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ABSTRACT

Schruben (1983) developed standardized time series (STS) methods to construct confidence intervals (CIs)
for the steady-state mean of a stationary process. STS techniques cancel out the variance constant in the
asymptotic distribution of the centered and scaled estimator, thereby eliminating the need to consistently
estimate the asymptotic variance to obtain a CI. This is desirable since estimating the asymptotic variance in
steady-state simulations presents nontrivial challenges. Difficulties also arise in estimating the asymptotic
variance of a quantile estimator. We show that STS methods can be used to build CIs for a quantile for
the case of crude Monte Carlo (i.e., no variance reduction) with independent and identically distributed
outputs. We present numerical results comparing CIs for quantiles using STS to other procedures.

1 INTRODUCTION

Schruben (1983) introduced the class of standardized time series (STS) methods as a way of constructing
asymptotically valid confidence intervals (CIs) for the steady-state mean of a stationary stochastic process.
STS methods build a CI by cancelling out the time-average variance constant (TAVC) appearing in the
central limit theorem (CLT) for the time average of the process, in a manner analogous to the Student t
statistic. Thus, STS estimators are called cancellation methods. This is in contrast to consistent-estimation
methods, such as the regenerative method (e.g., Chapter IV.4 of Asmussen and Glynn 2007), which
consistently estimate the TAVC to construct a CI; see Glynn and Iglehart (1990) for a comparison of these
two approaches. But constructing a consistent estimator of the TAVC is nontrivial (e.g., see Chapter IV
of Asmussen and Glynn 2007), illustrating a benefit of cancellation methods. STS methods have been
proposed and studied in many papers on steady-state simulation, including Goldsman and Schruben (1990),
Calvin and Nakayama (2006), and Alexopoulos et al. (2007).

There are other parameters with simulation estimators whose asymptotic variance may be difficult to
estimate. In this paper we show that STS methods can be used to construct CIs for one such parameter: a
quantile. For a continuous cumulative distribution function (CDF) F and fixed 0 < p < 1, the p-quantile
of F is the smallest constant Q(p) such that F(Q(p)) = p. For example, the median is the 0.5-quantile.
Quantiles frequently arise in practice to assess risk. In finance, a quantile, which is known as a value-at-risk,
is often used as a measure of portfolio risk; e.g., see Jorion (2007). Also, the U.S. Nuclear Regulatory
Commission (NRC) requires nuclear-plant licensees to demonstrate that their facilities are complying with
federal regulations using a so-called 95/95 criterion. This entails establishing with 95% confidence that
the 0.95-quantile of an output variable of a simulation lies below a mandated threshold (U.S. Nuclear
Regulatory Commission 1989). Thus, not only do we need a point estimate for a quantile but also a CI.

The current paper focuses on estimating a quantile using crude Monte Carlo (CMC; i.e., no variance
reduction) with independent and identically distributed (i.i.d.) outputs having CDF F . Even in this simple
context, there are issues in trying to construct a CI for a quantile. Specifically, one way of developing a CI
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for Q(p) first shows that the p-quantile estimator satisfies a CLT (Section 2.3.3 of Serfling 1980). Given a
consistent estimator of the asymptotic variance τ2

p appearing in the CLT, we can use it when unfolding the
CLT to obtain an asymptotically valid (as the sample size n→ ∞) CI for Q(p). The asymptotic variance
τ2

p = p(1− p)/ f 2(Q(p)), where f is the density of F . Methods for consistently estimating f (Q(p)) include
a finite difference (Bloch and Gastwirth 1968, Bofinger 1975) and kernel estimators (Wand and Jones 1995),
but these techniques require the user to specify an appropriate value for a parameter known as a bandwidth,
which can be tricky to do in practice. An STS method avoids this complication by instead cancelling out
τp in the relevant limit theorem, so one does not need to consistently estimate τp. We can think of batching
and sectioning (Section III.5a of Asmussen and Glynn 2007) as other examples of cancellation methods,
and STS generalizes these approaches.

We show how to use STS methods, including the STS weighted area estimator originally developed by
Goldsman and Schruben (1990) for constructing a CI for a steady-state mean, to build a CI for a quantile.
We present numerical results from running experiments comparing the methods discussed in the previous
paragraph with our proposed approach.

Other ways for constructing CIs for a quantile in the CMC i.i.d. setting include a method based on the
binomial distribution (e.g., see Section 9.2 of Hogg and Craig 1978) and the bootstrap (Efron 1979). An
attractive feature of the binomial approach is that it produces exact CIs for finite sample sizes n, as opposed
to requiring n→ ∞, as in the other (asymptotic) procedures described. However, the technique does not
generally appear to apply beyond the CMC i.i.d. framework, and one of our eventual goals is to handle
such cases. (An exception is that Hsu and Nelson (1990) extend the binomial argument to a multinomial
to work for control variates.) A drawback of the bootstrap estimator of the quantile estimator’s variance
τ2

p is that it converges at a slower rate than finite-difference and kernel estimators (?).
The rest of the paper has the following organization. Section 2 develops the mathematical framework.

