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ABSTRACT 

Textbooks sometimes describe building models, running experiments, analyzing outputs, and implement-
ing results as distinct activities in a simulation project.  This paper demonstrates advantages of combining 
these activities in the context of system performance optimization. Simulation optimization algorithms 
can be improved by exploiting the ability to observe and change literally anything at any time while a 
simulation is running. It is also not necessary to stop simulating candidates for the optimal system before 
starting to simulate others. The ability to observe and change many concurrently running simulated sys-
tems considerably expands the possibilities for designing simulation experiments. Examples are presented 
for a range of simulation optimization algorithms including randomized search, directional search, pattern 
search, and agent-based particle swarm optimization.    

1 INTRODUCTION 

Simulation projects involve modeling, experimentation, analysis, and implementation. Some simulation 
textbooks describe these as distinct activities (see the blocks in the project workflow graphs in Banks et 
al. (2010) and Law (2007)). However, they can be integrated to provide new opportunities for designing 
simulation experiments. Simulation response optimization experiments are used here for examples, but 
many of the basic ideas apply more broadly.   
 This paper focuses on two characteristics that are unique to experimenting with simulated systems: 
(1) outputs can be estimated and inputs can be changed while running a simulation program, and (2) it is 
not necessary to stop running one simulation model to start simulating others. These are far more power-
ful than simply building or changing a simulation interactively while it is running (Schruben 1992).  
 It is common practice to run simulation experiments sequentially or independently on multiple pro-
cessors (Kleijnen 2008). For each run, the input factor settings are held fixed at points in an experimental 
design. Independently simulating each design point fails to take full advantage of the above two features 
of simulation models. Instead of simulating only one design point in each run, multiple design points can 
be simulated together. An entire experimental design can conceptually be run simultaneously by simply 
indexing every variable and event (or activity or process) in the simulation model with the design point 
being simulated. This “array of simulation models” can then be executed in a single run. (This not sug-
gested in practice; see Schruben (2010) for other ways to embed experiments inside a single simulation 
model.) This paper emphasizes ways the outputs from each concurrently executing simulation can be used 
to guide changes to the inputs for the others, to their mutual benefit, all while they continue running. The 
design of simulation experiments can be generalized considerably by recognizing that a computer run at a 
single design point is not the only possible experimental unit.     
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 In simulation optimization research, the simulation is usually regarded as a black-box or oracle. The 
output response, Y(x), to input settings, x, are typically regarded as a deterministic function,  f(x), with 
added random noise, e(x): Y(x) = f(x)+ e(x). The work required to conduct the experiment is measured 
coarsely by a “sample size”: the number of simulated jobs, replications, batches, observations, regenera-
tive cycles, etc. Uncertainty is driven to irrelevance by running each simulation “long enough”. The prac-
tical problems of initializing and terminating runs, determining what to observe, selecting appropriate re-
sponse estimators, and implementing the results, are often not considered.   
 In the next Section, a re-formulation of generic stochastic optimization problems is presented that re-
quires that optimal solutions be both feasible and achievable. This formulation is fundamentally different 
from the usual additive-noise formulation, and is arguably more appropriate and intuitive for simulation 
optimization. This is followed by an example of a simulation line search algorithm that may be new (or 
very old) that illustrates some advantages of combining simulation models, experiments, analysis, and 
implementation. Section 3 presents several examples where these are used to enhance several simulation 
response optimization algorithms including randomized search, directional search, pattern search, and 
particle swarm optimization.    
 

