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ABSTRACT

Conceptually, under restrictions, multiclass open queueing networks are positive Harris recurrent Markov
processes, making them amenable to regenerative simulation for estimating the steady-state performance
measures. However, regenerations in such networks are difficult to identify when the interarrival times
are generally distributed. We assume that the interarrival times have exponential or heavier tails and show
that such distributions can be decomposed into mixture of sums of independent random variables such that
at least one of the components is exponentially distributed. This allows an implementable regenerative
simulation for these networks. We show that the regenerative mean and standard deviation estimators
are consistent and satisfy a joint central limit theorem. We also show that amongst all such interarrival
decompositions, the one with largest mean exponential component minimizes the asymptotic variance of
the standard deviation estimator. We also propose a regenerative simulation method that is applicable even
when the interarrival times have superexponential tails.

1 INTRODUCTION

A regenerative process is a stochastic process with a sequence of random time instants (known as regeneration
times) such that at these instants the process probabilistically regenerates itself (Smith 1955; Asmussen
2003). Regenerative simulation exploits this structure by generating independent and identically distributed
(i.i.d.) cycles via simulation and extracting consistent estimators of the steady-state performance measures
from them (see, e.g, Glynn and Iglehart (1987); Henderson and Glynn (2001); Glynn (2006)). Typically,
regenerative simulation is considered applicable to queueing networks when the interarrival times are
exponentially distributed, where for example, instants of arrivals to an empty network denote a sequence of
regeneration times. To see some possible applications of the regenerative simulation to queueing networks,
refer, e.g, Iglehart and Shedler (1979; 1980; 1983). Dai (1995) establishes that under stability of the
fluid limit model of a multiclass network, the associated Markov process is positive Harris recurrent that
guarantees the existence of regenerations in the process (Athreya and Ney 1978; Nummelin 1978). However,
the identification of the regeneration instants involves the explicit knowledge of the transition kernel that
is typically difficult to compute (see, e.g, Henderson and Glynn (1999)). A-priori it is not clear whether
implementable regeneration schemes can be identified for a queueing network when the interarrival times
are generally distributed. In this paper we construct an implementable regenerative simulation method
to estimate the steady-state performance measures of multiclass open queueing networks (Dai and Meyn
1995; Dai 1995) focusing primarily in the case where the interarrival times to the system are generally
distributed and have exponential or heavier tails.

We develop two methods to implement regenerative simulation for these networks. The first method
is applicable when the interarrival times are generally distributed with exponential or heavier tails. This
implementation is possible based on the observation that random variables with exponential or heavier
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tails can be re-expressed as a mixture of sums of independent random variables where at least one of
the components is exponentially distributed. Networks where the interarrival times have exponential or
heavier tails, e.g., Gamma or Hyper-exponentially distributions, are common in practice (see, e.g, Li (1997);
Miller and Bhat (1997)). The second method can be applicable even when the interarrival times have
superexponential distributions. Finite moment conditions on regenerative cycles are important as they allow
construction of asymptotically valid confidence intervals (see, e.g, Glynn and Iglehart (1987)). Our another
contribution is to show that, under mild stability conditions, finite moments of the interarrival and service
times are sufficient to guarantee the required finite moment conditions on the proposed regenerative cycles.

As is well known, classical regenerative processes are stochastic processes that can be viewed as
concatenation of i.i.d. cycles. These have been extended to general regenerative processes that allow some
dependence between adjacent cycles (see, e.g, Asmussen (2003)). Despite no proper rule to identify the
regenerative structure that minimizes the asymptotic variance of the standard deviation estimator (AVSDE),
Andradóttir, Calvin, and Glynn (1995) show that when one regenerative structure is a subsequence of another,
the AVSDE associated with the original sequence is smaller than that associated with the subsequence. We
extend this result and show that, in our framework, the selection of the interarrival time decomposition
with largest mean exponential component results in the minimum AVSDE.

The remaining paper is organized as follows. In Section 3, we review both the classical and general
regenerative simulation, and the associated central limit theorems. In Section 4, we show that under mild
conditions, a random variable with an exponential or heavier tail distribution can be re-expressed as a
mixture of sums of independent random variables where one of the constituent random variables has an
exponential distribution. Formal construction of multiclass network is presented in Section 5. Section
6 presents a regenerative simulation methodology for these networks and establishes the finiteness of
moments of regeneration intervals under appropriate assumptions on network primitives. In Section 7, we
establish that if one regenerative structure is a subsequence of another then the AVSDE associated with the
former regenerative structure is at least as large as that associated with the latter, and present an important
application of this result. Section 8 illustrates the proposed simulation method using a simple numerical
example. In Section 9, we propose a different method of regenerative simulation which can be applicable
even when the interarrival times have superexponential tail distributions. We refer the reader to (Moka and
Juneja 2013) for proofs of the results presented in this paper.

2 NOTATION AND TERMINOLOGY

We first introduce notation that will be used throughout the paper. Assume that all the random variables and
stochastic processes are defined on a common probability space (Ω,F ,P). For any metric space S , BS

denotes the Borel σ -algebra on it. The notation X ∼ F is used to denote that the distribution of a random
variable X is F . Exp(λ ) represents an exponential distribution with rate λ > 0 and Uni f orm(a,b) represents

a uniform distribution on interval [a,b]. We write X1
d
= X2 to denote the equivalence of distributions of

random variables X1 and X2. A subprobability measure ν is a component of the distribution of a S -valued
random variable X if P(X ∈ A) ≥ ν(A) for every Borel set A ∈BS (refer to Thorisson (2000)). The
indicator function is denoted by I(·), which is 1 if the argument is true and 0 otherwise. We say that a
probability distribution is lattice if it is concentrated on a set of points of the form a+nh, where h > 0,
a is a real value and n = 0,±1,±2, . . . . Any non-zero σ -finite measure π is an invariant measure of the
process X = {X(t) : t ≥ 0} if π(B) =

