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ABSTRACT

We propose a theoretical and computational framework for approximating the optimal policy in multi-
armed bandit problems where the reward distributions are non-Gaussian. We first construct a probabilistic
interpolation of the sequence of discrete-time rewards in the form of a continuous-time conditional Lévy
process. In the Gaussian setting, this approach allows an easy connection to Brownian motion and its
convenient time-change properties. No such device is available for non-Gaussian rewards; however, we
show how optimal stopping theory can be used to characterize the value of the optimal policy, using a
free-boundary partial integro-differential equation, for exponential and Poisson rewards. We then solve this
problem numerically to approximate the set of belief states possessing a given optimal index value, and
provide illustrations showing that the solution behaves as expected.

1 INTRODUCTION

We consider a fundamental model for learning in stochastic optimization, in which there is a finite set
of design alternatives with unknown values, and a decision-maker can perform sequential experiments on
individual alternatives to learn about the unknown values and eventually identify the best alternative. The
simulation literature (Bechhofer et al. 1995; Kim and Nelson 2006) studies a version of this problem
known as ranking and selection (R&S), where new information is collected from stochastic simulations,
the total simulation budget is limited, and a single alternative will be selected for implementation after the
budget has been used. The objective of the problem is to guide the allocation of simulation experiments
to maximize either the probability of implementing the best alternative (Kim and Nelson 2001) or the
expected value of the implemented alternative (Chick 2006). Either way, a single experiment is valuable
insofar as it helps us to improve the quality of the final implementation.

The multi-armed bandit problem (Gittins et al. 2011), widely studied in applied probability and computer
science, is closely related to R&S. The only difference is that the outcome of an experiment (viewed as
the simulation output in R&S) now has inherent economic value, and the objective is to maximize the
cumulative reward obtained across all experiments. While it is still important to identify the best alternative,
the decision-maker now has to ensure that every experiment will produce a reasonably good outcome.
This model is suitable for applications where decisions are implemented in real time, such as advertising
placement in e-commerce or clinical drug trials with human patients, and thus each decision has economic
or other consequences, in addition to providing information. In simulation, the bandit model is relevant
when a single simulation experiment costs money (Chick and Gans 2009). At a high level, R&S and
multi-armed bandits have many common elements, and indeed some algorithmic approaches can be easily
adapted to either problem class (Ryzhov et al. 2012; Powell and Ryzhov 2012).

The vast majority of the literature on either problem typically assumes that information takes the form
of samples from a Gaussian distribution centered around the true value of an alternative. The Gaussian
assumption offers advantages such as the ability to incorporate correlations between estimated values
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(Nelson and Matejcik 1995; Qu et al. 2012). Recently, however, the operations management literature has
considered problems in pricing (Farias and Van Roy 2010) and assortment planning (Caro and Gallien 2007;
Glazebrook et al. 2013) where the observed demand follows a Poisson distribution with unknown rate. In
the newsvendor problem of Lariviere and Porteus (1999), a Bayesian gamma prior models beliefs about an
exponentially distributed demand. The work by Jouini and Moy (2012) also applies the gamma-exponential
model to learn signal-to-noise ratios in channel selection. The gamma-Poisson and gamma-exponential
models are among the most intuitive non-Gaussian conjugate priors, and the best-suited for applications in
pricing and assortment planning. While the Gaussian assumption may be applied in a large-sample setting,
observations in bandit problems are collected individually in an online manner.

The bandit literature provides some general results for non-Gaussian rewards. For instance, the Gittins
index policy (Gittins et al. 2011) is optimal for independent gamma priors on Poisson or exponential
parameters; see Gittins and Wang (1992) for a discussion of scaling properties in the exponential setting.
The work by Agrawal (1995) extends the upper confidence bound (UCB) approach of Lai and Robbins
(1985) to the gamma-exponential model, while Ryzhov and Powell (2011) does the same for the knowledge
gradient (KG) approach of Gupta and Miescke (1996). See Chapter 5 of Powell and Ryzhov (2012) for
extensions of KG to other non-Gaussian problems. Nonetheless, the non-Gaussian setting still produces
unexpected theoretical challenges. For example, the KG method is known to be asymptotically optimal
in the Gaussian setting (Frazier and Powell 2011), meaning that it identifies the best alternative with
probability 1 if given infinitely many measurements. However, this property does not hold when rewards
are exponential (Ding and Ryzhov 2013). Conversely, the UCB method of Agrawal (1995) preserves its
desirable theoretical properties, but relies on tunable parameters that are difficult to compute optimally (Liu
and Zhao 2010). Perhaps for these reasons, the non-Gaussian case remains relatively unexplored.