2 BACKGROUND 

 Modeling is using one system to study another. Model is a transitive verb so it must have a direct 
object. The system being studied will be called the object system. Models might be physical systems, 
systems of equations, legal systems, or even religions or philosophies. Object systems could be real 
systems, hypothetical systems, value systems, or even beliefs or ideals. Humans think by modeling. 
 In this paper, the models are discrete-event simulation computer programs. The objects are 
engineered physical systems with continuous design factors. Such systems include production, 
transportation, communications, and service systems. Experiments are run to optimize the performance of 
a simulation model for the sole purpose of implementing the solution in the object system. The two are 
more tightly connected than widely recognized in simulation research or practice.  
 In textbook simulation projects, the object system provides structure for coding model dynamics, and 
perhaps some data to model uncertainty. The object system also has technological limits to 
implementation that are important in designing simulation experiments. These limits come in the form of 
constraints and tolerances. Constraints limit the possible choices for the design factor settings to their 
feasible values. Tolerances limit the precision with which these intended settings can be realized in the 
object system to their achievable ranges. Discrete-valued design factors typically are constrained, but 
have point tolerances. Continuous-valued design factors typically have engineering tolerances, even if 
they have only one optimal setting. 
 Constraints apply when choosing the design factor settings that are to be simulated. Tolerances apply 
when determining design factor settings that are not to be simulated.  
 Simulation optimization algorithms balance a trade-off between spending effort searching near the 
current best solution (called exploitation) and looking for better solutions elsewhere (called exploration). 
However, effort must also be spent in response estimation (Andradóttir and Prudius 2009). Ideally, one 
wants better estimates of the performance of the better performing candidates. A technique for ensuring 
this is given in Section 2.1.4. The theme of this paper is that there are benefits to not treating exploitation, 
exploration, estimation, and implementation as distinct activities. Achievability will be defined more 
precisely next and then used in designing a simulation optimization algorithm where the knowledge of the 
object system design and process engineers is critically important. 

2.1 Achievable Optimal Solutions 

Proofs of global convergence for simulation optimization algorithms require technical assumptions about 
the smoothness of the response. Smoothness assumptions make sense: an optimal simulation response 
that occurs in a small region surrounded by poor performance may not be desirable since it might be hard 
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to realize in the object system (Gabriella, Kleijnen, and Meloni, 2012). This practical consideration has 
been likened to a parachutist trying to land on the highest peak in a mountain range by deciding where to 
jump (Samuelson 2010). It may be better to aim for a broad high plateau instead of aiming for the highest 
sharp peak. This intuitive analogy implies a different response function from that commonly assumed for 
statistical meta-models. Instead of a deterministic response with added noise, Y(s) =  f(x)+e(x), the re-
sponse for  this analogy is Y(x) =  f(e(x)). This because the heights of the mountains are fixed. A para-
chutist who jumps at x will land at an uncertain point, e(x). This intuitive response model is arguably 
more descriptive of simulations where fixed input parameters, x, may be used to generate random varia-
bles, e(x), that are used in a simulation program. (Perhaps more so if, impractically, the input includes all 
pseudo-random number generator seeds, run initialization and termination parameters, and so forth.)   
 The response model, Y(x) =  f(e(x)), tightly binds the simulation model and the object system. Engi-
neers designing the processes for the object system can provide important advice for designing simulation 
experiments. In particular, design parameters in the object system usually have engineering tolerances. 
The simulation study goal is to find feasible input values, x*, that globally minimize the response. But, 
this optimum must be achievable in the object system within the tolerance region, T(x*).  
 More formally: define all continuous controllable decision, environmental, operational, and process 
parameters collectively as input variables and denote their feasible values by  ݔ ∈ ܺ. Values for these in-
put variables may be set in the object system, but their effects can be random. For example, setting the 
controls in a bioreactor at specific values does not precisely determine the actual temperatures or pres-
sures every cell experiences; or, where you jump out of an airplane does not determine where you land. 
 Say the input settings that give us our current best simulation performance are	ݔ௖	where	 ௠݂௜௡ ൌ
݂ሺ݁ሺݔ௖ሻሻ.  Another setting, x, is not a viable candidate for implementation in the object system if it can 
only outperform the current best ( ݂ሺ݁ሺݔሻሻ ൏ ௠݂௜௡	ሻ	by the response improving an unrealistic amount 
within its tolerances. A global achievable optimum is any solution such that, for any better solution to ex-
ist at x, the response must improve faster than a limiting rate, L(x): x∈ ܶሺݔሻ.  L(x) is a majorizing function 
on the amount a response can improve in the object system while inputs are within their tolerances. For 
appropriate values of the function, L(x), it is necessary again to turn to object system engineers. 

 
Definition: an optimum, x*  for ( )f x is achievable if  ݂݉ܽݔሺݔሻ െ min ݂ሺݔሻ ൏ :ሻݔሺܮ ݔ ∈ ܶሺݔ∗) 

 
There is no reason to look for a better simulation model response in regions where inputs must be con-
trolled tighter than their tolerances in the object system. The technical knowledge of object system engi-
neers about process constraints, tolerances, and performance capabilities is useful in designing effective 
simulation optimization algorithms. A simple example is presented next.  

