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ABSTRACT

We propose SPSTS, an automated sequential procedure for computing point and confidence-interval (CI)
estimators for the steady-state mean of a simulation output process. This procedure is based on variance
estimators computed from standardized time series, and it is characterized by its simplicity relative to
methods based on batch means and its ability to deliver CIs for the variance parameter of the output
process. The effectiveness of SPSTS is evaluated via comparisons with methods based on batch means. In
preliminary experimentation with the steady-state waiting-time process for the M/M/1 queue with a server
utilization of 90%, we found that SPSTS performed comparatively well in terms of its average required
sample size as well as the coverage and average half-length of its delivered CIs.

1 INTRODUCTION

Simulation is perhaps the most widely used tool in the fields of industrial engineering, operations research,
and the management sciences. Steady-state simulations play a fundamental role in system design, and
they are particularly appropriate for evaluating long-run system performance or risk. For instance, what
is the steady-state expected return from a certain financial management strategy, or what is the long-term
probability of a default? Although there are now many commercial and public-domain software packages
supporting the development of valid and efficient simulation models for complex systems, rarely have these
packages been equipped with comprehensive facilities for performing rigorous, state-of-the-art statistical
analysis of the outputs arising from steady-state simulation experiments. In many large-scale simulation
applications, most of the effort is devoted to the development and execution of computer-based models,
while relatively little attention is devoted to careful follow-up analysis of the final results. For questions
about risk in the context of steady-state simulation analysis, there is not even much literature on the
supporting theory, not to mention the lack of implementation of that theory in practical problems.

A fundamental problem in simulation output analysis concerns the computation of point and confidence
interval (CI) estimators for the mean µ of a stationary discrete-time stochastic process X ≡{Xi : i= 1,2, . . .}.
The point estimation of µ is actually a relatively easy problem when the underlying system starts in steady
state; based on a simulation-generated time series {X1, . . . ,Xn} of length n, the sample mean Xn≡ n−1

∑
n
i=1 Xi

is an unbiased estimator of µ . To provide a measure of the sample mean’s precision, an estimate of Var[Xn]
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also needs to be calculated. If the Xi are independent and identically distributed (i.i.d.) random variables,
then the sample variance S2

n ≡ (n−1)−1
∑

n
i=1(Xi−Xn)

2 is an unbiased estimator of the marginal variance
σ2

X = Var[X1], and Var[Xn] can be estimated by S2
n/n. Unfortunately, the Xi encountered in simulation

output are typically correlated. While Xn remains an unbiased estimator for µ , the sample variance S2
n

can be a severely biased estimator for σ 2
X . In fact, if the autocovariance function R j ≡ Cov[X1,X1+ j] for

j = 0,±1,±2, . . . is positive, then in many practical applications, one has E[S2
n/n]� Var[Xn] (Law 2007),

and CI estimation is difficult. However, in such situations, valid CIs for µ can still be obtained based on
good estimators of the quantities {σ2

n ≡ nVar[Xn] : n = 1,2, . . .} or their limit σ 2 ≡ limn→∞ σ2
n , which is

called the (asymptotic) variance parameter of the process—provided that X is a process with short-range
dependence so that σ 2 is well defined and finite.

The simulation literature contains many techniques for estimating the quantities σ2
n and σ2, such as:

nonoverlapping batch means (NBM) (Fishman 2001, Fishman and Yarberry 1997, Tafazzoli and Wilson
2011); overlapping batch means (OBM) (Meketon and Schmeiser 1984); and standardized time series
(STS) (Schruben 1983; Alexopoulos et al. 2007b). Most of these techniques group observations into
nonoverlapping or overlapping batches. A method relying on nonoverlapping batches typically divides
the data into adjacent disjoint batches of equal size, calculates a corresponding estimator from each batch
separately, and then forms an overall variance estimator by averaging the estimators from the various
batches. Nonoverlapping batches are used with the following estimators for σ2: NBM; STS area; STS
Cramér–von Mises (CvM) (Alexopoulos et al. 2007b); folded area; and folded CvM (Antonini et al. 2009).
The NBM estimator is simply the product of the batch size and the sample variance of the batch means.
For STS area and CvM estimators, one forms an STS from each batch, computes an appropriate functional
of each STS, and averages these quantities.