In this paper, we summarize a new framework for optimal learning with non-Gaussian rewards. We
return to the Gittins index policy, which is theoretically optimal for multi-armed bandits, but is known to be
difficult to compute. In the Gaussian setting, a recent stream of work by Brezzi and Lai (2002), Yao (2006),
and Chick and Gans (2009) has approximated the Gittins policy by formulating an optimal stopping problem
on a Brownian motion with unknown drift, a continuous-time process that can be viewed as a probabilistic
interpolation of the sequence of Gaussian rewards collected from a single alternative. By exploiting the
connection between Brownian motion and the heat equation (Steele 2000), a free-boundary problem can
be formulated and solved numerically to approximate the Gittins index. We use a similar approach as our
foundation, and interpolate the reward sequence in the gamma-Poisson and gamma-exponential problems
with conditionally Poisson and gamma processes, respectively. We then formulate stopping problems on
these continuous-time processes. Although we cannot rely on the time-change properties of Brownian
motion to “standardize” the problem, as in previous work, we use an alternate approach based on equating
the infinitesimal and characteristic operators (Peskir and Shiryaev 2006) of the function solving the stopping
problem. This leads to free boundary problems on partial integro-differential equations (PIDEs).

We describe how these problems can be solved numerically to approximate the Gittins index. In the
gamma-exponential problem, the Gittins index possesses scaling properties which can be exploited to reduce
the difficulty of the procedure, and, ultimately, to drive the development of computable approximations
to the Gittins index. We summarize our recent and ongoing work in this regard (primarily focusing on
solving the PIDEs) and point to future directions. To our knowledge, this work represents the first effort
to develop approximations for optimal policies in non-Gaussian learning problems, and shows how Lévy
process interpolation can play a useful role in optimal learning beyond the Gaussian model.

2 OPTIMAL LEARNING WITH NON-GAUSSIAN REWARDS

In Section 2.1, we begin with a general exposition of the multi-armed bandit problem, and then describe
the specific settings considered in the rest of the paper. Section 2.2 summarizes the “Gittins index” policy,
known to be optimal for the multi-armed bandit setting. We discuss the difficulty of computing this policy,
motivating the need for our analysis.
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2.1 Learning with Non-Gaussian Rewards

Suppose that there are M alternatives, to be considered over a large number of time periods. Let xn ∈{1, ...,M}
denote the alternative chosen for simulation in the nth stage, and let W n+1

x represent the output of that
simulation (which becomes known only at time n+1). For fixed x, the outputs W 1

x ,W
2
x , .... are drawn from

a common sampling density fx (·;λx), where λx is a parameter or vector of parameters for alternative x.
Conditional on λx, the outputs are independent. Let F n denote the sigma-algebra generated by the first n
decisions x0,x1, ...,xn−1 and outputs W 1

x0 , ...,W n
xn−1 .

However, the parameters λx are not known for any x, and thus are modeled as random variables. The
decision-maker maintains a set of beliefs about λx, which can be represented by a sequence (kn

x)
N−1
n=0 of

random vectors, such that kn is F n-measurable for all n, and we can write

IE
(
W n+1

x |F n)= m(kn
x)

for an appropriate function m. One way to interpret the knowledge state kn
x is as a set of sufficient statistics

for the conditional distribution of λx given F n. In the classic multi-armed bandit problem, the parameters
λx are assumed to be independent of one another, and likewise the simulation outputs are independent
across alternatives. Our beliefs about the alternatives are characterized by kn = {kn

1, ...,k
n
M}.

