
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S. -H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

COMPARING OPTIMAL CONVERGENCE RATE OF STOCHASTIC MESH AND LEAST
SQUARES METHOD FOR BERMUDAN OPTION PRICING

Ankush Agarwal
Sandeep Juneja

Tata Institute of Fundamental Research
Homi Bhabha Road, Colaba

Mumbai, MA 400005, INDIA

ABSTRACT

We analyze the stochastic mesh method (SMM) as well as the least squares method (LSM) commonly
used for pricing Bermudan options using the standard two phase methodology. For both the methods, we
determine the decay rate of mean square error of the estimator as a function of the computational budget
allocated to the two phases and ascertain the order of the optimal allocation in these phases. We conclude
that with increasing computational budget, while SMM estimator converges at a slower rate compared to
LSM estimator, it converges to the true option value whereas LSM estimator, with fixed number of basis
functions, usually converges to a biased value.

1 INTRODUCTION

The pricing of Bermudan options is a well studied problem in computational finance and several lines
of research have been proposed to tackle this problem. Andersen (1999) parameterized stopping rules
or exercise regions to reduce the optimal stopping problem to a much more tractable finite dimension
optimization problem. Broadie and Glasserman (1997a) introduced nested simulation where they proposed
upper and lower biased estimators to obtain valid confidence intervals for Bermudan option prices. Another
technique of Bermudan option pricing is through the use of dual formulation of optimal stopping problem.
Andersen and Broadie (2004), Haugh and Kogan (2004) and Rogers (2002) used this formulation to obtain
both upper and lower bounds for Bermudan option price.

Two of the most commonly used approaches in practice are the stochastic mesh method (SMM) proposed
by Broadie and Glasserman (1997b) and the least squares method (LSM) proposed by Carriere (1996).
In the latter method, value function is modeled as a linear combination of chosen basis functions and
the problem is reduced to finding optimal coefficients of the linear combination. Tsitsiklis and Van Roy
(1999), Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz (2001) further developed the theory
and computational enhancements to this method.

A popular implementation for both these methods involves two phases: Phase 1 involves generation
of, say, M independent sample paths of the underlying process and a specific backward recursion using
these paths to ascertain an approximately optimal exercise policy over the state space of the underlying
process. In Phase 2, N independent sample paths are generated and the policy determined in Phase 1 of
the algorithm is evaluated using standard Monte Carlo. As is well known, the resulting estimator is lower
biased as the price of a Bermudan option is the maximum over all possible exercise policies while Phase
1 provides one such policy.

In this paper, we analyze the optimal convergence rate of the resulting estimator from these two phases
both for SMM and LSM. Letting Γ denote the computational budget available, we study these methods
as Γ→ ∞. For SMM, the asymptotic bias is given as Θ( 1

M ) and the asymptotic variance as Θ( 1
N ) (for
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given functions f : R+→ R+ and g : R+→ R+, we write f (x) = Θ(g(x)) if there exists c1 > 0,c2 > 0
and x1 large enough such that c1g(x) ≤ f (x) ≤ c2g(x) for all x > x1). We observe that to minimize the
mean square error of the resultant estimator, we need to set M = Θ(Γ1/3) and N = Θ(Γ2/3). This optimal
allocation results in mean square error decaying at the rate Θ(Γ−2/3). Through a numerical example, we
illustrate that selecting M and N optimally can result in significant improvement in mean square error of
the estimator for a given computational budget.

For LSM, we observe that once we fix the number of basis functions and assume that the true continuation
value function is given as a linear combination of these fixed basis functions, the asymptotic bias of the
option price estimator is given as Θ( 1

M ) and the asymptotic variance as Θ( 1
N ). In order to minimize the

mean square error of the resulting estimator, we need M = Θ(Γ2/3) and N = Θ(Γ). This results in mean
square error decaying at the rate Θ(Γ−1). Thus, while the mean square error in this case decays at a
substantially faster rate compared to the mean square error for SMM, the drawback of the LSM approach
with a fixed number of basis functions is that the resulting bias converges to a fixed negative value even
as Γ→ ∞. We demonstrate this numerically via a simple example.

Thus, our contribution is two fold: We provide a nuanced comparison of the popular SMM and LSM
methods illustrating the trade-offs in selecting one over the other. We also discuss how the computational
budget should be optimally allocated in a standard two phase implementation of these methods.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction to the
Bermudan option pricing problem and the stochastic mesh method used to calculate lower biased estimator.
Section 3 undertakes the analysis of convergence rate of asymptotic bias and variance of stochastic mesh
estimator in two time-period Bermudan option case. Section 4 discusses results for the multiple time-period
case and Section 5 presents optimal mean square error analysis. In section 6, we show similar results for
the least squares method and perform the optimal mean square error analysis. The numerical examples
conducted to validate our theoretical results are presented in Section 7. We offer conclusions in Section 8.

Due to the space constraints, the analysis in a few sections of this paper is at a heuristic level. A
rigorous version in a more general framework will appear separately.