We describe the STS weighted area estimator in Section 3, and then provide extensions to other STS
methods and simultaneous confidence intervals in Section 4. Numerical results are given in Section 5, and
we present concluding remarks in Section 6.

2 MATHEMATICAL FRAMEWORK

Consider a random variable X with unknown CDF F and density f . For 0 < p < 1, we define the p-quantile
of F (or equivalently of X) to be Q(p) = F−1(p)≡ inf{x : F(x)≥ p}. Our initial goal is to estimate and
construct a confidence interval for Q(p) for a fixed p using simulation. In Section 4 we consider the case
of simultaneous confidence intervals for more than one p.

Suppose that F̂n is an estimator of the CDF F based on a computation budget of n, which often represents
the sample size. Let Q̂n(p) = F̂−1

n (p) be the p-quantile estimator based on the budget of n. We will need
to make an assumption on the entire sequence of p-quantile estimators to establish the asymptotic validity
of the CI procedures in this paper.

To do this, let C[0,1] be the space of continuous real-valued functions on the unit interval, and let D[0,1]
be the space of right-continuous real-valued functions with left limits on the unit interval; see Chapters 2
and 3 of Billingsley (1999) for details on these spaces. For fixed 0 < p < 1, define the centered and scaled
p-quantile estimation process Zn = [Zn(t) : 0≤ t ≤ 1] ∈ D[0,1] with

Zn(t) =
bntc√

n
(Q̂bntc(p)−Q(p)),

where b·c is the floor function. Let W = [W (t) : 0 ≤ t ≤ 1] be a standard Brownian motion; i.e., W is a
Gaussian process with E[W (t)] = 0 for all t ∈ [0,1] and E[W (t1)W (t2)] = t1∧ t2, where a∧b = min(a,b);
see Section 9 of Billingsley (1999). Let⇒ denote weak convergence; see Chapter 1 of Billingsley (1999).
We assume the following functional central limit theorem (FCLT):

Assumption FCLT. Zn⇒ τpW as n→∞ in D[0,1] endowed with the Skorohod metric, where 0< τp <∞

is some constant.
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We focus on the case of crude Monte Carlo with i.i.d. outputs, and we now explain that such an FCLT
holds under certain conditions. Let X1,X2, . . . ,Xn be i.i.d. samples having CDF F . We form the empirical
CDF F̂k as an estimator of F from the first 1≤ k ≤ n samples with F̂k(x) = 1

k ∑
k
i=1 I(Xi ≤ x), where I( ·)

denotes the indicator function, which takes value 1 (resp., 0) when its argument is true (resp., false). Note
that F̂k assigns mass 1/k to each of the first k samples. Let [0,1]2 = [0,1]× [0,1], and define D[0,1]2 to
be the space of right-continuous two-parameter real-valued functions with left limits on [0,1]2. Define the
two-parameter process ρn = [ρn(y, t) : 0≤ y, t ≤ 1] ∈ D[0,1]2 with

ρn(y, t) = f (Q(y))
bntc√

n
(Q(y)− Q̂bntc(y)).

Also, define ρ̂n = [ρ̂n(y, t) : 0≤ y, t ≤ 1] ∈ D[0,1]2 as a truncated version of ρn with

ρ̂n(y, t) = ρn(y, t)βn(y), (1)

where βn(y) = I(1/(n+ 1) ≤ y ≤ n/(n+ 1)). Assume that F is twice differentiable on (a,b), where
a = sup{x : F(x) = 0} and b = inf{x : F(x) = 1}. Also assume that f (x) > 0 for x ∈ (a,b), and that
sup0<y<1 y(1− y)| f ′(Q(y))|/ f 2(Q(y)) ≤ γ for some 0 < γ < ∞, where f ′ is the derivative of f . Let
K = [K(y, t) : 0 ≤ y, t ≤ 1] ∈ D[0,1]2 be a Kiefer process, which is a real-valued two-parameter Gaussian
process with K(y,0)= 0, E[K(y, t)]= 0 for all (y, t)∈ [0,1]2 and E[K(y1, t1)K(y2, t2)]= (t1∧t2)(y1∧y2−y1y2)
for all (yi, ti) ∈ [0,1]2, i = 1,2. Also, K lies in C[0,1]2 with probability 1 (w.p. 1), where C[0,1]2 denotes
the space of continuous real-valued functions on [0,1]2; see Section 1.15 of Csörgő and Révész (1981) for
more details on the Kiefer process. Corollary 3.1 of Csörgő and Szyszkowicz (1998) establishes