A policy π represents a sequence Xπ,0,Xπ,1, ... of functions mapping knowledge states k0,k1, ... to
alternatives in {1, ...,M}. In other words, a policy specifies a way to make decisions for any set of beliefs
at any time stage. The decision-maker’s objective can be written as

sup
π

IEπ
∞

∑
n=0

γ
nIE
(

W n+1
Xπ,n(kn)

)
. (1)

In words, (1) chooses a policy maximizing the infinite-horizon discounted average reward obtained from
the alternatives simulated by the policy. The parameter 0 < γ < 1 is a pre-specified discount factor.

In this paper, we consider two classic Bayesian learning models where the rewards are non-Gaussian.
The first of these is the gamma-exponential model. In this setting, the sampling density fx is (conditionally)
exponential with unknown rate parameter λx. The conditional distribution of λx, given F n, is gamma with
parameters an

x and bn
x . Bayesian analysis (DeGroot 1970) provides us with simple recursive relationships

an+1
x =

{
an

x +1 if xn = x
an

x if xn 6= x,
(2)

bn+1
x =

{
bn

x +W n+1
x if xn = x

bn
x if xn 6= x.

(3)

In this case, we have kn
x = (an

x ,b
n
x), and the mean function m is given by m(kn

x) =
bn

x
an

x−1 .
The second setting we consider is the gamma-Poisson model, where fx is conditionally Poisson with

unknown rate λx. The belief distribution of λx at time n is again gamma with parameters an
x and bn

x , and
the Bayesian updating equations are now given by

an+1
x =

{
an

x +W n+1
x if xn = x

an
x if xn 6= x,

(4)

bn+1
x =

{
bn

x +1 if xn = x
bn

x if xn 6= x.
(5)

Again, the decision-maker’s knowledge about λx at time n is represented by kn
x = (an

x ,b
n
x) with mean function

m(kn
x) =

an
x

bn
x
.
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We briefly note that a third well-known non-Gaussian learning model assumes Bernoulli rewards
with beta belief distributions. This setting has been relatively well-represented in the literature (see e.g.,
Berry and Pearson (1985)), and we do not explore it here. Among the other common conjugate learning
models, the gamma-exponential and gamma-Poisson settings are the most intuitive (using some of the
most fundamental probability distributions) and the best-suited to applications in assortment planning and
revenue management. At the same time, these learning models have received the least amount of theoretical
scrutiny in the bandit literature.

2.2 Review of Gittins Index Policies

We briefly review the properties of the Gittins index policy, the theoretically optimal solution of (1). For
more details, the reader is referred to Ch. 6 of Powell and Ryzhov (2012) for a more detailed introduction,
and to Gittins et al. (2011) for a deeper theoretical treatment.

In the Gittins index method, each alternative is considered separately from the others. Denote by
k = (a,b) our beliefs about an arbitrary alternative (we drop the subscript of the alternative from these
parameters for convenience). Suppose that, at each time step, we have a choice between simulating this
alternative and receiving a deterministic, pre-specified retirement reward R. The optimal decision in this
setting is the solution to Bellman’s equation, given by

V (k,R) = max
{

R+ γV (k,R) , IE
[
W + γV

(
k′,R

)
|k
]}

(6)

where k′ is the future knowledge state obtained e.g., via (2)-(3) or (4)-(5). Of course, if the fixed reward
is optimal under a set of beliefs k, it will remain optimal for all future time periods, whence (6) becomes

V (k,R) = max
{

R
1− γ

,m(k)+ γIE
[
V
(
k′,R

)
|k
]}

. (7)

The Gittins index is a value G(k) that makes the decision-maker indifferent between the two quantities in
(7). It has been shown that the policy

X∗,n (kn) = argmax
x

G(kn
x)

is optimal for the objective in (1).
In this way, an M-dimensional problem can be decomposed into M one-dimensional problems, each of

which is independent from the others. Furthermore, for the special case of the gamma-exponential problem,
it is known that G(an

x ,b
n
x) = bn

xG(an
x ,1), so potentially Gittins indices only have to be computed for a

restricted class of knowledge states. Even so, (7) remains computationally intractable for most continuous
reward distributions. This computational challenge serves as the motivation for our work. Currently,
efficient approximations exist only for Gaussian reward distributions; we now describe a new framework
for developing such approximations in non-Gaussian settings.