2.2 A Deterministic Line Search  

As an example of a searching for an achievable optimal solution, a simple deterministic (e(x)=x) line 
search algorithm is introduced in this section. Achievability will be used to avoid searching futile regions. 
Consider a deterministic search over the closed interval [a<x<b], where the values of x can only be con-
trolled within symmetric tolerance intervals with half-width, T(x) . The rate of change of the response 
function is bounded by L. Here the change-bounding function L(x) is just a Lipschitz constant.  (A sym-
metric input tolerance and fixed change rate bound are used for clarity. These can non-trivially be extend-
ed to asymmetric, stochastic input tolerances and rate bounding functions. With stochastic tolerances, it 
may become impossible to find any solution that is optimal, feasible, and achievable as the problem size 
increases.)   

 Assume the response function f(x) has been evaluated at k+1 points,  ݔ଴ ൌ ܽ, ,ଵݔ  = b  and we	௞ݔ,…,ଶݔ
want to decide where to look next. A search can be based on the observation that for a response function 
to reach a new minimum within any interval i = (ݔ௜,  ,௜ାଵሻ it must go from its value at one boundary, f(xi )ݔ
below the current minimum, fmin, and back up to its value at the other interval boundary, f(xi+1). Assuming 
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the mean value theorem applies, then a new minimum for f can only be reached in interval i if the abso-
lute rate of change in the function exceeds 

 

݃௜ ൌ
௙ሺ௫೔ሻା௙ሺ௫೔శభሻିଶ௙೘೔೙

௫೔శభି௫೔
. 

 
The point, ݔ௜

∗, in Figure 1 is where this required maximum rate of response change is smallest. 
 
 
 

 

Figure 1: The point, ݔ௜
∗, is where a new minimum is most easily achieved in interval i. 

 
 
An interval where the rate of change in the response that is required to reach a new minimum is smallest 
is ݅௢ ൌ ∗௜೚ݔ ሼ݃௜ሽ, so the next point to be evaluated is at݊݅݉݃ݎܽ ൌ ௜೚ݔ ൅ ݂ሺݔ௜೚ሻ	ሻ/݃ሺݔ௜೚ሻ. 
 The distance from this point to its nearest tolerance boundary is ݀௜೚ ൌ ݉݅݊൛ݔ௜೚

∗ െ	ݔ௜೚
	 , ௜೚ାଵݔ	 െ ௜೚ݔ

∗ ൟ. 
The search produces non-decreasing values of ݃௜೚	and non-increasing values of ݀௜೚	 and stops when (if)  
݀௜೚ ൏ ܶ൫ݔ௜೚

∗ ൯  or  ݃௜೚ ൐ -since there are no remaining achievable better solutions. (In stochastic set  ܮ
tings, if can be reasonably assumed that the response behaves like a Brownian Bridge between observed 
function values (Sun, et al. 2011), then a most likely place to find a new minimum next is at ݔ௜బ

∗ .) 
 This algorithm was applied to some classic test functions. Some of the search results are shown in 
Figures 2 and 3, where the response cannot enter the shaded regions before the search stops. In all the de-
terministic test functions, the algorithm quickly found and halted at the global achievable minimum. 
Some of these test functions are famously difficult. Not surprisingly, the algorithm converged most slow-
ly for the very simple problem of minimizing a quadratic response over the positive unit hypercube. Here 
the unique global solution is at zero. Like secant root-finding algorithms that are based on similar intui-
tion, the line search slowly crawls toward zero until it is closer than its achievable tolerances.  

 

xi

gi

f(xi+1 )  

f(xi )  

xi+1 

2T(xi
* )

fmin

-gi
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                                 (a)                                                                                     (b) 

        Figure 2: Local Search (a) followed by confirmation/improvement (b) for the Wingo85 function 

 
                                 (a)                                                                              (b) 

     Figure 3: Local search (a) followed by confirmation/improvement for the test_06 function 