∫
X P(X(t) ∈ B/X(0) = y)π(dy), for all B ∈BX , t ≥ 0, where X is

the state space of X . If every invariant measure is a positive scalar multiple of π , then it is well known that
π is the unique invariant probability measure of the process X . We assume that all the processes considered
in this paper are càdlàg (right continuous paths with left limits).
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3 REGENERATIVE PROCESSES

As is well known, a sequence of random variables 0 = T−1 ≤ T0 < T1 < T2 < · · · is called a renewal process
if the sequence of intervals {Tn−Tn−1;n≥ 1} is an i.i.d. sequence and independent of T0. The following
definition of regenerative process is based on Asmussen (2003) (also refer to Thorisson (1983) where it is
known as wide-sense regenerative process).

Definition 3.1 A stochastic process Y = {Y (t) : t ≥ 0} is called regenerative if there exists a renewal
process 0 = T−1 ≤ T0 < T1 < · · · such that (i) {Y (Tn + s) : s≥ 0} is independent of {T0, . . . ,Tn} and
(ii) {Y (Tn + s) : s≥ 0} is stochastically equivalent to {Y (T0 + s) : s≥ 0} for n≥ 0.

The sequence T0,T1, . . . is referred to as a sequence of regeneration times. In addition, if the regen-
eration cycles, {{Y (s) : Tn−1 ≤ s < Tn} ,n≥ 0}, are independent then the process is known as classically
regenerative. We refer to Y as a non-delayed regenerative process if T0 = 0. Conceptually, one may think
of a non-delayed classically regenerative process as a concatenation of i.i.d. cycles.

The following theorem is important to our analysis. Refer, e.g., to Theorem 1.2 in Chapter VI of
Asmussen (2003) for proof. Let Y be the state space of the process Y , and for any distribution ν on
(Y ,BY ), let Eν(·) :=

∫
Y Ey(·)ν(dy), where Ey is the expectation operator associated with the probability

measure Py that satisfies Py(Y (0) = y)≡ 1.
Theorem 3.1 Suppose that Y is a non-delayed regenerative process with regeneration times 0 = T0 <

T1 < · · · and the distribution of the first cycle length T1 is non-lattice with finite mean. Then, the steady-state
distribution π exists and for any non-negative real valued function h,Eπ [h(Y (t))]= 1

Eϕ [T1]
Eϕ

[∫ T1
0 h(Y (s))ds

]
,

where ϕ is the distribution of the initial state Y (0).
From Theorem 3.1, it is not hard to see that associated with every regenerative process there exists

a classically regenerative process with the same steady-state performance measures. Suppose that X =
{X(t) : t ≥ 0} is such a classically regenerative process associated with the regenerative process Y . Often
a steady-state performance measure of interest has the form r̄ :=

∫
Y h(y)π(dy), where h is a non-negative

real valued function defined on Y .

For regenerative simulation to estimate r̄, define β (t) := ∑
N(t)
i=1 Ri

∑
N(t)
i=1 τi

and s(t) :=
√

∑
N(t)
i=1 (Ri−β (t)τi)

2

∑
N(t)
i=1 τi

, for t ≥ 0,

where the counting process N(t) := max{n≥ 0 : Sn ≤ t} which counts the number of regenerations that
have occurred till time t, and for each i≥ 1, Ri :=

∫ Si
Si−1

h(X(s))ds and τi := Si − Si−1. Set Wi = Ri− r̄τi
for each i≥ 1. Refer to Glynn and Iglehart (1987) for a proof of Theorem 3.2.

Theorem 3.2 Let X be a classically regenerative process with regeneration times 0 = S0 < S1 < · · ·
and invariant probability measure π . Set ϕ(dy) := P(X(0) ∈ dy) and assume that h≥ 0.

(i) If Eϕτ1 < ∞, then r̄ = Eϕ R1
Eϕ τ1

and β (t)−→ r̄, a.s. as t→ ∞

(ii) If Eϕ

[
R2

1 + τ2
1
]
< ∞, then as t→ ∞, s(t)−→ σ , a.s. and t

1
2
(β (t)− r̄)

s(t)
⇒N (0,1),

(iii) If Eϕ

[
R4

1 + τ4
1
]
< ∞ and σ > 0, then t

1
2 (β (t)− r̄,s(t)−σ)⇒N (

→
0 ,K ), as t→ ∞,

where K = 1
Eϕ τ1

[
Eϕ

(
W 2

1
) Eϕ [(A1−bW1)W1]

2σ

Eϕ [(A1−bW1)W1]
2σ

Eϕ [(A1−bW1)
2]

4σ2

]
, Ai = W 2

i −σ2τi, b = 2Eϕ (W1τ1)/Eϕτ1 and

N (
→
0 ,K ) represents a multivariate normal random variable with the covariance matrix K . The

constant σ 2 is known as the time-average variance constant (TAVC) of h(X(·)).

In the above theorem, (i) constitutes the strong law of large numbers (SLLN) for point estimator β (t).
Part (ii) constitutes the SLLN for the standard deviation estimator S(t), and the CLT for β (t). From (i)
and (ii), the asymptotic 100(1−δ )% confidence interval is

[
β (t)− zs(t)√

t , β (t)+ zs(t)√
t

]
, where z solves the
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equation P(−z≤N (0,1)≤ z) = 1−δ . Finally, part (iii) constitutes the joint CLT for (β (t),s(t)). Now it
is clear that to construct valid confidence intervals, one sufficient condition is to ensure Eϕ

[
R4

1 + τ4
1
]
< ∞.