This paper is a step towards the development of effective sequential procedures for computing valid CIs
for the steady-state mean of a simulation-generated process using variance estimators based on standardized
time series. As for the remainder of the paper, Section 2 presents a review of the necessary methodology,
Section 3 details SPSTS, the first of a new class of sequential procedures for steady-state simulation
output analysis; Section 4 illustrates the performance of SPSTS in a test process that is often used as a
benchmark problem for evaluating output-analysis procedures, and Section 5 summarizes our conclusions
and recommendations for follow-up work.

2 PRELIMINARIES

The following discussion is necessary to establish basic notation and motivation for the estimators under
study herein. Among the assumptions enumerated below, the first property is satisfied by a variety of
stationary processes, including strongly mixing processes, associated stationary processes, and regenerating
processes (Durrett 2005, Glynn and Iglehart 1990).

2.1 Assumptions and Relevant Variance Estimators

Assumptions A

A.1 [Functional Central Limit Theorem (FCLT)] Assume ∑
∞
j=−∞ j2|R j| <∞ so that we have σ 2 =

limn→∞ nVar[Xn] = ∑
∞
j=−∞ R j <∞. Further, assume σ2 > 0, and that the sequence of random

functions

Yn(t)≡
bntc(Xbntc −µ)

σ
√

n
for t ∈ [0,1] and n = 1,2, . . .

satisfies Yn(·) =⇒n→∞ W (·), where: b·c is the greatest integer function; W (·) is a standard Brownian
motion process on [0,1]; and =⇒n→∞ denotes weak convergence (as n→∞) in the Skorohod space
D[0,1] of real-valued functions on [0,1] that are right-continuous with left-hand limits.
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A.2 The weight function f (·) on [0,1] has a continuous second derivative and is normalized so that∫ 1
0
∫ 1

0 f (s) f (t)[min(s, t)−st]dsdt = 1. We define F(t)≡
∫ t

0 f (s)ds and F(t)≡
∫ t

0 F(s)ds for t ∈ [0,1];
and we let F ≡ F(1) and F ≡ F(1).

Assumption A.1 implies that if Xn and σ̂2 are asymptotically independent as n → ∞ and if
σ̂2 =⇒n→∞ σ2χ2

ν/ν , where χ2
ν denotes a chi-squared distribution with ν degrees of freedom, then

Xn± tν ,1−α/2

√
σ̂2
/

n

is an asymptotically valid 100(1−α)% CI for µ , where tν ,β is the β quantile of Student’s t distribution with
ν degrees of freedom depending on the type of the estimator. Let the unknown constant γ1 ≡ 2∑

∞
j=1 jR j

as in Song and Schmeiser (1995). We use the following notation: (i) p(n) = O(q(n)) means that there are
positive constants c and n0 such that 0≤ p(n)≤ cq(n) for all n≥ n0; and (ii) p(n) = o(q(n)) means that
limn→∞ p(n)/q(n) = 0.

2.2 Estimators Based on Nonoverlapping Batches

The concept of batching has a long history in the simulation output analysis literature. Suppose we form b
nonoverlapping batches, each consisting of m observations (so that n = bm). Specifically, batch i consists
of {X(i−1)m+ j : j = 1, . . . ,m}. Finally, for i = 1, . . . ,b and k = 1, . . . ,m, let Xi,k ≡ k−1

∑
k
`=1 X(i−1)m+`.