ρ̂n⇒ K (2)

as n→∞ in D[0,1]2. (Under stronger conditions on F , Corollary 3.2 of Csörgő and Szyszkowicz 1998 proves
that ρn⇒K as n→∞ in D[0,1]2.) For fixed 0 < y < 1, define the projection mapping πy : D[0,1]2→D[0,1]
such that for r = [r(y, t) : 0 ≤ y, t ≤ 1] ∈ D[0,1]2, we have πy(r) = [r(y, t) : 0 ≤ t ≤ 1] ∈ D[0,1], a one-
parameter function of t. The projection mapping πy is continuous at r ∈ C[0,1]2. Since K ∈ C[0,1]2

w.p. 1, the continuous-mapping theorem (Theorem 2.7 of Billingsley 1999) and (2) together imply that
πy(ρ̂n)⇒ πy(K) as n→ ∞. Now fix y = p, and for n sufficiently large so that βn(y) = 1, we have

f (Q(p))
bntc√

n
(Q(p)− Q̂bntc(p)) = πp(ρ̂n)⇒ πp(K) (3)

as n→∞ in D[0,1]. But πp(K) is a one-parameter Gaussian process lying inC[0,1]w.p. 1 with E[πp(K)(t)]= 0
and E[πp(K)(t1)πp(K)(t2)] = (t1 ∧ t2)p(1− p), so πp(K) is equal in distribution to

√
p(1− p)W , where

W is a standard Brownian motion. Hence, dividing (3) by − f (Q(p)) shows Assumption FCLT holds with
τp =

√
p(1− p)/ f (Q(p)) since −W is also a standard Brownian motion.

3 STANDARDIZED TIME SERIES WEIGHTED AREA ESTIMATOR

We now describe how to use the STS weighted area estimator to construct asymptotically valid CIs for
Q(p). Define the standardized time series Tn = [Tn(t) : 0≤ t ≤ 1] ∈ D[0,1] with

Tn(t) =
bntc√

n
(Q̂n(p)− Q̂bntc(p)),

which can be computed from the sequence of CDF estimators F̂k, k = 1,2, . . . ,n. It can be shown that
Assumption FCLT implies

(
√

n(Q̂n(p)−Q(p)),Tn)⇒ (τpW (1),τpB) (4)
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as n→ ∞, where B = [B(t) : 0 ≤ t ≤ 1] is a standard Brownian bridge that is independent of W (1), and
W (1) has a standard normal distribution; see Schruben (1983) or Glynn and Iglehart (1990).

Now define the weighted area estimator An(w) as

An(w) =

[
1
n

n

∑
k=1

w
(

k
n

)
Tn

(
k
n

)]2

,

where the weighting function w : [0,1]→ ℜ is twice continuously differentiable on [0,1] and satisfies
E[(
∫ 1

0 w(t)B(t)dt)2] = 1. For estimating the TAVC from the CLT for the time average of a stationary
process, some common choices for the weighting function are

w0(t) =
√

12 for all t ∈ [0,1] (5)

and
w1(t) =

√
840(3t2−3t +1/2); (6)

see Schruben (1983), Goldsman, Meketon, and Schruben (1990), and Goldsman and Schruben (1990).
Weighting function w1 leads to a weighted area estimator of the TAVC having a bias expansion in which
the highest-order bias term vanishes. However, when estimating the variance constant τ2

p in the quantile-
estimator CLT, we do not have such a guarantee for w1.

Let χ2
d be a chi-squared random variable and Rd denote a Student t random variable, both with d

degrees of freedom. Following the arguments in Alexopoulos et al. (2007) covering the case of estimating
a steady-state mean and the TAVC, we can show the convergence in (4) ensures that as n→ ∞,

An(w)⇒ τ
2
pχ

2
1 and

√
n(Q̂n(p)−Q(p))
(An(w))1/2 ⇒

τpW (1)
(τ2

pχ2
1 )

1/2 =
W (1)
(χ2

1 )
1/2

D
= R1,

the latter illustrating the cancellation of τp in the limit, where D
= denotes equality in distribution. This

allows us to construct a (two-sided) asymptotically valid (as n→ ∞) 100(1−α)% CI for Q(p) as

In =
[
Q̂n(p)± t1,α/2(An(w)/n)1/2

]
, (7)

where the constant td,δ is defined such that P(Rd ≥ td,δ ) = δ .
We can also apply nonoverlapping batching to the weighted area estimator to obtain another CI for

Q(p) as follows. Fix a number b ≥ 2 of batches, and divide the n total outputs into b nonoverlapping
batches, each of size m = n/b. For each batch j, define the CDF estimator F̂j,k based on the first 1≤ k≤m
samples in batch j as F̂j,k(x) = (1/k)∑

( j−1)m+k
i=( j−1)m+1 I(Xi ≤ x), and let Q̂ j,k(p) = F̂−1

j,k (p) be the corresponding
p-quantile estimator. For batch j, define the standardized time series

Tj,m(t) =
bmtc√

m
(Q̂ j,m(p)− Q̂ j,bmtc(p))

for t ∈ [0,1]. From each batch j, we also compute a weighted area estimator

A j,m(w) =

[
1
m

m

∑
k=1

w
(

k
m

)
Tj,m

(
k
m

)]2

for weighting function w, and we then get the nonoverlapping batched weighted area estimator as

Āb,m(w) =
1
b

b

∑
j=1

A j,m(w).
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It can then be proven (again by applying arguments in Alexopoulos et al. (2007)) that