To establish these moments, in sections 6.2 and 6.3, we study sufficient moment conditions on interarrival
and service times in the context of multiclass networks.

4 EXTRACTING EXPONENTIAL COMPONENT IN A DISTRIBUTION

In this section, we show that under mild conditions, any random variable with an exponential or heavier
tail distribution can be re-expressed as a mixture of sums of independent random variables such that one
of the constituent random variables has an exponential distribution. We then observe this decomposition
for well-known distributions such as Pareto, Weibull, Gamma, etc.

Let f be the probability density function of a real valued random variable. We say that f ∈H , if
there exists an a ∈ [−∞,∞) such that f (x) = 0, for all x < a (if a >−∞), f is differentiable on (a,∞) and
λ f := supy∈(a,∞)

(
− f ′(y)

f (y)

)
∈ (0,∞). Examples of densities in H are discussed later.

For f ∈H , define G f
λ
(x) := F(x)+ f (x)

λ
, x ∈ R, where the distribution function F(x) =

∫ x
−∞

f (y)dy,
and λ > 0. Theorem 4.1 is one of our key results and the proof primarily depends on the fact that any
characteristic function uniquely identifies the associated probability distribution.

Theorem 4.1 Suppose that ξ is a random variable with density f ∈H . If λ ≥ λ f , then G f
λ

is a
probability distribution function and

ξ
d
= E +Z, (4.1)

where E ∼ Exp(λ ), Z ∼ G f
λ

and they are mutually independent.
Theorem 4.1 ensures that if λ f < ∞ holds then ξ must have an exponential or heavier tail distribution.

Now we consider some practically important classes of distributions with exponential or heavier tails.
Example 4.1 (Lognormal) Suppose ξ = exp

[
N
(
µ,σ 2

)]
, that is, ξ has a Lognormal distribution,

where N
(
µ,σ2

)
represents a normal random variable with mean µ and variance σ2 > 0. Then, its pdf

g(x) = 1
x
√

2πσ2 exp
[
− (logx−µ)2

2σ2

]
, x > 0 and λg = supx>0

(
−g′(y)

g(y)

)
=

exp(σ2−(µ+1))
σ2 ; and it is achieved at

x = exp
(
µ +1−σ2

)
. Thus, the mean of the maximum exponential component that can be extracted in

this manner equals σ 2 exp((µ +1)−σ2). As is well known, E [ξ ] = exp(µ +σ2/2), so that the ratio of
the former to the latter equals σ 2 exp(1−3/2σ2). Interestingly, this is independent of µ and is maximized
at 2/3 when σ 2 = 2/3.

Example 4.2 (Gamma) Suppose ξ is Gamma(α,γ) distributed with pdf g(x) = γα xα−1 exp(−γx)
Γ(α) for x≥ 0,

g(x) = 0 otherwise, where γ > 0 and α ≥ 1. Then, it is easily seen that λg = sup
(
−g′(y)

g(y)

)
= γ and hence,

we achieve the desired decomposition.
Example 4.3 (Log-Convex densities, Pareto) Let ξ be a random variable with log-convex density

g that has support [a,∞) and is differentiable on (a,∞). Since − logg(x) is concave function of x,
−g′(x)

g(x) = d
dx (− logg(x)) is a monotonically non-increasing function of x (because d2

dx2 (− logg(x)) ≤ 0).

Furthermore, λg =
−g′(a)

g(a) and when λg ∈ (0,∞), we achieve the desired decomposition.
For instance, suppose that ξ has Pareto distribution with the shape parameter α > 0 and the scale

parameter γ > 0, that is, P(ξ > x) = 1
(1+γx)α , for x ≥ 0. Then its pdf g(x) = αγ

(1+γx)α+1 , x ≥ 0. Now it is

easy to see that E [ξ ] = [(α − 1)γ]−1. Furthermore, λg = [(α + 1)γ] so that the maximum mean of the
extracted exponential component equals [(α +1)γ]−1. In particular, the ratio of this extracted mean to the
total mean equals α−1

α+1 . It is independent of γ and increases from zero to 1 as α increases from 1 to ∞.
The example below illustrates the fact that there exist some distributions which may not have densities

that belong to the family H , but their components can be in H (with a scaling factor).
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Example 4.4 (Weibull) Suppose ξ has a Weibull(α,γ) distribution with the shape parameter α < 1
and scale parameter γ > 0. Its tail distribution P(ξ > x) = exp(−(γx)α) , x > 0 and if g is pdf of ξ , then we
have −g′(x)

g(x) = αγα 1
x1−α + (1−α)

x . Thus λg = supy∈(0,∞)

(
−g′(y)

g(y)

)
= ∞ and it is achieved at y = 0. Therefore,

ξ can not be decomposed in the form (4.1). However, for any a > 0, supy∈(a,∞)

(
−g′(y)

g(y)

)
< ∞. Hence by

fixing a > 0 and by letting f (x) = cg(x) for x≥ a, and f (x) = 0 for x < a, we have f ∈H and g≥ f/c,
where c = 1

P(ξ>a) .

The above example motivates a more general framework for extracting an exponential component. To
see this, suppose that G is the distribution of a real valued random variable ξ such that for some q ∈ (0,1]
and f ∈H and q f is a component of G, that is, G(x2)−G(x1)≥ q

∫ x2
x1

f (y)dy, x1 < x2. Let ξ̂ ∼ f and fix

λ ≥ λ f , then from Theorem 4.1, ξ̂
d
= E +Z, where E ∼ Exp(λ ), Z ∼G f

λ
and they are independent. If q = 1

then f is the density of G, hence ξ
d
= ξ̂

d
= E+Z. But if q < 1, then we can let H(x) = G(x)−q

∫ x
−∞

f (y)dy
1−q , x∈R.