3 THE GITTINS INDEX AS A STOPPING BOUNDARY

The existing literature on Gittins index approximation with Gaussian rewards begins with the work by
Brezzi and Lai (2002), which proposed the following idea. For arbitrary x (again, we drop the subscript x for
convenience), the discrete-time process (W n)∞

n=1 of observations with unknown mean µ and known variance
σ 2 is replaced by a continuous-time process (Xt)t≥0 which can be viewed as a probabilistic interpolation
of the discrete-time process. That is, for integer t, the increment Xt+1−Xt has the same distribution as the
one-period reward Wt+1. In the Gaussian setting, (Xt) is (conditionally) a Brownian motion with unknown
drift µ and known volatility σ . The formulation of the Gittins index in (7) can also be extended to the
continuous-time case and written as the solution to an optimal stopping problem. The work by Chick and
Gans (2009) shows how this problem can be recast as a PDE based on the heat equation.
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Our approach draws inspiration from this idea. In the two non-Gaussian settings described in Section
2.1, the probabilistic interpolation of the sequence (W n) is a conditional Lévy process. For the gamma-
exponential problem, (Xt) is a gamma process (see e.g., Cinlar (2011) for a definition) with shape parameter
1 and unknown scale parameter λ , whereas in the gamma-Poisson setting, (Xt) is a Poisson process with
unknown rate λ . In both cases, we begin by assuming λ ∼Gamma(a0,b0), reflecting the decision-maker’s
prior beliefs. Letting F t be the sigma-algebra generated by the path of X up to time t, we find that the
conditional distribution of λ given F t is still gamma. For the gamma-exponential setting, the posterior
parameters become

at = a0 + t, bt = b0 +Xt ,

as in (2)-(3), whereas for the gamma-Poisson problem, we have

at = a0 +Xt , bt = b0 + t,

as in (4)-(5).
The Gittins recursion (7) is extended to the continuous-time setting as follows. Let c be a continuous-time

discount factor (lower c corresponds to higher γ in discrete time). For fixed R, we write

R
∫

∞

0
e−csds = sup

τ

IE
∫

τ

0
e−csdXs +R

∫
∞

τ

e−csds, (8)

where τ denotes a stopping time. This formulation is equivalent to the one based on Bellman’s equation;
see e.g., Katehakis and Veinott (1987) or Yao (2006) for more details. Essentially, discounted rewards
are collected from the process (Xt) until time τ , at which point we “retire” and accrue the fixed reward R
until the end of time. If (8) holds, we are indifferent between collecting R for the entire time horizon and
running the process until time τ , precisely the condition needed for a Gittins index.

We now show how (8) can be simplified in the specific context of the gamma-exponential problem.
Recalling that (Xt) is a gamma process with shape parameter 1 and unknown scale parameter λ , we write

IE
∫

τ

0
e−csdXs = IE

∫
τ

0
e−cs bs

as−1
ds

= IE

[
1
c

(
b0

a0−1
− e−cτ bτ

aτ −1

)
+

1
c

∫
τ

0
e−cs d

ds

(
bs

as−1

)]
, (9)

where the first equality can be obtained by conditioning on λ and passing the expectation inside the integral,
and the second equality follows from integration by parts. The last integral in (9) has zero expectation
because the mean process mt =

bt
at−1 is an F t-martingale. Consequently, (8) can be rewritten as

sup
τ

IE

[
e−cτ

(
R− bτ

aτ −1

)]
= R− b0

a0−1
. (10)

For the gamma-Poisson problem, a similar analysis leads to the formulation

sup
τ

IE

[
e−cτ

(
R− aτ

bτ

)]
= R− a0

b0
. (11)

Next, we proceed to recast (10) and (11) as free boundary problems. In the Gaussian setting, this can
be done by performing a time change (Revuz and Yor 2005) on the conditional Brownian motion process
to convert it into a Wiener process. The connection of the Wiener process to the heat equation (Steele
2000) is then exploited to construct a free-boundary PDE. In the non-Gaussian setting, such manipulations
are not possible. We use an alternate approach inspired by Peskir and Shiryaev (2006), based on equating
the characteristic and infinitesimal operators of the value function of the stopping problem.
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We use the gamma-exponential problem to walk through the approach. For mt =
bt

at−1 , let

V (a,m) = IE

{
sup

τ

IE
[
e−cτ (R−mτ)

]
|a0 = a,m0 = m

}
. (12)

The function V in (12) is the continuous-time analog of (6). We drop the dependence on R from the notation
for convenience, and replace the generic knowledge state k by (a,m), a one-to-one transformation of the
gamma-exponential belief parameters (a,b).