2.2.1 Nonoverlapping Batch Means Estimator

One can show that as m→∞, the nonoverlapping batch means Xi,m for i = 1, . . . ,b become uncorrelated
(Law and Carson 1979) and normally distributed when X obeys an FCLT. Then the NBM estimator for σ 2

is defined by N (b,m)≡m(b−1)−1
∑

b
i=1(Xi,m−Xn)

2. If b is fixed, then N (b,m) =⇒m→∞ σ2χ2
b−1/(b−1),

and the usual NBM CI estimator for the mean, Xn± tb−1,1−α/2
√

N (b,m)/n, is asymptotically valid as
m→∞ (Steiger and Wilson 2001). Under some additional assumptions, one can also show that

E[N (b,m)] = σ
2− (b+1)γ1

bm
+o
( 1

m

)
and Var[N (b,m)] =

2σ2(b+1)
(b−1)2 +O

( 1
bm1/4

)
+o
(1

n

)
;

see Alexopoulos and Goldsman (2004). If both m and b tend to∞, then the last two equations imply weak
consistency for N (b,m) because MSE[N (b,m)]→ 0; but they do not guarantee the validity of the CI for
the mean, Xn± tb−1,1−α/2

√
N (b,m)/n.

Methods based on sequences of batch sizes and batch counts that aim at computing consistent estimators
for σ2 and asymptotically valid CIs for µ have been developed during the last twenty years (Damerdji
1994, Fishman and Yarberry 1997). The latter method takes O(n) time and O(log2 n) space, and has been
implemented in the LABATCH.2 package (available at the Web site www.or.unc.edu/∼gfish/labatch.2.html).
The ASAP3 method (Steiger et al. 2005) has a fixed upper limit on b but allows m→∞ so as to deliver
approximately valid CIs for µ that satisfy user-specified requirements on absolute or relative precision.
This package is available at the Web site www.ise.ncsu.edu/jwilson. Skart (Tafazzoli and Wilson 2011)
exploits separate adjustments to the classical batch-means CI to account for the effects on the distribution
of the underlying Student’s t-statistic arising from skewness and autocorrelation of the batch means. A
Visual Basic implementation of Skart is available online via www.ise.ncsu.edu/jwilson. Both ASAP3 and
Skart also deliver a point estimator for the steady-state mean that is approximately free of initialization
bias.
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2.2.2 Standardized Time Series

The STS for the sample {X1, . . . ,Xn} is defined by

Tn(t)≡
bntc(Xn−Xbntc)

σ
√

n
for t ∈ [0,1] and n = 1,2, . . . .

Under Assumption FCLT, it can be shown that (
√

n(Xn− µ),σTn) =⇒n→∞ (σW (1),σB), where B(·) is
a standard Brownian bridge process that is independent of W (1), so that Tn(·) and Xn are asymptotically
independent (Schruben 1983).

2.2.3 Batched Area Estimators

The STS from batch i is Ti,m(t) ≡ bmtc(Xi,m−Xi,bmtc)
/
(σ
√

m) for i = 1, . . . ,b and t ∈ [0,1]. Under the
same mild conditions as above, one has

(
√

m(X1,m−µ),
√

m(X2,m−µ), . . . ,
√

m(Xb,m−µ);σT1,m,σT2,m, . . . ,σTb,m)

=⇒m→∞ (σξ1,σξ2, . . . ,σξb;σB0,σB1, . . . ,σBb−1), (1)

where the ξi are i.i.d. standard normal random variables, and Bs(·) denotes a standard Brownian bridge
defined in terms of W (·) on [s,s+1], for s ∈ [0,b−1]. That is,

Bs(t)≡W (s+ t)−W (s)− t[W (s+1)−W (s)], t ∈ [0,1] and s ∈ [0,b−1].

One can easily show that the Brownian bridges B0(·),B1(·), . . . ,Bb−1(·) are independent.
Define the signed areas

Zi( f ;m) ≡ 1
m

m

∑
`=1

f (`/m)σTi,m(`/m) =
1

m3/2

m

∑
`=1

f (`/m)`(Xi,m−Xi,`) for i = 1, . . . ,b.