Āb,m(w)⇒
τ2

pχ2
b

b
and

√
n(Q̂n(p)−Q(p))
(Āb,m(w))1/2 ⇒ Rb

as n = bm→∞ with b≥ 2 fixed. This allows us to construct an asymptotically valid (as m→∞ with b≥ 2
fixed) 100(1−α)% CI for Q(p) as

In,b =
[
Q̂n(p)± tb,α/2(Āb,m(w)/n)1/2

]
. (8)

Another variation uses overlapping batches (Meketon and Schmeiser 1984). We again denote the batch
size as m > 0, and we define b = n/m, which no longer has the interpretation as the number of batches.
There are n−m+1 overlapping batches, where for j = 1,2, . . . ,n−m+1, the jth overlapping batch consists
of the m samples indexed by j, j+1, . . . , j+m−1. We define the standardized time series from the jth
overlapping batch as

T̃j,m(t) =
bmtc√

m
(Q̃ j,m(p)− Q̃ j,bmtc(p))

for t ∈ [0,1], where Q̃ j,k(p) = F̃−1
j,k (p) and F̃j,k(x) = (1/k)∑

j+k−1
i= j I(Xi ≤ x). From the jth overlapping

batch, we compute a weighted area estimator

Ã j,m(w) =

[
1
m

m

∑
k=1

w
(

k
m

)
T̃j,m

(
k
m

)]2

for weighting function w, and we then get the overlapping batched weighted area estimator as

ÃO
b,m(w) =

1
n−m+1

n−m+1

∑
j=1

Ã j,m(w).

To describe the limiting distribution of ÃO
b,m(w) as m→∞ with b> 1 fixed, define Wb = [Wb(t) : 0≤ t ≤ b]

as a standard Brownian motion on [0,b], and define [Bs : 0≤ s≤ b−1] as a collection of processes such that for
each s ∈ [0,b−1], the process Bs = [Bs(t) : 0≤ t ≤ 1] has Bs(t) = [Wb(s+ t)−Wb(s)]− t[Wb(s+1)−Wb(s)]
for t ∈ [0,1]. Each Bs is a standard Brownian bridge. As in the case when estimating a steady-state mean
(Alexopoulos et al. 2007), it can then be proven that for fixed b > 1,

ÃO
b,m(w)⇒ ÃO

b (w)≡
1

b−1

∫ b−1

0

[
τp

∫ 1

0
w(u)Bs(u)du

]2

ds (9)

as m→ ∞. The distribution of the limit ÃO
b (w) in (9) is complicated to work out, but Alexopoulos et al.

(2007) suggest to approximate it as τ2
pχ2

ν/ν with

ν =

〈
2E2[ÃO

b (w)]
Var[ÃO

b (w)]

〉
, (10)

where 〈·〉 denotes the rounding function. It turns out that E[ÃO
b (w)] = 1 for all weighting functions w, but

Var[ÃO
b (w)] depends on w. Alexopoulos et al. (2007) show that Var[ÃO

b (w0)] = (24b− 31)/[35(b− 1)2]

and Var[ÃO
b (w1)] = (3514b−4359)/[4290(b−1)2]. This allows us to construct an approximate (as m→∞

with b > 1 fixed) 100(1−α)% CI for Q(p) as

IO
n,b =

[
Q̂n(p)± tν ,α/2(Ã

O
b,m(w)/n)1/2

]
. (11)
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4 OTHER STS METHODS AND SIMULTANEOUS CI’S

We now extend the results of the previous section to general STS methods, and also develop simultaneous
confidence intervals for more than one quantile. Recall ρ̂n(y, t) in (1). Define the bridge map Γ : D[0,1]2→
D[0,1]2 by Γ(g)(y, t) = g(y, t)− tg(y,1) for (y, t) ∈ [0,1]2. This map is continuous on D[0,1]2, and

Γ(ρ̂n)(y, t) = f (Q(y))
bntc√

n

(
Q̂n(y)− Q̂bntc(y)

)
βn(y)+

bntc−nt
n

ρ̂n(y,1)≡ gn(y, t)+ rn(y, t),

where rn⇒ 0, the constant zero function, as n→∞. The continuity of Γ and (2) ensure Γ(ρ̂n)⇒ Γ(K)≡ K
as n→∞, and together with rn⇒ 0, this implies that gn⇒K, where K is a bivariate Brownian bridge; that is,
a centered Gaussian field with covariance E[K(s1, t1)K(s2, t2)] = (s1∧s2−s1s2)(t1∧ t2− t1t2). Furthermore,
K is independent of K( · ,1).

Let ζ be an STS scaling function (Glynn and Iglehart 1990); that is, ζ : D[0,1]→ [0,∞) is continuous on
C[0,1], ζ (αx) = αζ (x) for α ∈ (0,∞), and P(ζ (K(y, ·))> 0) = 1 for any 0 < y < 1. (The various weighted
area estimators in Section 3 are discrete-time versions of scaling functions.) For n≥max{(1−y)/y,y/(1−y)}
(so that βn(y) = 1), the homogeneity of ζ implies

Vn(y)≡
ρ̂n(y,1)

ζ (gn(y, ·))
=

Q(y)− Q̂n(y)

ζ

(
bntc

n

(
Q̂n(y)− Q̂bntc(y)

)
: 0≤ t ≤ 1

) ≡ Q(y)− Q̂n(y)
Mn

.