2 PROBLEM FORMULATION

We consider an Rd-valued Markov process {Xt : t ∈ {0, . . . ,T}} which is defined on a probability space
(Ω,F ,(Ft)t∈{0,...,T},P) where F = {Ft ,0≤ t ≤ T} is the natural filtration augmented by the P-null sets
of F . It is assumed that X is adapted to (Ft)t∈{0,...,T}. In this setting, we consider a Bermudan option which
pays gt(Xt) for known positive functions g0, . . . ,gT when exercised at t = 0, . . . ,T . Under the existence of
risk-neutral probability measure, the price of this option is given as the solution to the following optimal
stopping problem

Vt(x) = sup
τ∈Tt

E[gτ(Xτ)|Xt = x], x ∈ Rd

where Tt is the set of stopping times taking values in {t, . . . ,T} for t = 0, . . . ,T.
According to the principle of dynamic programming, the option price (Vt)t∈{0,...,T} satisfies the following

backward recursion

VT (x) = gT (x) (2.1)
Vt(x) = max{gt(x),Ct(x)}, t = 0, . . . ,T −1. (2.2)

where Ct(x) := E[Vt+1(Xt+1)|Xt = x] is known as the continuation value of the option at time t and the
optimal stopping time can be shown to equal τ∗ := min{t ∈ {0,1, . . . ,T} : gt(Xt)≥Ct(Xt)}.

In multidimensional optimal stopping problems, exact calculation of (2.1)-(2.2) is typically infeasible
due to the difficulty of determining analytical form of conditional expectations. Hence, approximate dynamic
programming methods are used which involve estimating the continuation value function at each exercise
opportunity.
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2.1 Stochastic Mesh Method

Broadie and Glasserman (1997b) proposed stochastic mesh method to perform the task of estimating
continuation value function. Here, we explain the two phase algorithm to calculate the lower biased
estimator.

In Phase 1, we generate M independent paths of the underlying Markov process X starting from x0 at
time 0, “forget” the path to which each node at time t belongs and interconnect all nodes at consecutive
time steps. Under the risk-neutral measure P, conditional on Xt = x, density of Xt+1 is denoted by ft(x, ·)
and let ft(·) denote the marginal density of Xt+1 (with X0 fixed). Then, the estimate of the continuation
value function Ĉt,M(x) at exercise opportunity t is defined as

Ĉt,M(x) :=
1
M

M

∑
j=1

w( j)
t V̂t+1(X

( j)
t+1),

where w( j)
t =

ft(x,X
( j)
t+1)

qt+1(X
( j)
t+1)

, with qt+1(X
( j)
t+1) =

1
M ∑

M
i=1 ft(X

(i)
t ,X ( j)

t+1) and V̂t(X
( j)
t ) = max{gt(X

( j)
t ),Ĉt(X

( j)
t )}.

This choice of likelihood ratio not only provides variance reduction, as the ratio is always bounded by M,
but at the same time allows correct pricing moving backwards through the mesh if the value function is
known exactly. Then, for any path of the underlying process X , the estimated suboptimal stopping policy
is given as τ̂ := min{1≤ k ≤ T : gk(Xk)≥ Ĉk,M(Xk)}.

In Phase 2, we generate N independent sample paths of the underlying Markov process X and evaluate
the approximately optimal stopping policy on each of these sample paths to obtain the lower biased estimator.
The option price estimator is given as V̂0,M(x0) =

1
N ∑

N
i=1 gτ̂i(X

(i)
τ̂i
) where the suboptimal stopping policy on

each Phase 2 sample path is defined as τ̂i := min{1≤ k ≤ T : gk(X
(i)
k )≥ Ĉk,M(X (i)

k )}. Before proving the
results on lower biased option price estimator, we make the following assumptions which will be in force
throughout. Let us assume:

Assumption 1 There exist constants L1,L2 > 0 such that

L1δ ≤ P(0 < |Ct(Xt)−gt(Xt)| ≤ δ )≤ L2δ , for t ∈ {0, . . . ,T −1}.

The above assumption is satisfied if the random variable Ct(Xt)−gt(Xt) has a bounded and positive density
in a neighborhood that includes zero.

Assumption 2 There exists a constant D > 0 such that 0 <
ft(Xt ,X

(1)
t+1)

ft(X
(l)
t ,X (1)

t+1)
≤ D < ∞, l = 1,2, for t ∈

{1, . . . ,T}.
The above assumption may seem restrictive. But, we can find a compact set such that the underlying

diffusion process when restricted to the set, is “close” to the unrestricted process. By continuity of the
probability density functions we can then conclude that the ratio remains bounded over the compact set.
More discussion on the compact set argument can be found in (Belomestny 2011).

Assumption 3 There exists constant B0 > 0 such that for all x ∈ Rd , gt(x)≤ B0 for t ∈ {0,1, . . . ,T}.
Various Bermudan-style securities, such as the vanilla put and Bermudan max call option, have payoff

function which are continuous. If the underlying process is restricted to a compact set, Assumption 3
is satisfied. For the sake of presentation simplicity, we use the above form of condition on the payoff
functions.