Equation (1) ensures that[
Z1( f ;m),Z2( f ;m), . . . ,Zb( f ;m)

]
=⇒m→∞ σ

[
ξ1,ξ2, . . . ,ξb

]
(2)

so that the {Zi( f ;m) : i= 1, . . . ,b} become i.i.d. σNor(0,1) as m→∞ (Alexopoulos et al. 2007b, Goldsman
et al. 1990).

The batched area estimator for σ 2 is defined by

A ( f ;b,m)≡ 1
b

b

∑
i=1

Z2
i ( f ;m) =⇒m→∞ σ

2
χ

2
b/b.

Under Assumptions A, one can show that for fixed b, E[A ( f ;b,m)] = σ2− [(F−F)2 +F 2
]γ1
/
(2m)+

o(1/m); and, assuming uniform integrability for the family {A 2( f ;b,m) : m = 1,2, . . .}, we have
limm→∞ Var[A ( f ;b,m)] = 2σ 4/b (Foley and Goldsman 1999, Goldsman et al. 1990). If one chooses
weights having F = F = 0, the resulting area estimator is first-order unbiased since its bias is o(1/m).
Damerdji and Goldsman (1995) gave conditions such that the estimator A ( f ;b,m) is strongly consistent
as both b,m→∞ in an appropriate fashion.

Popular choices of weight functions are

f0(t) =
√

12 (Schruben 1983),
f2(t) =

√
840(3t2−3t +1/2) (Goldsman et al. 1990), and

fcos, j(t) =
√

8π j cos(2π jt) j = 1,2, . . . (Foley and Goldsman 1999)

 for t ∈ [0,1].
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Schruben’s estimator has E[A ( f0;b,m)] = σ2−3γ1/m+o(1/m), while the remaining estimators are first-
order unbiased. Foley and Goldsman (1999) show that the area estimators arising from the weight functions
{ fcos, j(·) : j = 1,2, . . .} are also asymptotically independent. Thus we can average the first k of these area
estimators to obtain a first-order unbiased estimator for σ2 with more degrees of freedom:

A k( fcos;b,m) ≡ k−1
k

∑
j=1

A ( fcos, j;b,m) =⇒m→∞ σ
2
χ

2
bk
/
(bk) for k = 1,2, . . . .

We note that the second-order bias of the area estimators based on the fcos, j(·) weight function increases as
j increases; this is the subject of ongoing research, but does not appreciably affect our results for small j.

2.2.4 Overlapping Batch Means

In various NBM procedures, the von Neumann (1941) randomness and the Shapiro and Wilk (1965)
normality tests are used to determine a batch size that is sufficiently large to ensure that the resulting
batch means are approximately i.i.d. normal with mean µ . Unfortunately in large-scale applications, we
often find that the resulting batch means exhibit nonnegligible correlation and skewness (Steiger et al.
2005, Tafazzoli and Wilson 2011). Such correlation usually causes systematic underestimation of Var[Xn]
(that is, negative bias); and this effect coupled with nonnegligible skewness of the batch means can cause
the final CI coverage to fall substantially below its nominal level. In ASAP3 and Skart, we sought to
estimate this correlation and compensate for it by modeling the batch means as a stationary first-order
autoregressive process; moreover in Skart we also sought to estimate the skewness of the batch means
and then to compensate for it by applying a suitable adjustment to the final CI. This approach proved to
effective in a broad diversity of applications.

In the development of SPSTS, we observed similar problems with the von Neumann randomness test
and the Shapiro–Wilk normality test when those tests were applied to the signed areas {Zi( f ;m)} so as to
determine a batch size m that is sufficiently large to ensure the {Zi( f ;m)} are approximately i.i.d. normal
with variance σ2. In particular, Aktaran-Kalaycı et al. (2007) find that the resulting STS area estimator
A ( fcos, j;b,m) of the variance parameter σ 2 can exhibit significant negative second-order bias; this effect
sometimes negates the lack of first-order bias and causes the final CI coverage to fall below its nominal
level. To address this issue, we also used variance estimators based on overlapping batch means, which
often exhibit reasonable small-sample bias.

