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ABSTRACT 

Linear programming representations for discrete-event simulation provide an alternative approach for an-
alyzing discrete-event simulations. This paper presents several formulations for G/G/m queues and dis-
cusses the applications and limitations of these formulations. We derive the relationship between these 
formulations. We then demonstrate the applications of these formulations in sample-path gradient estima-
tion. 

1 INTRODUCTION 

Mathematical programming representations  (MPRs) for discrete-event dynamic systems (DEDSs) are 
mathematical programs modeling the sample paths of DEDSs (Chan and Schruben 2008). These represen-
tations provide a new means of analyzing DEDSs using mathematical programming techniques. Using the 
MPRs, (Chan and Schruben 2006) demonstrates the use of dual variables to compute infinitesimal pertur-
bation analysis (IPA) estimators for G/G/1 queues. This paper extends the work in (Chan and Schruben 
2006) to MPRs for G/G/m queue. In particular, MPRs for G/G/2 queues are used to illustrate the relation-
ship between these MPRs and the meaning of the dual variables. IPA estimators based on the dual varia-
bles are also developed.  

IPA is a gradient estimation approach based on differentiating the sample path of a discrete-event 
simulation. It is computationally efficient and relatively easy to implement. Consistency property of IPA 
estimators has been proved for certain queueing systems. For example, (Suri and Zazanis 1988) give a 
strong consistency proof of IPA for M/G/1 queue. (Zazanis and Suri 1994) extends the consistency proof 
to the GI/G/1 queue under certain assumptions. (Fu and Hu 1991) provide the proof for the GI/G/m 
queue. IPA algorithms have also been developed for generalized semi-Markov processes (GSMP) (see 
e.g., (Glasserman 1991)).  

However, IPA can fail (e.g., biased) when the estimation involves discontinuities in the performance 
measure (Suri 1989). When IPA fails, various generalizations or alternatives of perturbation analysis 
techniques have been developed.  One example is the smoothed perturbation analysis (SPA), which uses 
conditional probability to derive gradient estimators (Gong and Ho 1987).  See (Fu and Hu 1997) for a 
detailed discussion and comparison of various extensions of perturbation analysis techniques.  (Homem-
de-Mello, Shapiro, and Spearman 1999) also makes use of max-plus algebra to obtain sample path gradi-
ent for production scheduling problems under continuous distributions. 

One advantage of having MPRs is that perturbation analysis of DEDSs could be carried out by using 
sensitivity analysis of mathematical programming, where a rich theory and tools already exists. For ex-
ample, (Gal 1979; Gal and Greenberg 1997) provide an extensive discussion on postoptimal analysis of 
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mathematical programming models.  (Ward and Wendell 1990) review different approaches of sensitivity 
analysis in linear programming. Being the mathematical programming models for DEDSs, the MPRs 
could be considered as a bridge that allows these mathematical programming sensitivity analysis methods 
to be applied to perturbation analysis of DEDSs.  

In this paper, we first review the MPR of the G/G/1 queue in Section 2. In Section 3, we develop a 
new MPR for the G/G/2 queue, which can be extended to the G/G/m queue. We show that this MPR can 
be decomposed into two separate linear programs, each representing the sample path of one server. Sec-
tion 4 presents experimental results. Section 5 offers a conclusion. 

2 BACKGROUND -- LINEAR PROGRAMMING REPRESENTATIONS OF G/G/1 QUEUE 

We first review the G/G/1 queue linear programming formulation (Chan and Schruben 2008). We will al-
so introduce the dual LP and its associated results.  