 Many Search algorithms start with a coarse global search followed by a refined local search. This al-
gorithm tends to behave in the opposite manner. It starts with local searches of promising points until the 
tolerance constraints are reached. This is followed by globally ruling out regions that cannot possibly con-
tain a better achievable minimum.  
 While the author has not found this line search algorithm elsewhere, the motivation is the same as for 
secant root-finding algorithms (take the shortest path to possibly better solutions). Viewed this way, it is a 
very old idea; the secant root-finding method is reportedly thousands of years old (Papakonstantinou 
2007).  Like hybrid secant-bisection root-finding algorithms, this algorithm has been implemented with 
two search modes: a local bisection search of the most promising interval that is still larger than its toler-
ances, and a global confirmation screening to rule out intervals where a new minimum is unachievable.  
 This algorithm was refined and first implemented by Lenrick Johnston who added the bisection 
search. Johnston produced Figures 2 and 3. Links to download his implementation and more results are at 
the bottom of (http://www.ieor.berkeley.edu/~schruben/). This algorithm likely can be improved by en-
hancements like Brent’s method for secant root-finding. 
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 Lenrick Johnston and the author have extended this algorithm to higher dimensions. The intuition is 
that to achieve a new optimum a response function must travel from every corner point in every tessella-
tion below the current best minimum and back to every other corner point in its tessellations. The new 
point that can be reached with the least absolute rate of change in response value is the next point evaluat-
ed. Tessellation facets that are smaller than tolerance regions are not searched. This performed well on 
some classic higher dimension test functions, but has not yet been studied further. Naïve tessellation 
achievability is not expected to be sufficient to assert global convergence. The focus of this paper is not 
on this search algorithm; it provides a context for the formulation for stochastic optimization problems 
and to motivate the notion of an achievable global optimal solution. 
 

3 OPTIMIZING SIMULATIONS  

 
Various optimization algorithms were enhanced to exploit special properties of simulations in the author’s 
fall, 2013, simulation class at Berkeley. Some of these were adapted from the literature and some were the 
students’ own inventions. The results included were chosen to illustrate how various optimization exper-
iments can be embedded inside simulation models. None of the algorithms require stopping simulating 
one candidate system before starting to simulate others. The algorithms include pattern searches, adaptive 
random searches, line searches, and the agent-based method of particle swarm optimization. Embedding 
optimization algorithms in simulations was technically straightforward using a variety of tools including 
Matlab, Sigma, and a new open-source Java code with the working name Tao. (The author would be de-
lighted to discuss the Tao project with anyone interested.)  
 Two object systems from the simopt.org simulation optimization test-bed were studied (Pasupathy 
and Henderson 2011). Section 3.1 solves some 1-dimensional GG1 queue optimization problems, and 
Section 3.2 solves some n-dimensional Queueing System Design problems. These are good test problems 
for two reasons: the exact steady-state optimal solutions are easy to find analytically; but ironically, these 
systems are difficult (some versions impossible) to simulate exactly ((Asmussen, Glynn, and  Thorisson 
1992) and (Sigman 2012)). Simulation initialization, termination, and estimation decisions greatly influ-
ence the outcomes like they can in real simulation projects (Schruben 1976).  

3.1 Problem 1: The GI/G/1 Queue Problem on Simopt.Org – Line Searching  

The object system here is a hypothetical single-server queue with random interarrival times, A, and ser-
vice times, B(), that depend only on the mean-service time parameter   [min, max]  R (L'Ecuyer and 
Glynn 1994). The objective is to find the optimal service level, *, that minimizes the sum of the average 
sojourn time plus a cost for providing faster service. The recommended test configuration on simopt.org 
is an M/M/1 queue with a quadratic cost of service  2 and an arrival rate of  = 1. The exact steady-state 
solution to this problem is easy to obtain analytically as 

 

                                  Cሺμሻ ൌ


ି஛
൅ ଶ                                                                                                (1) 

 

3.1.1 Classic Line Search  

The worst deterministic performance for the line search algorithm in Section 2.2 was for a quadratic re-
sponse with the solution at a boundary. A stochastic counterpart to this situation is the transient form of 
Problem 1 suggested on simopt.org (warm-up for 20 jobs and collect waiting times for the next 50) where 
the solution is generally unknown. However, over an unstable feasible region of   [1, 2] the unique 
global solution is at the boundary  = 1. The algorithm in Section 2.2 and two classic line searches, Gold-
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en Section and Binary Search, were applied to this transient version of Problem 1 in this unstable region 
by Li (2013).  His results are presented in Figure 4 where the algorithm in section 2.2 performed better, in 
this one case, than the other two. Observe that in this unstable region, the true unknown transient response 
function will be steeper (easier to optimize) than a quadratic response. However, because of the very short 
warm-up and run durations, the simulated transient response function will be much flatter (harder to op-
timize) than the true transient response, and more nearly quadratic. 