Given a “shift” d ∈ {1, . . . ,m− 1}, we define the overlapping batches {X(i−1)d+1, . . . ,X(i−1)d+m} for
i = 1, . . . ,k, where k ≡ b(n−m)/dc+1. Within this context we define b ≡ n/m, with the understanding
that it does not denote the number of batches. The respective overlapping batch means are

X O
i,m;d ≡

1
m

m

∑
j=1

X(i−1)d+ j for i = 1, . . . ,k,

and the OBM estimator for σ2 is

O(b,m;d)≡ m
k−1

k

∑
i=1

(
X O

i,m;d−Xn
)2
. (3)

The assignment d = 1 yields the estimator of Meketon and Schmeiser (1984). Under the assumptions
for the NBM estimator, it can be shown that the OBM variance estimator has about the same mean as
NBM, but Var[O(b,m;1)] ≈ 2

3 Var[N (b,m)]. Welch (1987) noted that the NBM and OBM estimators
are related to classical spectral estimators and showed that partial overlapping (i.e., taking d = m/q for
a relatively small positive integer q) not only saves computational effort, but also retains most of the
benefits of full overlapping (i.e., taking d = 1). For example, Var[O(b,m;m/4)]≈ 0.69Var[N (b,m)] and
Var[O(b,m;m/2)]≈ 0.75Var[N (b,m)].
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3 SEQUENTIAL PROCEDURE

SPSTS is an automated sequential procedure for estimating the mean µ of a stationary process X satisfying
Assumptions A. It starts with b = 40 nonoverlapping batches of size m = 2048 so that the initial simulation-
generated time series {Xi} must have length not less than n = bm = 81,920. To determine a subsequent
batch size m that is sufficiently large so that the {Zi( f ;m)} are approximately i.i.d. σNor(0,1) (that is, an
adequate degree of convergence to the asymptotic result (2) has been achieved), SPSTS uses sequential
versions of the von Neumann (1941) randomness test and the Shapiro and Wilk (1965) normality test. If
the {Zi( f ;m)} fail iteration r of the von Neumann randomness test (r = 1,2, . . .) at the significance level
(type I error) βψ(r), then the batch size m is increased by a factor of about

√
2, the iteration counter r is

incremented, and the randomness test is reperformed. We use β = 0.20 and ψ(r) ≡ exp
[
−η(r− 1)θ

]
;

and the current values of the parameters η and θ are η = 0.184206 and θ = 2 as specified in Lada and
Wilson (2006).

Step [5] below addresses the simulation start-up problem by truncating the first batch of observations.
The idea behind this truncation is that once the signed areas pass the randomness test in steps [2]–[4], one
can assume that the observations beyond the first batch and free of initialization bias. Steps [6]–[8] apply
the Shapiro–Wilk normality test. If the {Zi( f ;m)} fail iteration ` of the normality test (`= 1,2, . . .) at the
significance level δψ(`), with δ = 0.20, then the batch size m is increased by the factor

√
2, the iteration

counter ` is incremented, and the normality test is reperformed.
Given the user-specified relative precision γ > 0, SPSTS sequentially increases the total sample size

n, the batch size m, and the batch count b (up to the limit of b∗ = 64 batches) so that in terms of the final
point estimator Xn of µ , the half-length of the final CI for µ does not exceed γ

∣∣Xn
∣∣. When γ = ∞ (no

precision case), the algorithm terminates as soon as the signed areas based on the cosine weights fcos,1(·)
and fcos,2(·) pass both tests for randomness and normality. Finite values of γ should be reasonably small,
say γ ≤ 0.15. A formal algorithmic statement of SPSTS is given below.