Consider a discrete-event simulation model for a G/G/1 queue with n jobs to be processed. The linear 
programming formulation (or mathematical programming representation, i.e., MPR) for this simulation 
model is given in the following: 
 
GG1-LP(F): 

  

 
where Fi is the finish time of the ith customer in the sample path, Ui and Vj are the dual variables of the 
corresponding constraints, is  is the service time of the ith customer, and Ai = a1 + a2 + … + ai is the arrival 
time of the ith customer to the system with ai being the inter-arrival time between the i–1 and ith arrivals, 
i=1,…,n, j=2,…,n.  There is no explicit restriction on the sign of Fi’s since the constraints require that 
they are positive. The dual model is: 
 
GG1-LP-Dual(F): 

  

 
One note about these two formulations is that the primal is in the time domain while the dual is in the 
number domain. Using an induction argument, one can show that in the optimal solution the dual varia-
bles U1 or Ui + Vi (i = 2,…, n) are equal to the number of customers in the busy period seen by the ith de-
parting customer (Chan 2005).  

It should be noted that, given the realizations of the input random variables, the optimal solution of 
GG1-LP(F) (or GG1-LP-Dual(F)) will be identical to the sample path of the corresponding simulation 
executed using the same set of random variable realizations. This optimal solution should not be mis-
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understood as the “optimal processing schedule” for the customers, as the service discipline is always 
FCFS and services start as soon as feasible.  
 
Example 1. Solving the GG1-LP(F) for n = 5, (A1, A2, …, A5) = (0, 2, 4, 6, 8), and (s1, s2, …, s5) = (3, 2, 5, 
6, 3) gives the optimal solution: (F1, F2, …, F5) = (3, 5, 10, 16, 19), (U1, U2, …, U5) = (5, 0, 0, 0, 0) and 
(V2, V3, …, V5) = (4, 3, 2, 1). One can verify this sample path by a manual calculation. It can be easily 
seen that there is only one busy period, and therefore, the number of customers seen by the ith departing 
customer matches the dual variables U1 and Ui + Vi.                  ■ 
 

Different MPRs can be developed for the same DEDS, just as different simulation models can be cre-
ated to model the same system. (Chan 2005) gives several different MPRs for G/G/1 queue. These MPRs 
look distinct as they are based on different variables, such as finish times, start times, and waiting times. 
However, these MPRs are equivalent in the sense that they represent the same dynamics of the same sys-
tem—a G/G/1 queue. The same idea applies to the G/G/m queue. In the next section, we present a formu-
lation for the G/G/2 queue. We then modify this LP into another LP, which will finally be decomposed 
into two G/G/1 LPs.  

3 LINEAR PROGRAMMING FORMULATIONS FOR G/G/M QUEUE 

We now introduce an LP formulation for G/G/m queues. For ease of exposition, we will focus on the 
G/G/2 queue, but the LP developed can be extended to model the G/G/m queue (see detail in (Chan 
2010)).  

FIFO does not hold in general in a G/G/2 queue, although the service discipline is still FCFS. For ex-
ample, the first-arriving customer may not be the first customer to leave if its processing time is suffi-
ciently long to outlast the second-arriving customer’s service and departure from the other server. This 
phenomenon is called “overtaking.” To handle overtaking, the multiple-server LP will need additional 
variables and constraints. This makes it more complicated and harder to analyze than the single-server 
LP.  

In particular, for a two-server LP, two additional sets of variables are needed: αi and βi. In particular, 
α1 is used to store max{F1, F2} and β1 to store min{F1, F2}, and subsequently αi to store max{αi–1, Fi+1} 
and βi to store min{αi–1, Fi+1}, i = 2,…,n–1. The idea is to use these two variables to figure out which 
server is available first when a new customer arrives. For example, the 3rd customer will begin processing 
at the lesser of its arrival time and β1 = min{F1, F2}. The value stored in α1, representing the later finish-
ing customer of the 1st and 2nd, will be passed on to β2, which will then evaluate whether this later finish-
ing customer will finish before the 3rd customer. This process then repeats until the last customer departs 
the system.  

We adopt the notation used in (Chan 2005) and denote the following LP for multiple-server queues as 
G/G/m-LP7(F), as it is the 7th formulation for multiple-server queues proposed in (Chan 2005). 