 

 
Figure 4: Objective value for Problem 1 using 8 interior simulations (Li 2013) 

3.1.2 Particle Swarm Optimization 

The input parameter values,  ’s, can be simultaneously changed for many concurrently executing simula-
tions. These simulations’ different values of  are analogous to the locations of simulation “particle” 
agents. Then the collection of simulations is analogous to a swarm of particles. This suggests using agent-
based Particle Swarm Optimization (PSO) methods. There are many versions of PSO (the general idea is 
that different agents will try to move toward the agent that is performing best). This typically involves 
random perturbations in the speed and direction of the particle moves to avoid being stuck. Various PSO 
algorithms can be implemented to optimize discrete-event simulations as the following simple example 
illustrates. 
 Consider estimating the steady-state response for Problem 1 with an arrival rate of  =2 and the stable 
service rate interval of (2, 4]. Here the unique global optimum for the steady-state response function (1) 
occurs at ∗ ൌ 2.45. A swarm of 40 concurrently executing simulations (particles) starts with their pa-
rameter values (locations) uniformly dispersed in the feasible region. These agents will “move” (change 
their values of   ) toward better performing agents, usually the one with parameters closest to *=2.45. 
The move rule used here has a similar motivation as the line search algorithm in Section 2.2. After the ith 
batch of jobs is processed by agent, j, it’s parameter setting is changed by  

 

௜ାଵ,௝ ൌ 	௜,௝ ൅ ሺ݂ሺ∗ሻ െ ݂൫௜,௝൯
ఏ∗ି೔,ೕ
௙ሺ∗ሻ

 

 
(White noise with zero mean and standard deviation 1/i is used to perturb the particle moves. The empha-
sis here is not on this crude particle move rule, but on the general idea of applying PSO concepts to solve 
discrete-event simulation optimization problems.  Some examples of particle swarm paths are shown in 
Figure 5, where it can be seen how the values of  for the 40 simulations “swarm” toward the optimum.   
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Figure 5: Paths toward optimality by a simulated “swarm” of 40 systems. 

Figure 5 shows 50 changes in the values of  for a swarm of 40 concurrent simulation particles. Two 
batch sizes of 200 jobs/move and 1000 jobs/move are shown. The batch size (jobs/move) here was of lit-
tle consequence. No initial warmup period was used. However, the initialization bias naturally dissipated 
since all 40 simulation particles kept running even while they were changing their parameter values. This 
experiment evolved into evaluating the best response 40 times, without needing to know which was best! 

 
 

3.1.3 Gaussian Processes-Based Search (GPS) 

The Gaussian Process-Based Search method of (Sun et al. 2011) was implemented by (Lu 2013) for the 
same steady-state problem as in the previous section (an MM1 queue with an arrival rate of  =2 and fea-
sible, stable service rates in (2, 4] where the optimal solution is ∗ ൌ 2.45). The GPS stopping uncertainty 
grid for   was set to .01 with a termination gap of .02. There was a warmup of 50 jobs at each sampled 
point. The sampling distribution for some typical simulations of different durations are shown in Figure 6 
(a), (b), and (c).  

 

p 
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Figure 6: Number of jobs in each simulation (a) 500 jobs (b) 1000 jobs (c) 10000 jobs (Lu 2013)  

Figure 6 shows how the performance of this algorithm for optimizing simulations might depend on the 
simulations’ durations. This one-run-at-a-time GPS algorithm might benefit by being embedded into a 
single simulation like the PSO example in Section 3.1.2, with iterations executed concurrently. For a 
rough comparison, the best performing GPS experiment (6.c) required simulating about 8 times more jobs 
than the top swarm in the previous section. (The top plot in Figure 5 required 10k total jobs, and the right-
most plot in Figure 6 over 80k.)  

3.1.4 Time Dilation - the estimation problem 

It is not necessary for the same amount of effort to be spent on every concurrently running setting in an 
experimental simulation “swarm”. The better performing simulation particles can effectively be run more 
than the poorer performing ones using the technique of time dilation (Schruben 1997). The general idea of 
time dilation is that simulations using shorter time scales are effectively run longer. Time scales can be 
dilated while simulations are running. The simulated time scales for a swarm of simulations from Sec-
tions 3.1.2 is shown in Figure 7. Here the time scales were simply increased proportionally to each simu-
lation particle’s current relative cost. A more efficient time dilation algorithm was developed by Hyden 
(2003). The time scales can be increased (equivalently, runs shortened) for poorly performing simulations 
until eventually almost all remaining computation is devoted to simulating optimal settings; again without 
needing prior knowledge of which are the best candidates. Time dilation can address an important simula-
tion experimental design problem: wanting better performance estimates for better performing systems. In 
this sense, the experiment is again being “designed” while it running. Time dilation can be used in various 
optimization algorithms. It should be particularly useful in PSO and GPS algorithms. 