Since K and K have continuous sample paths w.p. 1, Vn(y)⇒ K(y,1)/ζ (K(y, ·)) as n→ ∞. We then can
construct an asymptotic 100(1−α)% CI for Q(y) as

[Q̂n(y)± γMn], (12)

where γ is the (1−α/2)-critical point of the distribution H of K(y,1)/ζ (K(y, ·)); i.e., H(γ) = 1−α/2.
Now consider the “range” scaling function

ζ (x) = max
0≤s≤1

x(s)− min
0≤s≤1

x(s). (13)

The limiting random variable K(y,1)/ζ (K(y, ·)) then has the distribution of the ratio of a standard normal over
a standard Brownian excursion height, so H(x) = 1−πx2

∑
∞
n=1 nK1(πnx), where K1 is the modified Bessel

function (Calvin 2004). The 0.95-critical point of H is γ ≈ 1.39739 (i.e., H(γ) = 0.95), which we can use
in (12) to obtain an asymptotic 90% confidence interval for Q(y), where, for n≥max{(1−y)/y,y/(1−y)},

Mn = max
0≤t≤1

bntc
n

(
Q̂n(y)− Q̂bntc(y)

)
− min

0≤t≤1

bntc
n

(
Q̂n(y)− Q̂bntc(y)

)
= max

1≤k≤n

k
n

(
Q̂n(y)− Q̂k(y)

)
− min

1≤k≤n

k
n

(
Q̂n(y)− Q̂k(y)

)
.

We can extend the approach for any STS scaling function ζ to construct simultaneous CIs for more
than one value of y. (Chapter 4 of Csörgő (1983) considers other simultaneous CIs.) For Y ⊂ (0,1),

sup
y∈Y

Vn(y)⇒ sup
y∈Y

K(y,1)
ζ (K(y, ·))

(14)

as n→ ∞, and this can be used to construct simultaneous 100(1−α)% joint CIs for Q(y), y ∈ Y , as[
Q̂n(y)±υαζ

(
bntc

n

(
Q̂n(y)− Q̂bntc(y)

)
βn(y) : 0≤ t ≤ 1

)
: y ∈ Y

]
, (15)

where υα is the (1−α/2)-critical point of the distribution of supy∈Y K(y,1)/ζ (K(y, ·)). It seems that in
most cases it would be necessary to estimate the critical value υα using simulation.
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5 NUMERICAL RESULTS COMPARING STS AND OTHER ESTIMATORS

We ran simulation experiments using a variety of methods to construct confidence intervals for quantiles
for a stochastic activity network (SAN). Also known as stochastic PERTs, SANs are widely used in project
planning, where a project comprises a collection of activities having precedence relations, and the times to
complete the activities follow specified probability distributions; e.g., see Adlakha and Kulkarni (1989). We
consider a SAN, previously studied by Hsu and Nelson (1990), consisting of d = 5 activities, which correspond
to edges labeled 1,2, . . . ,d in the network. The length Ai of each edge i is exponential with mean 1, and
A1,A2, . . . ,Ad are independent. There are q = 3 paths through the network, with B1 = {1,2}, B2 = {1,3,5}
and B3 = {4,5} as the sets of edges on the q paths. Let X = max1≤ j≤q ∑i∈B j Ai be the (random) length of the
longest path, which corresponds to the time to complete the project, and we want to estimate and construct CIs
for the p-quantile Q(p) of X . The CDF of X is F(x) = 1+(3−3x−x2/2)e−x+(−3−3x+x2/2)e−2x−e−3x

for x≥ 0, and F(x) = 0 for x < 0.
The goal of our experiments is to study the coverage level and average half-widths of nominal 90%

CIs for the p-quantile Q(p) for different values of p. The CIs we developed are asymptotically valid as the
sample size n→∞, and we study the finite-sample behavior of our intervals for n = 4r×100, r = 0,1,2,3.

Table 1 contains the results from our experiments using different methods to construct CIs, where the
coverage (and average half-widths) are computed from running 104 independent replications. The first
column gives the sample size n. The next column presents results when using a central finite difference (FD)
to estimate q(p)≡ 1/ f (Q(p)) = d

d p F−1(p), which appears in the asymptotic variance τ2
p = p(1− p)q2(p)

of the central limit theorem for Q̂n(p). Bloch and Gastwirth (1968) and Bofinger (1975) prove that the FD
q̂n(p) = [F̂−1

n (p+hn)− F̂−1
n (p−hn)]/(2hn)⇒ q(p) as n→ ∞ when the bandwidth hn→ 0 as n→ ∞ with

nhn→ ∞ and f is continuous in a neighborhood of Q(p). The resulting asymptotically valid 90% CI for
Q(p) using FD is [Q̂n(p)±1.645

√
p(1− p)q̂n(p)/

√
n]. In our experiments we chose hn = 0.5n−1/2.