The characteristic operator of this value function is defined as

Lchar
m V (a,m) = lim

U↓{m}

IEV (aτUc ,mτUc )−V (a,m)

IE(τUc)
, (13)

where U is an open set containing m, and τUc is the hitting time of the set Uc for the process (mt). That is,

τUc = inf{t ≥ 0 : mt ∈Uc} .

In words, we first consider the value function at the moment when the mean process (mt) leaves U , and
then shrink U down to the singleton {m}. For the gamma-exponential problem, (13) admits a closed-form
solution, stated in the following result.
Proposition 1 The characteristic operator of V is given by

Lchar
m V (a,m) = cV (a,m)− (m−R) . (14)

The infinitesimal operator Lin f
m is derived using Itô’s formula (Sato 1999). We write

V (at ,mt) = V (a0,m0)+
∫ t

0

∂V (as,ms)

∂ s
ds+

∫ t

0

∂V (as,ms)

∂m
dms

+ ∑
0<s≤t

[
V (as,ms)−V

(
as,m−s

)]
= V (a0,m0)+

∫ t

0
Lin f

m V (as,ms)ds+Mt ,

where Mt is a martingale formed by adding and subtracting a continuous compensator to the jump component
of V . Essentially, the characteristic and infinitesimal operators are two ways to write the derivative of V , one
based on Kolmogorov’s theory and the other on Itô calculus. Under general arguments, the two operators
are equivalent; by matching them, we arrive at a free-boundary partial integro-differential equation (PIDE),
stated in the following result.
Theorem 1 Suppose that V (a,m) solves the free-boundary problem

∂V (a,m)

∂a
− m

a−1
∂V (a,m)

∂m
+
∫

∞

0
[V (a,m+ z)−V (a,m)]

1
z

(
m

m+ z

)a

dz = cV (a,m) (15)

V (a,m∗ (a)) = R−m∗ (a)

where m∗ (a) is an unknown stopping boundary curve. Then, V (a,m) is the gamma-exponential value
function in (12).

For the gamma-Poisson problem, the analysis is quite similar. The value function

V (b,m) = IE

{
sup

τ

IE
[
e−cτ (R−mτ)

]
|b0 = b,m0 = m

}
(16)

has the same form as in (12), though the mean process has a slightly different definition mt =
at
bt

. As
a result, the characteristic operator is the same as in (14). Using Itô calculus to derive the infinitesimal
operator, we arrive at the free-boundary problem stated below.
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Theorem 2 Suppose that V (b,m) solves the free-boundary problem

∂V (b,m)

∂b
− m

b
∂V (b,m)

∂m
+

[
V
(

b,m+
1
b

)
−V (b,m)

]
m = cV (b,m)

V (b,m∗ (b)) = R−m∗ (b)

where m∗ (b) is an unknown stopping boundary curve. Then, V (b,m) is the gamma-Poisson value function
in (16).

We briefly discuss the interpretation of these free-boundary problems. Recall that both problems are
derived assuming a fixed R. Thus, they do not immediately yield a Gittins index for an arbitrary knowledge
state. However, the stopping boundary curve m∗ describes the set of all knowledge states for which the
Gittins index is exactly equal to R. For a given knowledge state, we can search over the set of boundary
curves for different values of R until we find the curve where the given state belongs. We discuss some
ideas for how such search procedures can be constructed, but a full implementation is outside the scope
of the present paper, which focuses on the numerical implementation and solution of the free-boundary
problems. These issues are discussed extensively in the following section.