 

 
 

Figure 7: Dilated time scales for a single model (bottom) and true response function (top)  

3.2 Problem 2: The Queueing System Design Problem on Simopt.org – Higher Dimensions  

The Queueing System Design problem in the simopt.org test bed is based on a model form Barton and 
Meckesheimer (2006). The object system consists of n communications networks. Figure 8 from si-
mopt.org shows this system for n = 3 networks.   
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Figure 8: message routing through n = 3 communications channels 

 
The problem is to determine optimal state-independent percentages for routing randomly arriving mes-
sages to different communications networks. Messages arrive independently according to a Poisson(1) 
process and are sequentially routed to networks. Network 1 is considered first and selected with a proba-
bility of ݌ଵ ൌ 	 ଵܲ/100. If network i is not selected, then network i+1 is considered next. The last network 
accepts all messages that reach it. Each network processes messages one at a time taking random times Si 
that have symmetric triangular distributions with a mode i and a range of 1 time unit. All message buffer 
capacities are unlimited.  

The cost of using network i, is ci =1/i, and there a unit cost of c=.005 for the sojourn time that each 
message spends in the system. Decomposing the Poisson arrival process according to the conditional 
probabilities of each network being selected makes this system equivalent to a set of n independent M/G/1 
queues, which is easily solvable in steady state. However, this system is not trivial to simulate in steady 
state. Simopt.org recommends testing a transient version of this problem by processing N=1000 messages 
starting with an empty system. This makes the simulation response estimation problem trivial, but then 
the optimal solution is unknown.  

3.2.1 Response Surface Methodology for Simulation 

Barton and Meckesheimer used several methods including conventional (one run at a time) Response Sur-
face Methodology (RSM) to solve this problem. Response Surface Methodology (RSM) is one of the ear-
liest statistical methods for optimizing stochastic systems. Local regression models are fit to the response 
surface to estimate where to look next. RSM is usually done in two phases, a sequence of exploratory line 
searches followed by a more intensive search around a suspected local optimum. In phase I (RSM-I) low 
order local regression models, usually planes, are used to estimate promising directions for search. This is 
followed by a line search in that direction until no estimated improvement is seen. RSM-I is repeated until 
the estimated gradient magnitude is small, indicating a region around a local optimum.  Then phase II 
(RSM-II) is executed where a higher order local regression model is fit. The optimum is estimated for this 
fitted model, followed by confirmation runs. RSM has been adopted for simulation optimization largely 
unchanged.  
 RSM can be improved for simulation since it is possible to simulate multiple design points at the 
same time. This enables many new opportunities. For example, the full response surface regression model 
itself can be the simulation output (Schruben 2010). For example, in Problem 2 the responses are the 

costs, i, jY , for jobs i=1,2,…N  for system factor setting  j=1,2,…k. The response model estimate for re-

gression parameter p,  ( p ) , is the linear weighting, say with weights ( p ) , of the average responses at 
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the k design points 1 2 k(Y ,Y ,...,Y ) . The outputs of regression model parameter estimators are simply run-

ning averages of the time series ( p )
i

ˆ{ } , defined as 
i

k
( p ) ( p )

j i , j
j 1

ˆ Y 


  . 

 Since the gradient direction and magnitude are continually being updated, a line search can begin be-
fore the estimated gradient search direction is finalized. The differences in conventional RSM applied to 
simulation and Simulation RSM (SRSM) are illustrated in Figure 9. (Design points labeled “occasionally 
running” may still be running using time dilation (TD), or may have completed their N jobs.) 
 

 
Figure 9: Conventional (one-run-at-a-time) RSM-I search (right) and Simulation RSM (SRSM)  

As illustrated in Figure 9, the concurrently running experimental design used in Simulation RSM (SRSM) 
changes over time by starting or completing runs at factor settings while other experiment points are still 
running.  Xu and Lu (2013) implemented SRMS and reported very good results for problem 2. For n=3, 
an optimum of (52 63) was found by Barton and Meckesheimer with the log of the optimal cost equal to 
3.484. The Xu and Lu SRSM stopped at a solution of (51 61) with a log response of 3.482. 
 Most notably, with SRSM, Xu and Lu had no need to use a higher order RSM-II model or design. 
Comparing the search paths for RSM with SRSM in Figure 8 shows why. RSM can be like walking blind-
folded along a straight and level path on the edge of a steep mountain slope. By zigzagging along the path 
like SRSM, one quickly learns they are on the edge of a slope (and can zig more than zag). This may be a 
good idea for extending RSM beyond simulations, but is not recommended for climbing real mountains. 