Clearly, H is a probability distribution function and G(x) = (1−q)H(x)+q
∫ x
−∞

f (y)dy, x ∈ R. In other
words

ξ
d
= (1−β )ξ̃ +β (E +Z), (4.2)

where β is a Bernoulli random variable with P(β = 1) = q, ξ̃ ∼ H and ξ̃ , E, β and Z are independent of
each other.

5 MULTICLASS OPEN QUEUEING NETWORKS

A multiclass open queueing network can be characterized by d single server stations, K classes of customers,
sequences of exogenous interarrival times {ξk,n : n ≥ 1} and service times {ηk,n : n ≥ 1} of each Class
k and a probability matrix P = (Pkl) to specify the routing requirements of the customers, where Pkl is
the probability of Class k customer becoming Class l customer upon completion of service at station s(k)
independently of all previous history; the customer exits the network with probability 1−∑l Pkl , where s(k)
is the station at which the Class k customers take service. If ξk,1 = ∞, then we say that the external arrival
process of Class k is null. Finally, L denotes the number of classes with non-null exogenous arrivals.

We assume that (I−P′)−1 = (I+P+P2+ . . .)′ exists, where P′ is the transpose of the matrix P. Since
(k, j)-element of (I−P′)−1 is the expected number of times a Class k customer visits Class l during its stay
in the network, every customer who enter into the network will leave it eventually. Hence, the network
described above is an open queueing network.

Like the GI/G/1 queue, any queueing network with a single non-null exogenous class regenerates at
every instant when a customer arrival finds the system empty. Hence a regenerative structure trivially exists
in these networks. So, without loss of generality we assume that L ≥ 2 and first L classes are non-null
exogenous.

Throughout the paper, we make the following assumptions on the network primitives.

(A1) ξ1,ξ2, . . . ,ξL,η1,η2, . . . ,ηK are i.i.d. sequences and mutually independent,
where ξi = {ξi,n : n≥ 1} and ηi = {ηi,n : n≥ 1}.

(A2) There exists p≥ 1 such that
0 < E[(ξk,1)

p]< ∞ for k = 1, . . . ,L and 0 < E[(ηk,1)
p]< ∞ for k = 1, . . . ,K.

(A3) For each k = 2, · · · ,L, there exists fk ∈H such that P(ξk,1 ∈ dx) ≥ q̄k fk(x)dx for some q̄k > 0,
where H is defined in Section 4.

(A4) Distribution of ξ1,1 is spreadout, that is, P(ξ1,1 + · · ·+ξ1, j ∈ dx)≥ q̄(x)dx for some non-negative
function q̄(x) and integer j such that

∫
∞

0 q̄(x)dx > 0.
(A5) P(ξ1,1 ≥ x and ∑

K
l=1 ηl,1 < x)> 0 for some x.
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Assumption (A1) is standard. It is clear from Section 4 that (A3) holds only when the interarrival times
have either exponential or heavier tails. (A3) and (A4) are useful in establishing the ergodicity of the
network as well as identifying regenerative structures in it, while (A2) and (A5) are useful in establishing
finite moments of regeneration intervals as we see in the later sections. Notice that (A5) trivially holds
when the interarrival times of Class 1 are unbounded or the service time distribution of every class has
support in every neighborhood of 0.

We denote the common distribution of the interarrival times of Class k by Fk with the average arrival
rate αk := 1

E[ξk,1]
, where k ∈ {1,2, . . .L}. Similarly, the common distribution of the service times of Class k

is denoted by Hk with the average service rate µk := 1
E[ηk,1]

, where k ∈ {1,2, . . .K}. Let Ci := {k : s(k) = i}
be the constituency for station i ∈ {1,2, · · · ,d}. By letting σ := (I−P′)−1α , one can interpret σk as the
effective arrival rate to Class k. Then ρi := ∑k∈Ci

σk
µk

is the nominal load for server i ∈ {1,2, . . . ,d} per unit
time. From (A3) and (4.2), without loss of generality, we can write

ξk,n = (1−βk,n)ξ̃k,n +βk,n(Ek,n +Zk,n), k = 2, . . . ,L, n ∈ Z+, (5.1)

where Ek,n ∼ Exp(λk) for some λk ≥ λ fk , βk,n is a Bernoulli random variable with P(βk,n = 1) = q̄k,

Zk,n ∼ G fk
λk

and ξ̃k,n ∼
Fk(x)− q̄k

∫ x
0 fk(y)dy

1− q̄k
, x ≥ 0; and {ξ̃k,n : n ≥ 0}, {Ek,n : n≥ 0}, {βk,n : n≥ 0} and

{Zk,n : n≥ 0} are i.i.d. sequences and independent of each other.
Now, to describe the network, we propose the following Markov process that splits the interarrival

times into two components:

Y (t) = (Q(t),U(t),V (t)), (5.2)

where Q(t) = [Q1(t),Q2(t), · · · ,QK(t)]′ ∈ ZK
+. The process Qk(t) captures the number of Class k customers

in the network at time t or, more generally, it can capture positions of every Class k customer present at
station s(k) (in the later case Qk(t) is an infinite dimensional vector). Hereafter, the notations |Qk(t)| and
|Q(t)| denotes, respectively, the number of Class k customers and the total number of customers present
in the network at time t. The vector valued process V (t) = [V1(t), . . . ,VK(t)]′ ∈ RK

+ with Vk(t) being the
residual service time for Class k customer that is under service. We take Vk(t) = 0 whenever |Qk(t)|= 0.
The vector valued process U(t) = [U1(t), U (e)

2 (t),U (ne)
2 (t), . . . ,U (e)