Another relevant question is whether it is possible to guarantee that the PIDEs in Theorems 1 and 2
have solutions. In the Gaussian case, the approach of Brezzi and Lai (2002) is able to time-change the
interpolation process (a conditional Brownian motion) into a standard Wiener process, making it possible
to apply standard existence results on the Brownian PDE. For the conditional Lévy processes studied in
this paper, this is much more difficult. Some limited results are available in Sections 9.1-9.2 of Peskir
and Shiryaev (2006). For example, problems with jumps and no diffusion part will satisfy continuous
boundary conditions, whereas continuous processes (but not necessarily those with jumps) satisfy first-order
boundary conditions. Beyond these cases, the structural analysis of the PIDEs becomes much more difficult.
However, our numerical results indicate that solutions do exist, and behave in the way that we would expect
of the Gittins value functions.

4 NUMERICAL IMPLEMENTATION AND EXAMPLES

Solving the problems in Theorems 1 and 2 numerically poses a substantial challenge, because we do not
know the stopping boundary or even the exact value of V at any point, making it difficult to define suitable
initial conditions. We implement an approximation that gives a lower bound on the value function, based
on a “one-stage” stopping rule (also used by Chick and Gans 2009). For deterministic B≥ 0, define the
stopping time τB as follows. Starting from an initial set of parameters at time 0, we observe the process
(Xt) until time B. If mB < R, we retire, and if mB ≥ R, we continue running the process until infinity. We
then calculate the value achieved by τB, given by the quantity

V̄B = IE
[
e−cB (R−mB)

+] , (17)

and use supBV̄B to approximate the value of V for the prior parameters. For both gamma-Poisson and
gamma-exponential models, (17) can be computed in closed form, and supBV̄B is relatively easy to calculate
numerically.
Proposition 2 In the gamma-exponential model,

V̄B = e−cB b0

A+1

∫ A

0
F (s)ds

where A = R(a0+B−1)
b0

−1 and F is the cdf of a Beta prime distribution with parameters B and a0.
Proposition 3 In the gamma-Poisson model,

V̄B =
e−cB

b0 +B

[
∑
k≤A

F (k)− (dAe−A)F (bAc)

]
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(a) Initial value approximation as a function of B. (b) Initial value approximation (optimized over B) as a function
of m.

Figure 1: Illustrations of initial value approximation for PIDE solution.

where A = Rb0+RB−m0b0 and F is the cdf of a generalized negative binomial distribution with parameters
a0 and B

b0+B .

We use these results to calculate the initial conditions at (a,m) for fixed a and all m > 0. The following
figures illustrate the one-stage stopping rule and search for lower bound more intuitively, through a gamma-
exponential example with R = 1 and c = 0.05. First, Figure 1(a) shows that the approximation V̄B is
unimodal for B ∈ [0,20] with a = 50 and m = 1. The maximum value of this curve is then implemented as
an approximation for V (a,m) with a = 50 and m = 1. Figure 1(b) shows the results of this procedure for
all m values, with a = 50 fixed. The red line segment shows that the initial-value approximation is close
to the stopping trigger value R−m with high precision when m is low. The blue tail curve approaching
zero shows where the approximation starts to deviate from R−m. In the stopping problem, the red section
would correspond to the stopping region, while the blue section corresponds to the continuation region.

Using the lower bound to approximate the initial value of V , we solve the PIDEs numerically using
Euler’s finite difference schemes. It is preferable to calculate the initial value approximation for large time
values, since the quality of the lower bound supBV̄B is much better when the relevant time parameter (a
or b) is large. The PIDEs can be modified to express the dynamics for moving backward in time rather
than forward. Figure 2(a) demonstrates the solution surface to the PIDE for R = 1, c = 0.05, and the
initial value approximation (the right edge of the surface, highlighted in black) with a = 50. The surface
was created by propagating the initial value curve from Figure 1(a) from a = 50 backward to a = 1. The
solution surface is stopped and cut off when it hits the tilted plane V (a,m) = R−m. The red curve is the
stopping boundary, a projection of the surface values on this “hitting plane” onto the (a,m) plane. Figure
2(b) shows boundary curves for several values of R, all with initial conditions set at a = 50. Each of these
curves represents the set of all knowledge states whose Gittins index is precisely equal to the given R value;
for any knowledge state above the curve, we prefer to continue collecting rewards from the process (Xt),
whereas for any knowledge state below the curve, we prefer to stop and accrue the fixed reward R instead.

