations (in the 

EM algorithm) but also provides for more accurate estimates of the calibration parameter in the eventual 

use of the computer model.  Here for the purpose of calibration and subsequent prediction, we assume 

that both computer model and real process are available for additional sampling (although at different 

costs) in a follow-up experiment. 

4.1 Formulation of Entropy Criterion 

Entropy is intended to be a measure of the anticipated uncertainty of a random variable. Several authors 

(see e.g. Santner et al. (2003); Lindley (1956); Shewry and Wynn (1987)) proposed the use of the ex-

pected decrease in entropy given by an experiment as an optimal design criterion to select the values for 

the design parameters for the experiment.  Here, we adopt this idea to select the experiments so as to max-

imize the gain in information of the calibration parameter.  In this approach, the entropy criterion is used 

to quantify the knowledge about the calibration parameter and find the next design point that best im-

proves the knowledge of the parameter.  

The entropy of the calibration parameter θ before the experiment is defined as 

( ) ( )ln( ( ))H p p d    , where p() is the prior density function of .  The conditional entropy of θ af-

ter the experiment using design D is defined as ( | ) ( | )ln( ( | ))H D p D p D d    .  Then, the optimal en-

tropy design can be obtained by maximizing the expected change in entropy  max ( ) ( | )
D

E H H D  . 

Since H(θ) is independent of design D, the optimal entropy design is obtained by minimizing the expected 

conditional entropy  

    
 min ( | )

D
E H D .    

As this design is applied as a follow-up after the initial experiment is conducted and d observed, this can 

be written as  

    
 min ( | , )

D
E H D d .    

4.2 Design Sampling 

Here, the design decision involves deciding the allocation of the additional resources to the computer runs 

or the real process runs.  In practical applications, the real process runs are generally preferred if they are 
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available.  However, real process runs are usually expensive and can be quite time consuming to obtain.  

On the other hand, computer model data (although cheaper) does provide more information about the 

computer model itself.  Therefore, a better surrogate model can be obtained.  In addition, for the calibra-

tion purpose, more computer model data can also result in better calibration parameter values if it can 

provide for a better surrogate model.  In this paper, we use the calibration parameter model, which is sub-

sequently used for calibration and predictions of the system, as a means to determine allocation. The allo-

cation procedure is as follows.  

First, before the resource allocation is decided, the cost comparison between a computer model run 

and a real process run is required. Assume the cost of adding one real process follow-up design point is 

equal to the cost of adding ω computer model follow up design points. 

Second, find the new real process design point and calculate the anticipated optimal entropy value if 

the additional resource is allocated to the real process. Let p(ζr|d) denote the predictive distribution of the 

real process output at new design point xr conditional on the initial data d.  Given this predictive distribu-

tion and the conditional posterior distribution of θ, the expected conditional entropy given the candidate 

design point xr can be obtained by  

    ( | , , ) ( | ) ( | , , )ln ( | , , )
r rr r r r r r r rE H d x p d p d x p d x d d         


   ,   (2) 

where the expectation is taken with respect to the predictive random variable Zr of the real process output 

ζr and Θ is the domain of θ. Then the optimal follow up design point for the real process can be found by  

 * argmin ( | , , )
r

r

r r r
x

x E H d x 


 ,   (3) 

where X is the design space of x.  

Third, find the ω new computer model design points and calculate the anticipated optimal entropy val-

ue if the additional resource is allocated to the computer experiments. Let Dc
ω
={(x1,t1),(x2,t2),…,(xω,tω)} 

denote the ω new design points and sc
ω
={s1,s2,…,sω} denote the simulation outputs for these ω design 

points.  Let ( | )cp s y  denote the predictive distribution of the simulation outputs at the new design points 

conditional on the initial observed simulation outputs y .  Then the expected conditional entropy given 

the candidate design points Dc
ω
 can be obtained by 

   S S
( | , , ) ( | ) ( | , , )ln ( | , , )

c c
c c c c c c c cE H d D s p s y p d D s p d D s d ds 

          


          (4) 

where the expectation is taken with respect to the predictive random vector Sc
ω
 of the simulation outputs. 

Then the optimal next evaluation points can be found by  
*

S
{ , , for all }

argmin ( | , , )
c

c i i

c c c
D x t i

D E H d D s



  
 

    .                                                (5) 

Finally, compare *

S
( | , , )

c
c cE H d D S

     and *( | , , )
r r rE H d x Z     to decide the allocation of the re-

sources. If *

S
( | , , )

c
c cE H d D S

    < *( | , , )
r r rE H d x Z    , ω more computer experiments should be 

conducted. If * *

S
( | , , ) ( | , , )

rc
c c r rE H d D S E H d x Z

         , one more real process data point should 

be collected.   