The third column of Table 1 contains results when f (Q(p)) is estimated using a plug-in kernel estimator.
Specifically, let k be a kernel function, which is typically chosen as a density function symmetric about the
origin, and let kh be a scaled kernel function with kh(y) = 1

h k( y
h), where h > 0 is the bandwidth. Then the

kernel estimator f̂n of the density f is defined as f̂n(y) =
∫

khn(y−x)dF̂n(x) = 1
n ∑

n
i=1 khn(y−Xi), where hn is

the bandwidth satisfying hn→ 0 and nhn→∞ as n→∞; e.g., see Wand and Jones (1995) for an overview of
kernel estimators. Then the plug-in kernel estimator of f (Q(p)) is f̂n(Q̂n(p)). The resulting asymptotically
valid 90% CI for Q(p) is

[
Q̂n(p)±1.645

√
p(1− p)/( f̂n(Q̂n(p))

√
n)
]
. In our experiments we chose the

Gaussian kernel (i.e., k is the density function of a standard normal) and bandwidth hn = 0.5n−1/5.
The fourth column (labeled “Batch.”) of Table 1 gives results when using batching. This method divides

the n outputs into b≥ 2 batches, each of size m = n/b. From the jth batch, a p-quantile estimate Q̂ j,m(p)
is computed, and we calculate the sample average and sample variance of the b batch quantile estimates
Q̂ j,m(p), j = 1,2, . . . ,b, to construct a CI for Q(p). Specifically, let Q̄b,m(p) = (1/b)∑

b
j=1 Q̂ j,m(p) be the

sample average of the b batch quantile estimates, and let S2 = (1/(b−1))∑
b
j=1(Q̂ j,m(p)− Q̄b,m(p))2. The

resulting asymptotically valid 90% CI for Q(p) is then
[
Q̄b,m(p)± tb−1,0.05S/

√
b
]
. In our experiments we

used b = 10 batches.
The fifth column (labeled “Sect.”) of Table 1 presents results from applying sectioning; see Section III.5a

of Asmussen and Glynn (2007) and Nakayama (2012). Similar to batching, sectioning replaces the
batching point estimate Q̄b,m(p) with the overall quantile estimate Q̂n(p) throughout the CI. Specifically,
let S′2 = (1/(b−1))∑

b
j=1(Q̂ j,m(p)− Q̂n(p))2, and the resulting asymptotically valid 90% CI for Q(p) is

then
[
Q̂n(p)± tb−1,0.05S′/

√
b
]
. An advantage of sectioning over batching is that the former’s CI is centered

at a less-biased estimator than the latter, and this can lead to better coverage when n is small; see Table 1.
Columns 6 and 7 of Table 1 contain the results for the CIs in (7) and (8) from applying the STS weighted-

area (WA) estimator with (constant) weighting function w0 from (5) and b batches, where the case b = 1
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corresponds to (7). The eighth column of the table gives results for the STS range estimator (13). The last
column of Table 1 presents results where we used the exact value of q(p), which was computed numerically;
in this case the resulting asymptotically valid 90% CI for Q(p) is then

[
Q̂n(p)±1.645

√
p(1− p)q(p)/

√
n
]
.

This is provided as a benchmark, which is typically not implementable since q(p) is unknown.
In general, in terms of coverage, sectioning outperforms batching, especially for small n. FD and

Kernel do worse than sectioning when p≈ 1 and n is small.
Now we compare sectioning with the STS weighted-area and range methods. Let WA(w,b) denote

the STS weighted area estimator with weighting function w and b batches. The WA(w0,1) estimator has
significantly larger average half-widths than the WA(w0,10) estimator. This is because the critical point in
the CI for the WA(w0,b) method is that of a Student t random variable Rb with b degrees of freedom, and
the Rb distribution has much heavier tails for b = 1 than for b = 10. For p = 0.5 and 0.8, sectioning and
the various STS methods have about the same coverage for all n. For p = 0.95 and 0.99, WA(w0,1) has
better coverage than WA(w0,10) for small n. This is likely caused by the fact that the asymptotic validity of
the STS batching methods relies on the batch size m = n/b to be large for the Brownian approximation to
hold; but m is small when n is small, leading to the asymptotics not yet holding. The STS range estimator
has about the same average half width as WA(w0,10) for large n, but better coverage for small n. For
p = 0.99, WA(w0,1) has better coverage than sectioning for small n.