 
GG2-LP7(F): 
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with α0 = F1 and , , ,F F

i i i iX X X Xβ βα α αα  are the corresponding dual variables.  
Unfortunately, it is pointed out in (Chan 2005) that the optimal solution of this LP is not necessarily 

identical to the simulation sample path. To see that, one can examine the interaction between the varia-
bles. The objective function above provides incentive to minimize all Fi’s and αi’s and maximize all βi’s. 
The hope is to push αi down (minimize) to max{αi–1, Fi+1} as modeled by the 5th and 6th constraints and 
pull βi up (maximize) to min{αi–1, Fi+1} as governed by the 3rd and 4th constraints. However, the objective 
of pushing αi down interferes with the objective of pulling βi up.  One can see, for instance, that the same 
objective value is obtained in the case where αi  = max{αi–1, Fi+1} + 1 and βi  = min{αi–1, Fi+1} – 1 and the 
case where αi  = max{αi–1, Fi+1} and βi  = min{αi–1, Fi+1}. Therefore, the optimal solution is not guaranteed 
to be the same as the sample path. In essence, the above LP yields multiple optimal solutions, of which 
we are only interested in one.  

(Chan 2005) gives several solutions to this problem, including a sample path approach and a disjunc-
tive constraint approach. Here, we develop a new formulation that can circumvent this problem. The idea 
is to combine the 1st and 2nd constraints by using a max operator, the 3rd and 4th constraints by a min oper-
ator, and the 5th and 6th constraints by a max operator. With the introduction of the min and max opera-
tors, all the inequality constraints are converted into equality. The objective function can also be simpli-
fied by removing the sum of αi’s and βi’s. In fact, the objective function no longer plays a part in the 
primal solution.  We retain the format below for the purpose of giving particular meaning to the dual vari-
ables. This results in the following formulation that we call GG2-LP10(F) to continue the numbering of 
formulations used in (Chan 2005). 
 
GG2-LP10(F): 

  

 
with β–2 = 0, β–1 = 0, α0 = F1, and iX

β  and iX
α  are the corresponding dual variables.  

Strictly speaking, as this formulation has max and min operators in the constraints, it is not a linear 
program. However, the fact that all constraints are equality constraints essentially reduces the formulation 
into two linear programs that can be quickly solved by pre-solvers of optimization packages. 
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To see this, one can follow an inductive argument (see the formal proof in Proposition 1). Starting 
with β1 and α1, pre-solver can find their values from min{F1, F2} and max{F1, F2}, respectively. F3 = 
max{A3+s3, β1+s3} can then be readily calculated. This enables the next iteration of computation for β2 = 
min{α1, F3}, α2 = max{α1, F3}, and F4 = max{A4+s4, β2+s4}. This may be repeated until Fn is computed.  

This statement is formally presented in the following proposition. 
 

Proposition 1. Given a set of input random numbers (A1, …, An) and (s1,…, sn), the linear programming 
representation, GG2-LP10(F), can be pre-solved, decomposed, and transformed into two separate GG1-
LP(F)’s. The optimal solutions of these two LPs are also optimal for the original GG2-LP10(F). 
 
The proof is given in the Appendix. Because the resulting LPs have the same format as the regular GG1-
LP(F) introduced in Section 2, we have the following corollary.  
 
Corollary 1. Both decomposed and transformed GG1-LP(F)’s share the same duality property as the reg-
ular GG1-LP(F). 

 
In essence, the pre-solve procedure is equivalent to computing a set of recursive min and max equa-

tions. Therefore, this LP can be pre-solved efficiently. Fortunately, pre-solving the LP does not eliminate 
the LP’s applications. Indeed, there are several such applications. For the purposes of this paper, we shall 
focus on getting the shadow prices for sensitivity analysis. We use an example to illustrate this applica-
tion.  