L (t),U (ne)
L (t)]′ ∈ R2L−1

+ such that U1(t)
being the remaining time until the next Class 1 customer arrival, and at each instant of a Class k ≥ 2
customer arrival, exponential and non-exponential components of the next interarrival time are generated
independently and captured by U (e)

k and U (ne)
k , respectively. Without loss of generality, we can assume

that the non-exponential clock U (ne)
k decreases first linearly with rate 1 while exponential clock U (e)

k stays
at the same value until U (ne)

k reaches zero. Thereafter, U (e)
k decreases linearly with rate 1 while other

clock stays at zero. Next customer arrival happens when both the clocks are zero. Clearly, at any time t,
U (ne)

k (t)+U (e)
k (t) is the remaining time until the next Class k customer arrival. We say that Class k is in

exponential phase at time t if U (ne)
k (t) = 0. In Section 6.1, we see that this decomposition of the interarrival

times play a crucial role in the construction of regenerations.
Let Y be the state space of the process Y and it is adapted to the filtration {Ft : t ≥ 0} that is larger or

equal to the natural filtration of the process Y . Hereafter, we assume that the state space Y is a complete
and separable metric space with the norm defined by |y| = |q|+ |u|+ |v|, y = (q,u,v) ∈ Y , where |q| is
the total queue length, |u|= u1 +∑

L
k=2

(
u(e)k +u(ne)

k

)
and |v|= ∑

K
k=1 vk.

Throughout the paper we assume that server at each station is busy whenever there is work to be done
(work-conserving) and it stays idle whenever there is no work. Similar to Proposition 2.1 in Dai (1995),
we can establish the strong Markov property of Y for a wide class of queueing disciplines, such as, FIFO
(First-In-First-Out), LIFO (Last-In-First-Out), priority discipline, processor sharing, etc..
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6 REGENERATIVE SIMULATION OF MULTICLASS NETWORKS

In this section, we identify a sequence of regeneration times and establish required finite moments on the
associated regeneration intervals that satisfy the joint CLT.

6.1 Regenerations

For any set B ∈BY , define the first hitting time τB := inf{t ≥ 0 : Y (t) ∈ B}, the first hitting time past δ ,
τB(δ ) := inf{t > δ : Y (t) ∈ B} and the first visiting time ΓB := inf{t > τBc : Y (t) ∈ B}.

Let D :=
{
(
→
0 ,u,

→
0) ∈ Y : u1 < mink≥2

{
u(e)k

}
,u(ne)

l = 0, l ∈ {2, . . . ,L}
}
, where

→
0 is all zeros vector

of dimension K. The set D captures the states that Y can take when the network is empty and the next
transition is triggered by a Class 1 customer arrival while all the other non-null exogenous classes are in
exponential phase. Also let S−1 = 0 and the (n+1)th revisit instant on set D, Sn = θSn−1 ◦ΓD, where θ is
the shift operator on the sample paths of the process Y .

Let D̃ :=
{
(q,u,v) ∈ Y : |q1|= 1, |qk|= 0,∀ k ∈ {2, . . . ,K},u(ne)

l = 0,∀ l ∈ {2, . . . ,L}
}

and Tn =

Sn +U1(Sn) be the first instant when an arrival of Class 1 finds the system empty past Sn. Then for each
n≥ 0, Y (Tn−)∈D andY (Tn)∈ D̃. Consider A(r,s) =

{
y ∈ D̃ : u1 ≤ r1, v1 ≤ s,u(e)k ≤ rk,∀ k ∈ {2, . . . ,L}

}
,

for r = (r1, . . . ,rL) ∈ RL
+,s ∈ R+, and let ϕ be the probability measure on BY such that ϕ (A(r,s)) =

F1(r1)H1(s)∏
L
k=2
(
1− e−λkrk

)
, where Fk,Hk are the distributions of Class k interarrival and service times

(refer to Section 5). Then it is clear that ϕ
(
D̃
)
= 1.

One can easily check that when Y (0)∼ ϕ , the process Y is a non-delayed regenerative process with
regeneration times {Tn : n≥ 0} and Y (Tn)∼ ϕ for every n≥ 0.

6.2 Moments of Regeneration Intervals

In this section, we establish the finite pth moments of the regeneration intervals, where p is the parameter
used in (A2) that guarantees finite pth moments of the interarrival and service times. As mentioned earlier,
proofs are provided in Moka and Juneja (2013). Hereafter, we make the following assumption on the
Markov process.

(A6) There exists t0 > 1 such that lim
|y|→∞

1
|y|p

Ey [|Y (t|y|)|p] = 0, ∀ t ≥ t0.

Remark 6.1 Dai (1995) shows that, under mild conditions, (A6) holds when Assumptions (A1) and
(A2) hold and the fluid model of the network is stable. In particular, Dai (1995) considers some important
networks like re-entrant lines and generalized Jackson networks, and a wide variety of queueing disciplines;
and shows that the fluid model is stable if the nominal traffic condition (that is, ρi < 1, for each i = 1, . . . ,d)
holds. Recent work of Schönlein and Wirth (2012) shows that under certain conditions, fluid model is
stable if and only if there exists a Lyapunov function (also refer to Schönlein (2012)).

Now we show that the pth moments of the regeneration intervals are finite. Let Cs := {y ∈ Y : |y| ≤ s},
for s≥ 0. Lemma 6.1 below establishes that for any initial state, when the pth moments of the interarrival
and service times are finite, the time required for the queue length to become smaller than a certain level
has finite pth moment. Furthermore, it says that there exists a bounded set such that the process visits the
set infinitely often and the associated intervals have finite pth moments. The proof of Lemma 6.1 mainly
depends on (A6).