 Here we consider only one additional real process run compared to ω computer model runs. It is easy 

to extend this to more than one real process run by replacing xr with more points.  It can be further ex-

tended to split the resources between the computer model and the real process either through allocating 

the resources point by point until the budget is exhausted or by comparing the performances of all possi-

ble resources allocation combinations.  For situations where only computer experiments are available for 

sequential design, the optimal design points can be obtained using only Equation (5). 

 To search for the optimal follow-up design points, the expected conditional entropy (Equations 2 or 

4) has to be computed, and Monte Carlo integration can be applied to evaluate this.  Here, we adopt a dis-

cretization approach proposed by Vasicek (1976) for the evaluation of entropy to facilitate the computa-
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tions.  In addition, the minimization of Equations (3) and (5) can be done using standard optimization 

functions in MATLAB.   

 After the follow up design points with the minimized entropy are obtained, the computer model ex-

periments or the real process experiments are run at these points to obtain the new experimental data.  

These new data are then added to the original data to implement the calibration procedure again.  The 

predictive distribution is similarly updated with the new data.   

5 NUMERICAL RESULTS 

In this section, we illustrate the use of the proposed calibration criterion with the example from Section 3.  

In this example, we consider the case where 2
=100.  We adopt the same surrogate model form and prior 

settings as in Section 3.  To assess its calibration and predictive performance, the proposed entropy crite-

rion is also compared to the Expected Integrated Mean Squared Prediction Error (EIMSPE) criterion.  

This criterion was previously proposed by Yuan and Ng (2013b), and focused solely on reducing the 

overall prediction error based on the estimated model.   

5.1 Kinetic Model Example 

To consider the allocation of additional resources with the entropy based criterion, it is assumed that the 

cost of adding one real process design point is equal to the cost of adding two computer model design 

points.  4 initial real process points are evenly sampled between 0 and 3, and an initial 10 point LHD is 

used for the computer model with  0,3x and  0,2t , and 100 replications taken at each design point.   

 Considering an additional 5 real process design points or 10 computer model design points can be se-

lected, Equations (3) and (5) are used to determine the optimal real process design points and computer 

design points respectively, and compared to determine the optimal entropy design points.  This resulted in 

additional data points collected at the optimal computer model design points.  Figure 2 shows the posteri-

or distributions of the calibration parameter for the two different allocation choices and the target posteri-

or distribution.  The figure indicates graphically that the posterior distribution with more computer model 

data is closer to the target posterior. For more accurate comparison, we calculated the average posterior 

mean, mode and variance of the calibration parameter for both allocation choices and the target posterior.  

The results are given in Table 3.  It shows that the posterior mean and mode obtained with more computer 

model data are closer to the target posterior mean and mode than with more real process data.  The poste-

rior variance with more computer model data is also smaller than with more real process data.  Hence 

more computer model design points are preferred in this example as they result in better calibration per-

formance.  It also can be seen that the posterior mean and mode obtained with more real process data are 

further from the target values than the values obtained with more computer model data. This indicates that 

for the calibration purpose, more computer model data are preferred when the initial data size is small. 

One possible reason is that the computer model points design on both the variable input x and the calibra-

tion parameter θ.  This not only provides more information about the computer model itself with a more 

accurate surrogate model, but also provides more information about the calibration parameter.  

Table 3. Average posterior mean, mode and variance for  with different allocation choices 

Posterior Initial 
With 10 more com-

puter data points 

With 5 more real 

data points 
Target 

Mean 0.635 1.141 0.596 1.147 

Mode 0.182 0.919 0.283 1.096 

Variance 0.272 0.204 0.211 
 

 

Next the calibration and prediction performance are compared for the entropy based criterion design 

(M1) and the EIMSPE based criterion design (M2).  It is also compared with a single-stage approach 

(M4). 10 additional computer model design points are selected with the entropy criterion and the EIMSPE 
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criterion. For the single-stage approach, 4 real process design points are the same with the sequential fol-

low-up approaches while 20 computer model design points are selected using the LHD method.  