Table 2 gives results for different weighting functions, w0 from (5) and w1 from (6), for nonoverlapping
batching (8) and overlapping batching (11) from running 2000 independent replications. In our experiments
we chose b = 10, so for overlapping batching, this leads to ν in (10) equaling 27 for w0 from (5) and
ν = 23 for w1 from (6). As noted in Section 3, the weighting function w1 in (6) results in an asymptotically
lower-biased weighted area estimate of the TAVC when estimating a steady-state mean, but there is no such
guarantee when estimating a quantile. For p = 0.5 and 0.8, the overlapping estimators have about the same
coverage as the other methods and about the same average half-widths as sectioning and nonoverlapping
batching with b = 10. For p = 0.95 the overlapping estimators have about the same average half-widths
as sectioning and the nonoverlapping estimators with b = 10, and the overlapping estimators have higher
coverage than nonoverlapping with b = 10 for small n. But for p = 0.99 overlapping performs about the
same as nonoverlapping with b = 10 and worse than b = 1. Overall, it appears that when p is extreme, the
range estimator does the best job of balancing coverage and average half-widths of the methods considered.

We also ran experiments to construct the simultaneous CIs in (15) for the y-quantiles Q(y) for all y ∈Y
using the range estimator (13). We chose Y = {0.90,0.95,0.99}, for which the simulated 0.95-quantile of
the right side of (14) is 1.6211. Executing 104 independent replications led to coverages of 0.492, 0.760,
0.819, and 0.833 for run lengths of 100, 400, 1600, and 6400, respectively. The half-widths for a single
quantile (Table 1) were typically about 85% as large as for the simultaneous intervals.

6 CONCLUDING REMARKS

Previous work applying STS methods mainly focuses on constructing CIs for the steady-state mean of a
stationary stochastic process. But here we demonstrated how STS estimators can be used to build CIs for
a quantile when applying crude Monte Carlo with i.i.d. sampling. This led to not only a CI for a single
quantile, but also simultaneous CIs for multiple quantiles. More generally, STS methods can be employed
to develop CIs for any parameter θ for which there is a corresponding parameter estimator θ̂n satisfying
an FCLT. STS may be an attractive approach when it is difficult to consistently estimate the asymptotic
variance of θ̂n. The FCLT required for STS need not necessarily have a Brownian limit nor the canonical
scaling

√
n. Glynn and Whitt (1991) describe many simulation settings for which the estimator satisfies a

FCLT with a Brownian limit but with some having non-canonical scaling nc for c 6= 1/2. Of course, the
applicability of STS for a non-Brownian limit relies on the analytical tractability of the limiting process.

Our numerical results indicate that the STS weighted area estimator performs about the same as
sectioning in terms of coverage of the resulting CIs when p is not too extreme. For p = 0.99, the coverage
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for the CI of the weighted area estimator with a single batch was closer to the nominal level than for
sectioning for small sample sizes, but at the cost of wider average half-widths. This demonstrates that STS
methods can provide CIs with improved coverage. Overall, when p is extreme, the range estimator provided
the best balance of coverage and average half-widths of the methods considered in our experiments.

We are currently investigating issues related to the work presented. The FCLT in Section 2 for the
p-quantile estimator for a single p obtained with CMC i.i.d. sampling is established under conditions that
are probably stronger than necessary, and we are working on weaker assumptions ensuring the FCLT. We
are also studying applying other STS methods for constructing CIs for quantiles when applying crude
Monte Carlo with i.i.d. sampling. In particular, Tables 1 and 2 show that the average half-widths can differ
significantly for the various STS scaling functions, and we want to identify scaling functions that result
in good coverage with small intervals. Another research direction is using STS methods for building CI
for quantiles estimated using variance-reduction techniques (VRTs). This entails first establishing that the
resulting p-quantile estimator satisfies a FCLT as the sample size n→ ∞ for fixed 0 < p < 1; ordinary
CLTs have been shown for various VRTs, e.g., in Chu and Nakayama (2012). In addition we are exploring
STS methods for developing CIs for steady-state quantiles (?).
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Table 1: CIs were constructed using different consistent and nonoverlapping STS methods, and the coverage
levels (and average half-widths) were estimated from 104 independent replications.

STS
n FD Kernel Batch. Sect. WA(w0,1) WA(w0,10) Range Exact

p = 0.50
100 0.896 0.873 0.782 0.903 0.887 0.883 0.876 0.903

(0.356) (0.317) (0.332) (0.349) (0.965) (0.352) (0.360) (0.325)
400 0.882 0.889 0.869 0.902 0.891 0.895 0.897 0.901

(0.163) (0.161) (0.174) (0.177) (0.499) (0.178) (0.178) (0.163)
1600 0.891 0.899 0.893 0.902 0.895 0.895 0.901 0.899

(0.081) (0.081) (0.088) (0.088) (0.246) (0.088) (0.088) (0.081)
6400 0.894 0.901 0.897 0.900 0.898 0.904 0.898 0.903

(0.041) (0.041) (0.044) (0.044) (0.124) (0.044) (0.044) (0.041)
p = 0.80

100 0.903 0.836 0.663 0.883 0.888 0.915 0.873 0.898
(0.564) (0.469) (0.479) (0.521) (1.524) (0.634) (0.557) (0.500)

400 0.880 0.877 0.833 0.901 0.887 0.904 0.895 0.902
(0.250) (0.245) (0.262) (0.270) (0.764) (0.287) (0.278) (0.250)