We briefly mention some properties of the solution to the PIDE. First, it can be shown that V is
decreasing in time, represented by the a parameter in the gamma-exponential model and the b parameter
in the gamma-Poisson model. Second, V is decreasing in the mean parameter m. Recent work by Aalto
et al. (2011) discusses the continuity of the Gittins index as a function of the continuous belief parameters.
As a consequence, the stopping boundary m∗ described by Theorems 1 and 2 should converge to the
retirement value R as the time parameter becomes large. Therefore, the curves in Figure 2(b) behave as
expected, increasing over time but remaining dominated by their R values. We also note that the boundary
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(a) Solution surface of the PIDE, R = 1. (b) Stopping boundaries for different values of R.

Figure 2: Illustrations of PIDE solutions.

curves appear to be concave; the slight bumps close to a = 50 are due to numerical issues stemming from
proximity to the initial value. The shape of these curves suggests an intuitive search procedure to find the
Gittins index for a given (a,m) pair: we first try a large value of R for which the stopping boundary is
above (a,m), then apply the bisection method until we find R for which (a,m) is sufficiently close to the
boundary. The implementation of this procedure is the subject of our ongoing work, and is outside the
scope of this paper. However, it is clear that the key to such procedures is the ability to find good boundary
curves.

Although the backward propagation method has the benefit that the initial value approximation is much
more accurate, it presents other computational challenges. Figure 3(a) demonstrates the propagation of
characteristic curves in the PIDE. Intuitively, the solution at every point depends on the area above the
characteristic curve that the point lies on. However, going backward in time, the stopping boundary moves
in the opposite direction from the characteristic curves. Therefore, if the initial condition is given at a = 50
(black line), there is no way that it could propagate to the area below the lowest of the blue characteristic
curves (the region marked B in the figure). Computing solutions in B requires additional techniques for
building entropy solutions from PDE theory.

On the other hand, if we move forward in time, as in Figure 3(b), this issue is avoided. If we have
initial conditions at small a values, it is easy to propagate the characteristic curves downward until the
stopping condition is triggered. The drawback is that the initial condition is less accurate for small a. Our
experience has been that backward propagation produces better solutions, despite the need for additional
approximations in the B region on Figure 3(a).

The integral term in (15) must be calculated numerically (using e.g., a discrete Riemann sum), and thus
presents an additional source of error. We found that applying back-propagation directly to this discretized
integral produces bumpy boundary curves. This occurs because the integral term makes the information at a
fixed point (a,m) non-local, so that any error at that point is passed to infinitely many points simultaneously,
including points far away from (a,m). To deal with this issue, we enforce the monotonicity of the stopping
boundary by simply taking the maximum of the bumpy simulated points. The results in Figure 2 demonstrate
that the numerical solution behaves in accordance with our intuition about the problem.

5 CONCLUSION

We have presented a theoretical framework that can be used to approximate the computation of optimal
policies for multi-armed bandit problems with non-Gaussian rewards. The foundation of our approach
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(a) Stopping boundaries for different values of R. (b) Solution surface of the PIDE, R = 1.

Figure 3: Illustrations of backward and forward PIDE solution.

consists of constructing continuous-time, conditional Lévy processes that serve as probabilistic interpolations
of the discrete-time reward processes in the bandit problem. This idea was previously used in the Gaussian
setting, where the properties of Brownian motion allow for easy standardization and numerical solution of
a stopping problem in continuous-time. Although these techniques are not available in the non-Gaussian
setting, we have shown that the analogous stopping problems can be represented as free-boundary problems
on PIDEs that equate the characteristic and infinitesimal operators of the relevant value function. We have
also discussed how these problems can be solved numerically, and presented illustrations showing that the
results exhibit the correct structure established in the theory.

Our ongoing work concentrates on leveraging these results to obtain computationally tractable procedures
for approximating Gittins indices. Our approach is especially promising in the gamma-exponential case,
where the Gittins index enjoys scaling properties. While this is outside the scope of the present paper, the
framework we have presented can be intuitively extended and incorporated into a search procedure to find
the Gittins index for a restricted class of knowledge states. We can then fit a statistical regression model
to the output; combining this with the scaling properties of the Gittins index will yield the first known
computationally tractable Gittins index approximations for non-Gaussian rewards.
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