Figure 3 shows the posterior distribution of the calibration parameter after the experimental designs 

are applied.  The figure shows that the posterior calibration parameter distribution from the entropy based 

design is closer to the target posterior distribution than the EIMSPE based design.  The posterior distribu-

tions for both the sequential design approaches are closer to the target posterior distribution than the one-

stage approach.  For a better comparison, samples of posterior mean, mode and variance are obtained 

from 10 macroreplications of the design for each design approach.  Then two-sample t-tests are used to 

compare the differences between the estimates for the different approaches.  The results show that the en-

tropy based criterion has closest posterior mean (1.141) and mode (0.919) to the target mean (1.147) and 

mode (1.096) and has the smallest posterior variance (0.204). This is followed by the EIMSPE based cri-

terion (with mean 1.025, mode 0.723, variance 0.232).  Both the follow-up design approaches perform 

better than the one-stage approach (with mean 0.937, mode 0.574, variance 0.248).  The t-test results 

show that the differences between each pair of approaches are all significant at =0.05.  These results in-

dicate that the entropy based criterion provides the best calibration performance.  For the predictive per-

formance, the average root mean square prediction error (RMSPE) of the real process over 10 macrorepli-

cations of the design and two sample t-test are used to compare the differences among the approaches.  

The results show that the entropy based approach has an average RMSPE of (0.357), and this is signifi-

cantly smaller than the RMSPE of the EIMSPE based approach (0.455).  The values of both the follow-up 

design approaches are significantly smaller than the single-stage approach (0.503). This indicates that the 

entropy based sequential approach has the best predictive performance even though the EIMSPE criterion 

is directly used to reduce the overall prediction error.  

To further assess the performance of the different design approaches, we calculate the average values 

and the variances of the estimated parameters over 10 macroreplications of each complete design.  The 

results together with the target values (more accurate values estimated using a larger set of data) are given 

in Table 4. The results show that the estimated values obtained from the entropy based sequential design 

approach are closer to the target values. This indicates that when the initial data is not sufficient to obtain 

an accurate calibration parameter value, the entropy based design approach is able to provide for a more 

accurate calibration parameter estimate.  This also results in more accurate values of the estimated model 

parameters, and hence, a more accurate surrogate model is obtained. This also explains why the entropy 

based sequential approach can provide better predictive performances than the EIMSPE design approach. 

This shows that the accuracy of the calibration parameter plays an important role in the predictive per-

formance.  As such, it is important to obtain accurate calibration parameter value first as it can provide for 

a more accurate surrogate model which results in better predictive performances.   

The results in this example also show that the sequential follow-up design approaches perform better 

than the single-stage approach in both calibration and prediction. Overall, the entropy based sequential 

design has the best calibration and prediction performance.     

 

Table 4. Mean (variance) of the plug-in parameters estimated for different sequential approaches and the 

target values obtained with sufficient data. 

Sequential approach 
xS   S      τ1  τ2  τ3  

Entropy 
0.574  

(0.0124) 

1.069  

(0.0531) 

4.732  

(0.8744) 

0.135  

(7.310
-4

) 

0.364  

(1.910
-4

) 

0.357  

(6.710
-4

) 

EIMSPE 
0.941  

(0.0185) 

6.404  

(0.1648) 

9.903  

(1.2063) 

0.298  

(8.610
-4

) 

0.114  

(1.710
-4

) 

0.089  

(7.510
-4

) 

Target value 0.507 1.143 3.516 0.106 0.379 0.343 
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Figure 2. Posterior distributions of calibration parameter for the resources allocation choices with 

more computer model data (A1) and more real process data (A2) using the entropy. 

 
Figure 3. Posterior distribution of calibration parameter for different approaches. 

6 CONCLUSION  

In this paper, we study the effects of various noise and data scenarios on the model calibration approach 

developed in Yuan and Ng (2013b).  We observe that the calibration and prediction performance of this 

empirical Bayes approach can be affected when the data size is small and/or noise is large.  From these 

observations, we propose a entropy-based criterion to improve on some of the shortcomings observed in 

the approximation method.  The numerical example illustrates the performance of the entropy based crite-

rion over a EIMSPE based criterion.  It shows that the entropy based criterion, applied in a sequential 

manner can have better calibration and predictive performances.  One of the reasons is in the improve-

ment of the calibration parameter, the estimation of some of the model parameters in this empirical Bayes 

approach also improves.  In this criterion proposed, we focused mainly on improving the accuracy of the 

calibration parameter.  A related extension is to improve the criterion to include the other estimated model 

parameters to further improve on the model accuracy and predictive performance.  In addition, further 

work on developing an adaptive criterion to leverage on the objectives of the entropy criterion and the 

EIMSPE criterion together in a sequential approach is currently being explored.  
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