Lemma 6.1 There exist constants c1, c2, s0 > 0 such that Ey [(τCs(δ ))
p] ≤ c1 + c2|y|p, y ∈ Y , s ≥

s0, δ > 0, Furthermore, for any bounded set A, supy∈AEy [(τCs(δ ))
p]< ∞, s≥ s0.

Since the networks are open, there is a positive probability of any customer leaving the network by
making at most K distinct transitions, where the transition refers to the customer’s class change upon
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completion of it’s service. From (A5), it is clear that with a positive probability any Class 1 customer
who arrived into empty system can leave the network before the next arrival of the same class when
there are no arrivals from other classes. Using this fact, we can show that there exists δ > 0 such that
infy∈Cs Py(ΓD +U1(ΓD) ≤ δ ) > 0. Then using Lemma 6.1 and the standard geometric argument, we can
establish the following result.

Lemma 6.2 There exist constants c3, c4 > 0 such that Ey [(ΓD +U1(ΓD))
p]< c3 + c4|y|p, y ∈ Y .

From Lemma 6.1 and Lemma 6.2, we can argue that the first cycle length T0 is a proper random variable
for any initial state y∈Y . Hence, hereafter, we assume that the regenerative process Y is non-delayed (that
is, T0 = 0) and hence the initial state Y (0)∼ ϕ . The proposition below establishes finite moments of the
regeneration intervals, τn = Tn−Tn−1, n≥ 1, using the fact that E [Y (0)p]< ∞. The non-lattice property of
the distribution of τ1 simply follows from the spreadout Assumption (A4) on interarrival times of Class 1.

Proposition 6.1 The distribution of τ1 is non-lattice and Eϕ [τ
p
1 ]< ∞.

6.3 Moments of R1

Let h be a non-negative real valued function defined on Y and Ri =
∫ Ti

Ti−1
h(Y (s))ds, for i ≥ 1.

When h is bounded (e.g., h(x) = I(x > 10)), there exists a constant c such that h < c and Eϕ

[
Rp

1

]
=

Eϕ

[(∫
τ1
0 h(Y (t))dt

)p]≤ cpEϕ

[
τ

p
1

]
< ∞. But, when h is unbounded, Eϕ

[
Rp

1

]
can be infinite even though

Eϕ [τ
p
1 ]< ∞. However, we can guarantee these moments even when h is unbounded under some additional

conditions as shown in the following proposition.
For each r > 0 and s ≥ s0, define Jr,s(y) := Ey

[(∫ τCs (δ )
0 h(Y (t))dt

)r]
, y ∈ Y , where δ is given by

Lemma 6.2 and s0 is given by Lemma 6.1.
Proposition 6.2 Suppose that for a given r > 0, there exists s≥ s0 such that Jr,s(·) is uniformly bounded

on Cs and E [Jr,s(Y (0))]< ∞. Then Eϕ [Rr
1]< ∞.

The following example illustrates one possible application of Proposition 6.2.
Example 6.1 Suppose that h(Y (t))≤ |Y (t)|, where | · | denotes the norm on the state space Y (refer

to Section 5). For example, if goal is to estimate the steady-state expected number of customers in the
network then h(Y (t)) = |Q(t)| ≤ |Y (t)|.

Now we show that if p ≥ 9 in (A2) then Eϕ

[
R4

1
]
< ∞ (this is needed for Theorem 3.2 (iii) to

hold). To see this, observe from Lemma 6.1 that Eϕ

[
τCs(δ )

8
]
≤ c1 + c2E

[
|Y (0)|8

]
< ∞ for any s > s0.

Similar to Proposition 5.3 of Dai and Meyn (1995), it can be shown that there exist s ≥ s0 and c < ∞

such that Ey

[∫ τCs (δ )
0 |Y (t)|pdt

]
≤ c(|y|p+1 + 1). Since p ≥ 9, we have that E

[
|Y (0)|9

]
< ∞, and hence

Eϕ

[∫ τCs (δ )
0 |Y (t)|8dt

]
≤ c
(
E
[
|Y (0)|9

]
+1
)
<∞. Using Cauchy-Schwarz inequality, Jensen’s inequality and

the fact that τCs(δ ) ≥ 1, we can show that E [J4,s(Y (0))] ≤
(
Eϕ

[
τCs(δ )

8
]
Eϕ

[∫ τCs (δ )
0 |Y (t)|8dt

]) 1
2
< ∞.

Similarly, uniform boundedness of J4,s(y) on Cs can be established and from Proposition 6.2, it follows
that Eϕ

[
Rq

1

]
< ∞.

7 CHOICE OF OPTIMAL REGENERATIVE STRUCTURE

In this section, we show that under certain assumptions, if one regenerative structure is a subsequence of
another then it is optimal to choose the original sequence over the subsequence (optimal in the sense that the
AVSDE associated with the original sequence is smaller than that associated with the subsequence). Using
this result, we show that the selection of the interarrival time decomposition with largest mean exponential
component minimizes the AVSDE.

Suppose that X is a non-delayed regenerative process with the regeneration times {Tn : n≥ 0} and the
initial state distribution ϕ . Let, for each i≥ 1, τi = Ti − Ti−1, Ri =

∫ Ti
Ti−1

h(X(s))ds, where h is a non-
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negative, real valued function. Assume that there exists a filtration G := {Gn,n≥ 0} and a strictly increasing
sequence of integer valued stopping times 0 = ν0 < ν1 < · · · adapted to G with νn−νn−1

d
= ν1, n≥ 1

such that (i) {(Ri,τi) : i≥ 1} is adapted to G , (ii) {(Ri,τi) : i≥ n} is independent of Gn−1 for all n≥ 1 and
(iii) the sequence {Sn = Tνn : n≥ 0} is another regenerative structure of X .