3.2.2 Pattern Search  

A pattern search with concurrently simulated design points was implemented by Adduri and Mehraein 
(2013) using Tao. The method they used is similar to a Nelder-Mead simplex search. Like RSM, the 
Nelder-Mead method has been implemented in simulations with little change (Barton and Ivey 1996). 
However, Adduri and Mehraein included many different design points in their simulation, running con-
currently on multiple CPUs. Using Doehlert designs to measure the responses at each of the vertices with 
concurrent simulations, they periodically pivoted simplex with the worst performing vertex through the 
weighted centroid formed by the remaining points. A new experiment was included in the simulation at 
this new point. They reported solving steady-state versions of Problem 2 with 10 networks to very close 
the theoretically optimal solution found with CPLEX in about 11 seconds on a laptop with 4 CPUs. 

3.2.3 Adaptive Random Search 

An adaptive random search algorithm was created by (Valadez and Núñez 2013) where experimental 
points were included in the simulation that were normally distributed centered around the current best set-

Currently Running Simulation

Completed Simulations

Concurrently Running Simulations

“Occasionally” Running (TD) Simulations
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ting, ௠ܲ௜௡

௜ , with decreasing variances. Their algorithm with m experimental design points in the simula-
tion is as follows: 

Parameters:  Set  ߪ ൌ ݌  ,50 ൌ 0.05 and ݔ ൌ 0.7.  
Initialize: Execute a simulation that includes m design points in the feasible region at 				ܺଵ

௜ ∼
ܷሺ0,100ሻ  
While ߙ௡ ൑ 	 .05: 

Iterate on n:  ܺ௡௜ ∼ ܰ൫ ௠ܲ௜௡
௜ ,  ௡൯, (truncate coordinates at the boundaries) withߙߪ

௡ߙ  ൌ ݔ	 െ ሺ݊ െ 1ሻ݌  
The simulation model included all m points selected from Normal distributions with shrinking variances. 
 Valadez and Núñez solved the transient problem (1000 messages) for 3 routers to within 98% of the 
solution found by Barton and Meckesheimer. They also found near optimal steady state solutions for 10 
router problems running a single Sigma simulation model embedded with m=1000 moving design points 
whose settings were selected by their algorithm. 

4 SUMMARY 

A fundamental rethinking of simulation experiments comes by recognizing that it is not necessary to stop 
simulating with one input setting to start simulating others. Anything can be observed, and anything 
changed, at any time, in a simulation. Experimental designs can be thought of, and coded, as part of a 
simulation, instead of thinking of running a simulation as being part of an experiment. This paper demon-
strated how to dynamically embed various response optimization algorithms in a single simulation. Com-
binations of these techniques are encouraged such as time dilation of particle swarms where new “parti-
cles” are added to the simulation using GPS.   

 The broader intent of this paper is to encourage practitioners to motivate software vendors to develop 
tools that will enable them to fully utilize the enormous analytical powers of simulation. The ability to ob-
serve concurrently simulating systems, and use this information to change them, enables alternatives to run-based 
experimental designs.  Sir R. A. Fisher, credited with inventing statistical experimental design, has been quoted: 
“The best time to design an experiment is after you’ve done it.” With today’s simulation technology, Fisher might 
now agree that the best time to design a simulation experiment is while you’re doing it.   

5 ACKNOWLEDGEMENTS 

The author thanks the students in his spring 2013 graduate course for exploring simulation optimization 
with an open mind and creating some of the examples. He thanks Dr. Lenrick Johnston, CEO of The Bi-
oproduction Group, Inc. (bio-g.com) for enriching the line-search algorithm and screen shots in Sec. 2.2, 
and Dr. Giulia Pedrielli for her numerous insights (and risotto). The author was partially supported by the 
National Science Foundation under grant 1153694, CMMI (OR) to the University of California, Berkeley. 

 
  

689



Schruben 
 
REFERENCES 
Adduri, P., and Mehraein S. (2013), Homework for Introduction to Data Modeling, Statistics and Systems 

Simulation (IEOR 231), University of California, Berkeley, CA. 
Andradóttir, S., and  A. A. Prudius (2009), Balanced Explorative and Exploitative Search with Estimation 

for Simulation Optimization, Informs Journal on Computing, 21.2 pp. 193-208. 
Asmussen, S., Glynn, P., and Thorisson, H. (1992). Stationary detection in the initial transient problem. 