Algorithm SPSTS

[0] Initialization: Set α , β = 0.20, δ = 0.20, b∗ = 64, and relative error upper bound γ . Define the
function ψ(r)≡ exp

[
−η(r−1)θ

]
, r = 1,2, . . ., where η > 0 and θ ≥ 1.

[1] Generate b = 40 batches of size m = 2048. Set j← 1 and r← 1.

[2] Until von Neumann’s test fails to reject independence using the current weight function f j(·):
•compute the signed areas {Zi( f j;m) : i = 1, . . . ,b} for weight function f j(t)≡ fcos, j(t), t ∈ [0,1].
•assess the independence of {Zi( f j;m) : i= 1, . . . ,b} using von Neumann’s two-sided randomness
test at significance level βψ(r);

•set r← r+1 and m←
⌊
m
√

2+0.5
⌋
;

[3] Set m j← m; m← 2048; j← 2; and r← 1.

[4] Repeat step [2] with the updated value of j; and take m←max{m1,m2}.
[5] Remove the first batch {X1, . . . ,Xm}; reindex the remaining sample and the signed areas as {Zi( f j;m) :

i = 1, . . . ,b− 1; j = 1,2}; collect a new batch of size m; compute {Zb( f j;m) : j = 1,2}; and set
j← 1.

[6] Until the Shapiro–Wilk test fails to reject normality using the current weight function f j(·):
•assess the multivariate normality of {Zi( f j;m)} using the Shapiro–Wilk one-sided test at
significance level δψ(`);

•set `← `+1 and m←
⌊
m
√

2+0.5
⌋
;
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[7] Set m′j← m; m←max{m1,m2}; j← 2; and `← 1.

[8] Repeat step [6] with the updated value of j and take m←max{m′1,m′2}.
[9] Until the relative half-length h(b,m,α)/|Xn| ≤ γ:

•compute the batched area estimates

A ( f j;b,m)≡ 1
b

b

∑
i=1

Z2
i ( f j;m) for j = 1,2;

•compute the OBM variance estimate O(b,m;m/4) using Equation (3) with shift d = m/4;
•set

V̂ (b,m)←max
{
O(b,m;m/4),A ( f j;b,m) : j = 1,2

}
and compute the half-length

h(b,m,α)≡ tb,1−α/2

√
V̂ (b,m)/n;

•estimate the number of batches of the current size required to satisfy the precision requirement

b′ =

⌈{
h(b,m,α)

γXn

}2
⌉

;

•update the batch count b, the batch size m, and the total sample size n as follows,

b←min
{

b′,b∗
}
,

m←

{
m , if b = b′ ,⌈
m×mid

{
1.05,

(
b′/b

)
,2
}⌉

, if b < b′ ,

n← bm .

[10] Deliver the 100(1−α)% CI Xn ± h(b,m,α).

Remarks: The factor of
√

2 applied to the increase of the batch size in steps [2], [4], [6], and [8] allows
computational savings because accumulators collected in iteration r are used to compute the {Zi( f j;m)}
in iteration r+2. Further, for each i and m, the quantities Zi( f1;m) and Zi( f2;m) are computed in parallel.

4 COMPARISONS WITH EXISTING METHODS

This section discusses a preliminary empirical study designed to test the performance of SPSTS. To do so,
we consider a stationary M/M/1 queueing system with arrival rate ω and traffic intensity ρ < 1. Let Xi
be the time spent in queue prior to service by entity i. For this process, we have µ = ρ2/[ω(1−ρ)] and
σ2 = ρ3(2+5ρ−4ρ2 +ρ3)/[ω2(1−ρ)4]; see, for example, Steiger and Wilson (2001). Table 1 contains
experimental results for ω = 0.9 and ρ = 1. The estimates for ASAP3 and Skart are from Table 1 of
Tafazzoli et al. (2011). All three methods used the initial condition X0 = 0. The results for SPSTS and
Skart are based on 1000 replications of each procedure, whereas the results for ASAP3 are based on 400
replications of that procedure.