Proposition 7.1 Under the above setup, ifEϕ

[(∫ S1
0 [h(X(s))+1]ds

)4
]
<∞, then the AVSDE associated

with {Sn : n≥ 0} is at least as large as that associated with {Tn : n≥ 0}.
Andradóttir, Calvin, and Glynn (1995) establish a similar result on classical regenerative processes and

consider stopping times that depend only on history of the process, and hence these stopping times turn
out to be geometrically distributed due to the i.i.d. nature of classical regenerations. Our result is a mild
extension of Theorem 1 in Andradóttir, Calvin, and Glynn (1995) in the sense that the stopping time can
be more general (hence, its distribution may not be geometric).

Now using Proposition 7.1 and path-wise construction, we show that the selection of the interarrival time
decomposition with largest mean exponential component (that is, λk = λ fk ) minimizes the AVSDE. Assume
that the function h satisfies h(Y (t)) = ĥ(Q(t),V (t)) (a well known example is when h(Y (t)) = |Q(t)|
to estimate the steady-state expected customers in the network). Recall that the arrival clock of each
Class k ∈ {2, . . . ,L} is updated based on the decomposition (5.1), that is,

ξk,n = (1−βk,n)ξ̃k,n +βk,n (Ek,n +Zk,n) , n ∈ Z+,

where ξk,n is the nth interarrival time of Class k, Ek,n∼ Exp(λk) for some λk ≥ λ fk , βk,n is a Bernoulli random

variable with P(βk,n = 1) = q̄k, Zk,n ∼G fk
λk

and ξ̃k,n ∼
Fk(x)− q̄k

∫ x
0 fk(y)dy

1− q̄k
, x≥ 0. Note that {ξ̃k,n : n≥ 0},

{Ek,n : n≥ 0}, {βk,n : n≥ 0} and {Zk,n : n≥ 0} are i.i.d. sequences and independent of each other.
Suppose that λk > λ fk . It is well known that when Ek,n ∼ Exp(λ fk) and E ′k,n ∼ Exp(λk), with out

loss of generality, one can write Ek,n = E ′k,n +Z′k,n, n≥ 1 for an i.i.d. sequence of almost surely positive
random variables Z′k,n, n ≥ 1 which are independent of E ′k,n, n ≥ 1. Since Ek,n > E ′k,n for all n ≥ 0, the
regenerative structure associated with exponential clock rate λk (denote it by {Sn : n≥ 0}) is a subsequence
of that associated with exponential clock rate λ fk (denote it by {Tn : n≥ 0}). By letting τi = Ti−Ti−1 and
Ri =

∫ Ti
Ti−1

h(Y (s))ds for i≥ 1, we can easily see that {(Ri,τi) : i≥ 1} is adapted to G = {Gn = σ ((Ri,τi),1i)}
and {(Ri,τi) : i≥ n} is independent of Gn−1 for all n≥ 1, where 1i = I(Ti = S j for some j). If we assume

that Eϕ

[(∫ S1
0 [h(X(s))+1]

)4
]
< ∞ (for example, if h(Y (t)) ≤ |Y (t)| then, from Example 6.1, this is

guaranteed when the 9th moments of the interarrival and service times are finite), then from Proposition 7.1,
it is optimal to choose λk = λ fk for each k = 2,3, . . . ,L.

8 SIMULATION

In this section, we present one preliminary numerical example to illustrate the regenerative simulation
method proposed in the previous sections. Consider a multiclass system with four stations and populated
with four classes of customers. There are three non-null exogenous classes, namely Class 1 to Class 3,
which get service at three different stations, namely station 1 to station 3, respectively, and after the service
completion they will become Class 4 customers to get service at station 4. Every customer who get service
at station 4 will leave the system. Every station follows work-conserving FCFS service discipline. The
network primitives are specified as follows: The interarrival time distributions of the non-null exogenous
classes 1 to 3 are Uni f orm(0,40), Pareto(10,1/18) and Pareto(10,1/9), respectively. The service time
distributions of the classes 1 to 4, are 3

4 Exp(3/20)+ 1
4 Exp(1/20), 1

2 Exp(2/3)+ 1
2 Exp(2), Exp(4/3) and

Exp(5), respectively.
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Here, our goal is to estimate the steady state expected number of customers in the system (that is,
h(Y (t)) = |Q(t)|). Assumptions (A1) to (A5) are trivially satisfied. This network is a special case of
generalized Jackson networks and hence the fluid model is stable as the nominal load ρi < 1, i = 1, . . . ,4
(see Remark 6.1) and thus Assumption (A6) holds. Notice that the 9th moments of the interarrival and
service times are finite. Hence, from Example 6.1, Eϕ

[
R4

1 + τ4
1
]
< ∞. This guarantees asymptotically valid

confidence intervals and also the finiteness of the AVSDE.
We generate the underlying Markov process using the above specifications, identify the regenerations

associated with all the three scenarios along the same process and estimate the required parameters
corresponding to each scenario. Table 1 displays the simulation results. It can be observed that the
estimated AVSDE is increasing as the rates λk,k = 2,3, of exponential components are increasing and is
small when λk = λ fk , k = 2,3. As expected, the estimated TAVC is not changing with λk.

Table 1: Estimation of steady state expected number of customers in a system with four stations and four
classes. The total duration of the simulation is 107 units of time.