ACM Trans. Model. Comput. Simul., 2, 130-157. 
Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol (2010), Discrete-Event System Simulation. 5th ed. 

Prentice-Hall. 
Barton, R. R., and Ivey, J. Jr. (1996), Nelder-Mead Simplex Modifications for Simulation Optimization, 

Management Science, 42.7, pp. 954-973. 
Barton, R. R., and M. Meckesheimer (2006), Meta-model based simulation optimization. In Handbook of 

Simulation, ed. S. G. Henderson and B. L. Nelson, 535--574. Elsevier. 
Gabriella Dellino, Jack P. C. Kleijnen, Carlo Meloni (2012), Robust Optimization in Simulation: Taguchi 

and Krige Combined. INFORMS Journal on Computing 24(3): 471-484 (2012) 
Hyden, P., (2003), "Time dilation : decreasing time to decision with discrete-event simulation", PhD The-

sis, https://catalog.library.cornell.edu/cgi-bin/Pwebrecon.cgi?BBID=4834253&DB=local 
Law, A. M. (2007), Simulation modeling & analysis. 4th ed. New York: McGraw-Hill, Inc. 
L'Ecuyer, P., and P. W. Glynn (1994), Stochastic Optimization by Simulation: Convergence Proofs for 

the GI/G/1 Queue in Steady-State'', Management Science, 40, 12, pp. 1562-1578.  
Li, Ruoyang (2013), Homework for Introduction to Data Modeling, Statistics and Systems Simulation 

(IEOR 231), University of California, Berkeley, CA. 
Lu, Mengshi (2013), Homework for Introduction to Data Modeling, Statistics and Systems Simulation 

(IEOR 231), University of California, Berkeley, CA. 
Papakonstantinou, J. (2007), "The Historical Development of the Secant Method in 1-D" Presentation at 

the annual meeting of the Mathematical Association of America, Aug. 3, San Jose, CA. (abstract). 
Pasupathy, R. and S. G. Henderson (2011), SimOpt: A Testbed of Simulation-Optimization Problems. In-

vited paper in Proc. of the Winter Sim. Conf., S. Jain, R. R. Creasey, J. Himmelspach, K. P. White 
and M. Fu, eds. pp-4080-4090. 

Samuelson, D. A. (2010), When close is better than optimal, ORMS Today, December, 36.6. 
Schruben, L. (1978), Reply to Fox, Management Sci. 24.8, April p. 862. 
Schruben, L. (1997), Simulation Optimization Using Simultaneous Replications and Event Time Dilation. 

Proc. of the Winter Sim. Conf., pp. 177-180. 
Schruben, L.  (1992). Sigma: Graphical Simulation Modeling, Scientific Press. 
Schruben, L. (2010), Simulation Modeling For Analysis. ACM Trans. Model. Comput. Simul. 20, 1 (Jan. 

2010), 1-22. (with online technical companion). 
Sigman, K. (2012), Using the M/G/1 Queue Under Processor Sharing for Exact Simulation of Queues. 

Annals of Operations Research (To appear) 
Sun, L., Hong, L. Jeff, and Hu, Z. (2011), Optimization via Simulation using Gaussian Process-based 

Search, Proc. of the Winter Sim. Conf., pp. 4139-4150. 
Valadez, R. and Núñez, S. J. (2013), Homework for Introduction to Data Modeling, Statistics and Sys-

tems Simulation (IEOR 231), University of California, Berkeley, CA. 
Yang Xu, Yang and Cheng Lu, (2013), Homework for Introduction to Data Modeling, Statistics and Sys-

tems Simulation (IEOR 231), University of California, Berkeley, CA. 
 
AUTHOR BIOGRAPHY 

 
LEE SCHRUBEN (LeeS@berkeley.edu) is a Chancellor’s Professor in the Industrial Engineering and 
Operations Research faculty at the University of California, Berkeley. Before moving to Berkeley he was 
on the Operations Research and Information (née Industrial) Engineering faculty at Cornell for 23 years, 
where he held the Andrew Schultz Professorship of Industrial Engineering. Prior to that, he was on the 
faculty in the Colleges of Medicine and Engineering at the University of Florida, Gainsville. He has a BS 
degree from Cornell Engineering, a MS in Statistics from the University of North Carolina, and a PhD 
from Yale.  

690