1600 0.880 0.893 0.884 0.902 0.895 0.903 0.896 0.900
(0.122) (0.124) (0.135) (0.136) (0.379) (0.138) (0.137) (0.125)

6400 0.893 0.898 0.897 0.901 0.898 0.902 0.904 0.900
(0.062) (0.062) (0.068) (0.068) (0.191) (0.068) (0.068) (0.063)

p = 0.95
100 0.947 0.708 0.858 0.862 0.874 0.823 0.852 0.907

(1.443) (0.697) (0.910) (0.937) (3.039) (0.939) (1.082) (0.951)
400 0.901 0.828 0.670 0.893 0.885 0.931 0.883 0.904

(0.506) (0.436) (0.457) (0.497) (1.470) (0.651) (0.538) (0.476)
1600 0.895 0.877 0.835 0.900 0.895 0.911 0.895 0.901

(0.241) (0.231) (0.250) (0.257) (0.728) (0.278) (0.265) (0.238)
6400 0.900 0.894 0.881 0.901 0.894 0.906 0.898 0.905

(0.119) (0.118) (0.127) (0.129) (0.359) (0.132) (0.129) (0.119)
p = 0.99

100 0.507 0.373 0.037 0.709 0.855 0.536 0.785 0.945
(1.109) (0.585) (0.910) (1.389) (8.293) (0.939) (2.343) (2.025)

400 0.924 0.648 0.729 0.837 0.878 0.803 0.849 0.915
(1.430) (0.620) (0.874) (0.920) (3.355) (0.918) (1.172) (1.012)

1600 0.981 0.796 0.902 0.905 0.888 0.885 0.888 0.906
(0.824) (0.441) (0.547) (0.562) (1.595) (0.569) (0.584) (0.506)

6400 0.936 0.860 0.887 0.900 0.891 0.897 0.892 0.898
(0.291) (0.244) (0.271) (0.275) (0.771) (0.281) (0.282) (0.253)
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Table 2: CIs were constructed using different methods, and the coverage levels (and average half-widths)
were estimated from 2000 independent replications, where for the STS weighted area estimators, N stands
for nonoverlapping and O stands for overlapping.

STS Weighted Area (w,b,N or O)
n Sect. (w0,1,N) (w1,1,N) (w0,10,N) (w1,10,N) (w0,10,O) (w1,10,O)

p = 0.50
100 0.900 0.884 0.877 0.877 0.886 0.909 0.908

(0.348) (0.954) (0.972) (0.351) (0.359) (0.343) (0.349)
400 0.896 0.885 0.884 0.893 0.888 0.908 0.908

(0.176) (0.491) (0.489) (0.178) (0.178) (0.172) (0.174)
1600 0.898 0.900 0.899 0.892 0.894 0.907 0.909

(0.089) (0.253) (0.248) (0.088) (0.089) (0.086) (0.087)
6400 0.907 0.912 0.899 0.907 0.911 0.920 0.922

(0.045) (0.126) (0.127) (0.044) (0.045) (0.042) (0.043)
p = 0.80

100 0.884 0.876 0.884 0.918 0.868 0.939 0.885
(0.522) (1.559) (1.575) (0.631) (0.516) (0.615) (0.504)

400 0.902 0.881 0.887 0.904 0.894 0.924 0.918
(0.273) (0.757) (0.783) (0.290) (0.281) (0.278) (0.272)

1600 0.896 0.890 0.876 0.907 0.902 0.914 0.920
(0.136) (0.379) (0.372) (0.139) (0.139) (0.134) (0.135)

6400 0.901 0.903 0.902 0.895 0.901 0.903 0.905
(0.069) (0.194) (0.193) (0.068) (0.069) (0.065) (0.066)

p = 0.95
100 0.861 0.868 0.856 0.824 0.793 0.867 0.843

(0.936) (2.966) (2.835) (0.930) (0.871) (0.937) (0.880)
400 0.890 0.885 0.878 0.935 0.893 0.959 0.915

(0.494) (1.475) (1.452) (0.648) (0.527) (0.630) (0.520)
1600 0.905 0.887 0.883 0.913 0.906 0.928 0.920

(0.257) (0.719) (0.711) (0.280) (0.268) (0.268) (0.260)
6400 0.902 0.889 0.897 0.899 0.890 0.913 0.912

(0.130) (0.357) (0.364) (0.131) (0.131) (0.127) (0.128)
p = 0.99

100 0.699 0.865 0.796 0.533 0.500 0.554 0.528
(1.379) (8.517) (5.365) (0.930) (0.871) (0.937) (0.880)

400 0.825 0.876 0.861 0.792 0.741 0.833 0.788
(0.909) (3.320) (3.015) (0.905) (0.801) (0.906) (0.813)

1600 0.908 0.886 0.887 0.884 0.930 0.907 0.956
(0.561) (1.559) (1.537) (0.566) (0.690) (0.555) (0.677)

6400 0.896 0.891 0.889 0.897 0.902 0.909 0.907
(0.272) (0.758) (0.764) (0.282) (0.285) (0.272) (0.277)
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