Estimate λk = λ fk for k = 2,3 λk = 1.5λ fk for k = 2,3 λk = 2λ fk for k = 2,3
No. of cycles generated 13144 3892 1663

Estimated steady state mean 5.86 5.86 5.86
95% confidence interval 5.86±6.2×10−6 5.86±6.2×10−6 5.86±6.3×10−6

Estimated TAVC 1.0×103 1.0×103 1.0×103

Estimated AVSDE 1.8×106 4.6×106 6×106

9 SUPEREXPONENTIAL CASE

(A3) restricts the above proposed regenerative simulation to multiclass networks where the interarrival
times have either exponential or heavier tail distributions. In this section, we propose a regenerative
simulation method which can be implemented even when the interarrival times of some (or all) classes have
superexponential continuous distributions. Without loss of generality, one can assume that the network of
interest is not satisfying both (A3) and (A5) together. Then we replace these assumptions, respectively,
with the following assumptions:

(A3′) For each Class k = 1, . . . ,L, there exist a density gk and a constant q̄k > 0 such that either
(i) gk ∈H and P(ξk,1 ∈ dx)≥ q̄kgk(x)dx, where H is defined in Section 4, or

(ii) ξk,1 ∼ fk and there exist ak,bk (ak < bk) such that fk(y+x)
1−Fk(y)

≥ q̄k gk(x), x≥ 0, y ∈ [ak,bk].
(A5′) Either all the non-null exogenous classes have unbounded interarrival times or P(∑K

l=1 ηl,1≤ x)> 0
for every x > 0.

Assumption (A3′) is important for identifying regenerations in the network while (A5′) is crucial for
establishing the moments of the regeneration intervals. Let N (respectively, M ) be the set of classes
that satisfy condition (i) (respectively, condition (ii)) in (A3′). From previous sections, it is clear that the
interarrival time distribution of each class in N has an exponential or heavier tail while the interarrival
time distributions of classes in M can even have superexponential distributions. Notice that in addition
to the above two assumptions, we still assume (A1), (A2), (A4) and (A6). Now we see some examples of
superexponential distributions that satisfy (A3′).

Example 9.1 (Uniform) Suppose that f and g are densities of uniform distributions with support [c,d]
and

[
0, d−c

2

]
, respectively, for some 0 < c < d. It is easy to see that, for each y ∈ [c,d], f (y+x)

1−F(y) =
1

d−y for
x ∈ [y,d], otherwise, zero, where F is the distribution associated with the density f . Hence, we note that
f (y+x)
1−F(y) ≥

1
2 g(x) for y ∈ [c, d+c

2 ] and x≥ 0; so (A3′) holds.
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Similarly, one can show that folded normal distribution, and Weibull(α,γ) with shape parameter α > 1
and scale parameter γ > 0 are examples of superexponential distributions that satisfy (A3′) with unbounded
support.

To identify the regenerations, we describe the network with the strong Markov process Y (t) =(
Q(t),Ũ(t),V (t)

)
, where, as usual, Q and V are the queue length and remaining service time processes,

respectively, and Ũ(t) = [Ũ1(t), . . . ,ŨL(t)]′. If k ∈M then Ũk(t) is the remaining time until the next Class

k customer arrival, else if k ∈N , Ũk(t) =
[
U (e)

k (t),U (ne)
k (t)

]′
, where the exponential component U (e)

k and

the non-exponential component U (ne)
k are defined in Section 5. During the simulation it is possible to keep

track of age of the last arrival of each Class k ∈M , and hence for each k ∈M , let Ak(t) denote the time
passed since the last arrival of Class k.

Let Sn be the nth instant when a Class 1 arrival finds the system empty, the age Ak(t) ∈ [ak,bk] for each
k ∈M and all the classes in N are in exponential phase. Now we argue that Sn can be a regeneration instant
with a positive probability. To see this, observe that for any Class k ∈M if the age Ak(t) ∈ [ak,bk] then
the remaining time Rk(t) can have density gk (which is independent of the age Ak(t)) with probability qk.
Let βk be a Bernoulli random variable with P(βk = 1) = qk such that when βk = 1, remaining time until
the next arrival has density gk. Then at every instant Sn and for each Class k ∈M , one can compute the
posterior probabilities,

P(βk = 1 |Ak(Sn) = y,Rk(Sn) = x) =
qkgk(x)(1−Fk(y))

fk(y+ x)
. (9.1)

The above equation denotes the probability that the remaining time sample Rk(Sn) is generated from gk
given that the age Ak(Sn) = y and the remaining time until the next arrival Rk(Sn) = x. These posterior
probabilities can be obtained easily using Bayes’ theorem. At every Sn and for every Class k ∈M , we
can toss a coin with probability of head equal to (9.1). If all coins show up heads, then we declare a
regeneration at Sn. Hence, we have identified an implementable regenerative structure for the process Y ,
denote it as {Tn : n≥ 0}. It is clear that the distribution ϕ of the process Y at regeneration instants is just
the product measure generated by F1, H1, Exp(λk), k ∈N and gl, l ∈M .

It is important to note that all the results in Sections 6.2 and 6.3 can be extended to present setup. In
particular, we can establish the finite moments of regeneration times and show that Proposition 6.2 holds.
Also one can prove that the selection of the interarrival time decomposition with largest mean exponential
component, for every class in N , results in the minimum AVSDE.

10 SUMMARY

In this paper, first we showed that, under mild conditions, a random variable with an exponential or heavier
tail can be re-expressed as a mixture of sums of independent random variables where one of the constituents
is exponential. Using this result, we developed an implementable regenerative simulation technique for
multiclass open queueing networks where the interarrival times have exponential or heavier tails. Under mild
stability conditions, we established that finite moments of the interarrival and service times are sufficient to
guarantee asymptotically valid confidence intervals. We also showed that the selection of the interarrival
time decomposition with largest mean exponential component minimizes the AVSDE. Finally, we discussed
a different regenerative simulation technique that can be applicable even when the interarrival times of
some (or all) classes have superexponential tails.
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