 
Example 2. Consider a G/G/2 queue simulation model that simulates up to n = 10 customers using the 
sample path data (A1, A2, …, A10) = (0, 2, 4, 6, 8, 10, 12, 20, 21, 22), and (s1, s2, …, s10) = (3, 2, 5, 6, 3, 3, 
2, 5, 6, 3). Plugging this data into GG2-LP10(F) and solving gives the optimal solution: (F1, F2, …, F10) = 
(3, 4, 9, 12, 13, 15, 15, 25, 27, 28), (U1, U2, …, U10) = (1, 1, 3, 2, 2, 1, 1, 2, 1, 1), (

1 2 9, , ,X X Xβ β βK ) = (0, 0, 
2, 1, 1, 0, 0, 1, 0), and (

1 2 9, , ,X X Xα α αK ) = (0, 2, 1, 1, 0, 0, 1, 0, 0). The two decomposed LPs are: 
 
GG1-LP(F,1): 

  

 
GG1-LP(F,2): 

  

 
After pre-solving the LP, all the constraints should contain at most two variables, one with a positive 

sign and one with a negative sign when both variables are moved to the left hand side of the correspond-
ing constraint. The dual of this formulation is therefore a network flow LP. We plot the network dynamics 
in Figure 1. The first horizontal line shows the arrival times of customers. The second and third horizontal 
lines represent the service time dynamics of the first and second servers, respectively. Both servers have 
experienced three busy periods in this example. A graphical representation of this network is depicted in 
Figure 2. The dotted lines represent the inactive constraints, while the solid ones are active constraints. 

671



Chan and Closser 
 
Lines in blue are the activities for the first server and green the second server. The dual variables are also 
shown.                            ■ 
 

 
Figure 1: Network of GG2-LP10(F) with n = 10, (A1, A2, …, A10) = (0, 2, 4, 6, 8, 10, 12, 20, 21, 22), and 

(s1, s2, …, s10) = (3, 2, 5, 6, 3, 3, 2, 5, 6, 3) 

 

 
Figure 2: Graphical Representation of the Network of GG2-LP10(F) in Example 2. 

4 EXPERIMENTAL RESULTS 

In this section, we demonstrate the use of GG2-LP10(F) in obtaining finite-difference gradient estimators. 
In the limit, the finite-difference gradient estimator becomes the IPA estimator. We, therefore, shows how 
the dual variables of GG2-LP10(F) can be used to compute the IPA estimator for the service time pa-
rameter. The procedure here is similar to the one used in (Chan and Schruben 2006). 

In an LP, the dual variables (shadow prices) represent how sensitive the objective function (system 
performance) is to changes in the right-hand-side random variables (input data) and therefore, provide in-
formation necessary for computing gradient estimators using the chain-rule as done in IPA gradient esti-
mation.  In fact, perturbations are propagated through all the binding constraints (constraints with zero 
excess) and the value of each dual variable represents the marginal effect of the corresponding right-hand-
side random variable to the objective function.  Therefore, all the binding constraints constitute an event-
tree (the solution of the dual LP) similar to the one defined in (Suri 1987).  As a matter of fact, the LP 
formulation is a generic event-tree: given a sequence of input random variables, a realization of the event-
tree can be constructed by solving the LP and connecting all binding constraints to form the branches. 

However, the LP solution obtained from running the simulation might provide more information for a 
single simulation run because other perturbed sample paths can be reached from the current sample path 
by some additional computation (pivots), which might be easier than running a new simulation.  From the 
computational point of view, the LP representations would be a potentially effective tool for other types 
of sensitivity analysis (in particularly, finite difference gradient analysis) when IPA fails, for example, us-
ing the dual-simplex method to get new sample paths.  Performance of such sensitivity analysis is under 
investigation. 
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We focus on the sensitivity of the service time parameter. The sensitivity of the arrival time parameter 
(arrival rate, ) can be derived similarly. Let b(θ) = (b1(θ), b2(θ)) be the joint right-hand-sides 
of the two decomposed GG1-LP(F)’s. Dividing the sum of the two objective functions by n (this will not 
alter the optimal basis) and taking the limit  gives a consistent estimator of the mean of event 
times.  a.s., where ’s are the optimal primal solutions, or equivalently 
working with the dual, 