Table 1 reports results on the following performance characteristics for the SPSTS, Skart, and ASAP3
procedures for CIs with no precision requirement and precisions of 7.5% and 3.75%: empirical coverage,
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average sample size until procedure termination, average CI half-length, and sample standard deviation
of CI half-length. For the specific M/M/1 process under study, the CI coverage probabilities for SPSTS
always met or (slightly) exceeded the user-specified nominal levels. Under the no-precision requirement,
this was achieved at the cost of substantially larger sample sizes than Skart and ASAP3. (The reader should
bear in mind that SPSTS starts with a significantly larger sample size than Skart or ASAP3.) On the other
hand, the CIs delivered by SPSTS were less variable than their competitors from Skart and ASAP3. Under
the rather stringent precision requirements of 7.5% and 3.75%, the sample sizes required by SPSTS were
about the same as those required for Skart, but somewhat higher than the corresponding sample sizes for
ASAP3. Furthermore, the CIs delivered by SPSTS were noticeably more variable that their counterparts
from ASAP3 and Skart for the relative precision of 3.75%. This variability can be addressed by area
estimators based on STSs applied to overlapping batches (Alexopoulos et al. 2007b).

Table 1: Experimental results for the SPSTS algorithm for an M/M/1 system with traffic
intensity 0.9. The estimates for SPSTS and Skart are based on 1000 independent replications,
while the estimates for ASAP3 are based on 400 replications.

Precision Performance Nominal 90% CIs Nominal 95% CIs
Measure SPSTS Skart ASAP3 SPSTS Skart ASAP3

CI coverage (%) 92.5 87.6 87.5 95.6 93.9 91.5
none (γ = ∞) Avg. sample size 291,790 42,369 31,181 291,790 42,369 31,181

Avg. CI half-length 0.638 1.767 2.072 0.765 2.298 2.521
StDev. CI half-length 0.153 0.508 0.590 1.184 1.137 0.731

CI coverage (%) 92.1 91.1 89.5 95.9 95.9 94.0
±7.5% Avg. sample size 326,440 302,305 287,568 417,700 431,677 382,958

Avg. CI half-length 0.576 0.635 0.627 0.604 0.637 0.632
StDev. CI half-length 0.082 0.037 0.048 0.069 0.035 0.045

CI coverage (%) 91.4 92.0 89.5 95.9 96.0 93.5
±3.75% Avg. sample size 1,146,900 1,105,417 969,011 1,588,500 1,586,267 1,341,522

Avg. CI half-length 0.305 0.321 0.320 0.310 0.321 0.321
StDev. CI half-length 0.027 0.014 0.020 0.022 0.014 0.020

5 CONCLUSIONS

This paper introduced SPSTS, an automated sequential procedure for computing point and CI estimators for
the steady-state mean of a simulation output process. SPSTS is based on STS area estimators; and in a small
empirical evaluation involving an M/M/1 queueing system, we found that SPSTS performed reasonably
well compared with other sequential procedures in terms of CI coverage, average required sample size,
and the first two moments of the CI’s half-length. It should be noted that STS area estimators can also be
used for obtaining CIs for the variance parameter σ2 (Alexopoulos et al. 2007a). The following tasks will
be undertaken in the near future: (a) we will develop sequential provedures based on STS area estimators
computed from overlapping batches of observations (Alexopoulos et al. 2007b); (b) we will enhance our
procedures to address the start-up problem for simulations containing a transient phase; and (c) in order to
evaluate the robustness and competitiveness of the new methodology more completely, we plan on carrying
out a great deal of additional Monte Carlo experimentation on a large variety of stochastic processes with
more-challenging characteristics — including processes with heavy tails, long-term memory, etc.
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