 
   1 1 * 1 * *

1 1 2 2( ) lim ( ) lim ( ) lim ( ) ( )
n n n

F n z n nq q q q q
Æ• Æ• Æ•

-‐ -‐ -‐ È ˘= = = +Í ˙Î ˚b U b U b U  a.s.,  

 
where U* = (U1

*, U2
*) is the optimal dual vector. For a small perturbation Δθ provided that the order 

of events remains unchanged—an usual assumption of IPA—the current dual variables remain optimal 
and therefore, the objective function is perturbed by an amount of , where Δb is the amount 
of perturbation of the right-hand side due to the change in θ.  The change to the mean event time is then 

 

 * *1 1( ) ( ) lim ( ) ( ) lim . .
n n

F F a s
n n

q q q q q q
Æ• Æ•

È ˘+ -‐ = + -‐ =Î ˚V V Vb b U bU  

 
Divided by Δθ and letting Δθ → 0 yields the derivative of the mean event time.  Now, using the same 

assumptions typically made in IPA, i.e., the random variables bi(θ)’s are uniformly differentiable—a con-
dition such that the random variables are smooth enough or well-behavior so that IPA works (see Cao 
1985 or Ho and Cao 1991 for more details), we have 
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where  is the derivative of bi(θ) w.r.t. θ (assume exists) and the last equation uses the uniform differ-
entiability condition. Therefore, the dual variables provide a consistent estimator for the derivative of the 
mean event time under the usual IPA assumptions.   

As discussed in the previous section, in the optimal solution the dual variables (Ui’s) are equal to the 
numbers of customers in a busy period seen by the departing customers. This meaning matches the defini-
tion of the IPA estimator developed in the literature (Fu and Hu 1991).  

Table 1 gives the experimental results of an M/M/2 queue, with mean arrival time , 
at low ( , i.e., ), medium (ρ = 0.5, i.e., ), and high (ρ = 0.8, i.e., 

) traffic intensities. Each number is the average of 40 independent replications. These traffic in-
tensities settings are selected to compare the linear programming estimator (LPA) with those presented in 
(Fu and Hu 1991). The only difference is that the LPA only simulates 50,000 jobs in each replicaton 
while it was 100,000 busy periods in (Fu and Hu 1991). T is the system time (F – A).  

Table 1:  Gradient Estimators of M/M/2 Queue. 

ρ E[T]LPA E[T]Fu,Hu E[T]       

0.2 0.417±0.002 0.417±0.001 0.417 1.130±0.008 1.129±0.005 1.128 –0.035±0.001 –0.035±0.001 –0.035 
0.5 1.330±0.011 1.334±0.006 1.333 2.204±0.039 2.222±0.021 2.222 –0.873±0.029 –0.890±0.016 –0.889 
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0.8 4.411±0.134 4.436±0.032 4.444 12.496±0.786 12.60±0.21 12.65 –15.582±1.141 –15.73±0.31 –15.80 

 

5 CONCLUSION 

We present a linear programming representation for G/G/2 queue and decompose it into to linear pro-
gramming representations for G/G/1 queue. The decomposed LPs allow us to obtain IPA estimators for 
service time and arrival time parameters.  

Linear programming formulations for closed and open tandem queueing networks have been given in 
(Chan 2005).  There it is shown that the dual variables for different constraints have distinct physical 
meanings; for example, some of them represent the number of jobs in a busy period while the others equal 
the number of jobs in a local busy period (for definition of local busy period, see (Fu and Hu 1997)).  
Therefore, similar LP-based gradient estimators for queueing networks can also be computed using the 
dual variables. 

ACKNOWLEDGMENTS 

Part of this work is funded by the National Science Foundation through grant CMMI-0644959 to Rensse-
laer Polytechnic Institute. 

A APPENDIX 

Proof of Proposition 1. 
The proof includes two parts. The first part is to show that the GG2-LP10(F) can be decomposed into two 
separated LPs with equality constraints. The second part is to argue that each of these two separated LPs 
can be transformed into an equivalent GG1-LP(F) with inequality constraints. 

We now illustrate the first part of the proof. First, after the pre-solve, the right-hand-side of all the 
constraints will contain unique variables, i.e., there will not be two (or more than two) constraints sharing 
the same variable in their right-hand-sides. This one-to-one mapping assigns βi, αi, or Fi to one and at 
most one of βj, αj, or Fj. Cyclic assignments are not possible because the indexing of variables is strictly 
increasing (see also the following paragraph). 

Second, this mapping constructs two separate event lists. At the beginning, Constraint 1 links A1 + s1 
to F1 and A2 + s2 to F2. As the two servers are identical, without loss of generality we can assume that F1 
is the time of the first finish event at Server 1 and F2 at Server 2. Each of the two events then starts a list 
of events for the corresponding server (with random assignments to break time ties). We discuss the event 
list created by F1. The event list led by F2 can be developed similarly. Either Constraint 2 or 3 will assign 
F1 to β1 or α1. Suppose Constraint 2 assigns F1 to β1 (since α0 = F1). Constraint 1 will then either link β1 
(plus s3) to F3 (which represents a busy period) or re-start the list from A3 + s3 (which means that the 1st 
busy period ends with only one customer and a new busy period begins with the 3rd customer). If a new 
busy period begins, then the argument can be repeated as starting at F1. If the busy period continues, then 
F3 will be linked to either β2 or α2 by Constraint 2 or 3. If F3 is linked to β2, then the argument can be re-
peated as starting at β1. Otherwise, α2 is linked to α3 by Constraint 3. Next, α3 will be linked to either β4 or 
α4 by Constraint 2 or 3. If α3 is linked to β4, then the argument can be repeated as starting at β1. Otherwise, 
α3 is linked to α4 by Constraint 3 and the argument can be repeated as starting at α3. As this procedure re-
peats, a set of event lists will be constructed for the services conducted by Server 1. A similar set of event 
lists will be created for Server 2.  

Third, we need to show that the optimal solution for GG2-LP10(F) is also the optimal solution for the 
two decoupled GG1-LP(F)’s. Let x = (F, β, α)T be a feasible solution for GG2-LP10(F), where F, β, α are 
the vectors of variables. Denote the right-hand-side vector as b = (max{A+s, β+s}, min{α, F}, max{α, 
F})T, where we have abused the vector notation inside the max and min operators to express the right-
hand-sides in a compact form. Let I = (1,…, 1)T be the n x n identity matrix, where the ith entry is a col-
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umn vector with 1 in the ith element and 0 in all other elements, i.e., (0,…, 1,…, 0)T. We can write GG2-
LP(F) using the matrix form: 

  
1

min

. .

n

i
i
F

s t
=

=

∑
Ix b

 

 
To define the two decoupled GG1-LP(F)’s, we need the following notation. Let x(k) = (F(k), β(k), α(k))T 

be the set of Fi, βi, and αi’s assigned to Server k by the pre-solver, k = 1, 2. Let S(k) be the index set of all 
event indexes assigned to Server k, k = 1, 2. These assignments separate the constraints into two sets. De-
note the corresponding right-hand-side as b(k) = (A(k)+s(k,1), β(k,1)+s(k,2), α(k,1), F(k,3))T. In addition, the nota-
tion of F(k), β(k), α(k) are expanded to (F(k,1), F(k,2), F(k,3), F(k,4)), (β(k,1), β(k,2)), and (α(k,1), α(k,2), α(k,3), α(k,4)), re-
spectively, to allow us to match the assignments. With this notation and moving Ai, Fi, βi, and αi’s from 
the right-hand-side to the left-hand-side, we can obtain the following LP for Server k, k = 1, 2: 
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Fom the 3rd and 4th constraints in above formulation, we have (β(k,1), β(k,2)) = (α (k,3), F(k,3)) and from the 

5th and 6th constraint, (α (k,1), α (k,2)) = (α (k,4), F(k,4)). As every αi must obtain a value from the assignment, 
we have (α (k,3), α (k,4)) = (α (k,1), α (k,2)). Combining all the equalities, we have β(k) = (β(k,1), β(k,2)) = (α (k,3), 
F(k,3)) = (α (k,1), α (k,2), F(k,3))\(α (k,4)) = (α (k,4), F(k,3), F(k,4))\(α (k,4)) = (F(k,3), F(k,4)), where the operator “(X)\(Y)” 
gives the set of X excluding the set of Y. Therefore, we can replace all βi’s in β(k) of the 2nd constraint by 
using Fi ∈ (F(k,3), F(k,4)) =  (F(k,5)), resulting in the following simplified LP: 

 

 ( )

( ,1) ( ) ( ,1)

( ,2) ( ,5) ( ,2)
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i
i S k

k k k

k k k

F

s t

∈

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑

F A s
F F s

 

 
We now begin the second part of the proof, which is to argue that this equality LP can be transformed 

into an inequality LP identical to GG1-LP(F).  
Back to the 1st constraint of the original GG2-LP10(F), the pre-solver could assign Ai to Fi if Ai ≥ βi–2 

for all i s.t. Ai ∈ (A(k)) (or equivalently for all i s.t. Fi ∈ (F(k,1))). From the derivation above, we have βi–2 = 
Fi–1 for all i s.t. Fi ∈ (F(k,1)). This means si = Fi – Ai ≤ Fi – βi–2 = Fi – Fi–1 for all Fi’s in F(k,1). In other 
words, for all Fi’s in F(k,1) the constraint Fi – Fi–1 ≥ si is valid for this LP and we can add this constraint to 
the LP. On the other hand (again in the 1st constraint of the original GG2-LP10(F)), the pre-solver could 
assign βi–2 to Fi if Ai ≤ βi–2 (time ties are broken arbitrary). These assignments result in the constraint F(k,2) 
– β(k) = s(k,2) that is subsequently transformed into F(k,2) – F(k,5) = s(k,2) in above LP. Because Ai < βi–2 = Fi–1, 
we have si = Fi – Fi–1 = Fi – βi–2 ≤ Fi – Ai for all Fi’s in F(k,2). In other words, for all Fi’s in F(k,2) the con-
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straint Fi – Ai ≥ si is valid for this LP and we can add this constraint to the LP. As a result, the above LP 
can be transformed into: 
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∑

F A s
F F s
F A s
F F s

 

 
We can combine the 1st and 3rd constraints and the 2nd and 4th constraints to simply the LP to: 
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Note that we have replaced all equalities by inequalities. Using the scalar notation, we can re-write 

the LP and obtain the following GG1-LP(F,k) for Server k, k = 1 and 2: 
 

GG1-LP(F,k): 

 
( )

1

min

. . ( ) ( )
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i
i S k

i i i i

i i i i

F

s t F A s i S k U
F F s i S k V
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−
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∑
 

 
The last step is to show that the optimal solutions of the two GG1-LP(F,k), k = 1, 2, are also the op-

timnal solution of the original GG2-LP10(F). Let F1
* be the optimal solution for GG1-LP(F,1) and F2

* for 
GG1-LP(F,2). Because both F1

* and F2
* are feasible to their corresponding constraints, they must also be 

feasible for the constraints of GG2-LP10(F). Let Fi, i = 1,…, n be an arbitrary solution of GG2-LP10(F). 
We have: 

 
 * *

(1) (2) (1) (2) 1,...,
i i i i i

i S i S i S i S i n
F F F F F

∈ ∈ ∈ ∈ =

+ ≤ + =∑ ∑ ∑ ∑ ∑  

 
where the first inequality uses the fact that Fi

*’s give the minimum objective value of the correspond-
ing objective function. Therefore, the optimal solutions F1

* for GG1-LP(F,1) and F2
* for GG1-LP(F,2) 

together is also optimal for GG2-LP10(F).                   □ 
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