Assumption 4 For any continuous function h : Rd → R+ and independent normal random variable Z,
there exist constants U1,U2 such that for any δ > 0

U1δ ≤ E
[
|Ct(Xt)−gt(Xt)|

∣∣∣0 < |Ct(Xt)−gt(Xt)| ≤ δh(Xt)Z
]
≤U2δ
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for t ∈ {0, . . . ,T −1}.
Given h(·) is a continuous function, it remains bounded when the underlying process Xt is restricted to

a compact set. Then, the above assumption is satisfied if the random variable Ct(Xt)−gt(Xt) has a bounded
positive density in the neighborhood which includes zero.

3 TWO TIME-PERIOD PROBLEM

The two time-period horizon case corresponds to exercise opportunities at t ∈ {0,1,2}. We assume without
loss of generality that it is not optimal to exercise the Bermudan option at t = 0. Therefore, we need to
evaluate the continuation value estimate only at t = 1. From our knowledge of the dynamic programming
principle, at the expiry, V̂2(x) = g2(x) for all x ∈ Rd . Then, we have

Ĉ1,M(x) =
1
M

M

∑
j=1

f1(x,X
( j)
2 )

q2(X
( j)
2 )

g2(X
( j)
2 ).

For a sample path (X0,X1,X2), let us denote the optimal stopping time by τ and the suboptimal stopping
policy based on stochastic mesh continuation value estimates by τ̂ . Then, bias of the stochastic mesh
estimator V̂0,M(x0) is given as

V0(x0)−E[V̂0,M(x0)]

= E[g1(X1)1{τ=1}+g2(X2)1{τ=2}]−E[g1(X1)1{τ̂=1}+g2(X2)1{τ̂=2}]

= E[(g2(X2)−g1(X1))1{τ=2,τ̂=1}+(g1(X1)−g2(X2))1{τ=1,τ̂=2}]

= E[(C1(X1)−g1(X1))1{Ĉ1,M(X1)≤g1(X1)<C1(X1)}]+E[(g1(X1)−C1(X1))1{C1(X1)≤g1(X1)<Ĉ1,M(X1)}]. (3.1)

From (3.1) we see that the key to the analysis of convergence of the bias of V̂0,M(x0) lies in the bounds of
error probability of the continuation value estimator Ĉ1,M(·). We now state the result for asymptotic bias.

Proposition 1 Suppose that Assumption 1 - 4 hold. If M→ ∞, then there exist constants γ1,γ2 such
that

γ1

M
≤V0(x0)−E[V̂0,M(x0)]≤

γ2

M
.

This result shows that in the two time-period case, bias of the option price estimator decays as Θ
( 1

M

)
. The

proof of Proposition 1 uses the following lemma.

Lemma 1 Suppose that Assumption 2 - 3 hold. Then,

1√
M

M

∑
j=1

(
f1(x,X

( j)
2 )

1
M ∑

M
i=1 f1(X

(i)
1 ,X ( j)

2 )
g2(X

( j)
2 )−C1(x)

)
D
=⇒ σ(x)N (0,1) as M→ ∞,

where σ(x) = E

[(
f1(x,X

(1)
2 )

f1(X
(1)
2 )

g2(X
(1)
2 )−C1(x)

)2
]

and N (0,1) denotes the standard normal distribution.

Proof. We note the following decomposition:

1√
M

M

∑
j=1

(
f1(x,X

( j)
2 )

1
M ∑

M
i=1 f1(X

(i)
1 ,X ( j)

2 )
g2(X

( j)
2 )−C1(x)

)

=
1√
M

M

∑
j=1

(
f1(x,X

( j)
2 )

f1(X
( j)
2 )

g2(X
( j)
2 )−C1(x)

)

+
1√
M

M

∑
j=1

((
f1(x,X

( j)
2 )

1
M ∑

M
i=1 f1(X

(i)
1 ,X ( j)

2 )
−

f1(x,X
( j)
2 )

f1(X
( j)
2 )

)
g2(X

( j)
2 )

)
.
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From the classical Central Limit Theorem, we know that 1√
M ∑

M
j=1

(
f1(x,X

( j)
2 )

f1(X
( j)
2 )

g2(X
( j)
2 )−C1(x)

)
converges

in distribution to a Gaussian random variable with mean 0 and variance σ(x). Moreover, we have by Strong
Law of Large Numbers for all y ∈ Rd

1
M

M

∑
i=1

f1(X
(i)
1 ,y)→ f1(y) a.s. (3.2)

where recall f1(·) denotes the marginal density function of X2 (with X0 fixed). From Assumption 3 and
(3.2), we can show that

1√
M

M

∑
j=1

((
f1(x,X

( j)
2 )

1
M ∑

M
i=1 f1(X

(i)
1 ,X ( j)

2 )
−

f1(x,X
( j)
2 )

f1(X
( j)
2 )

)
g2(X

( j)
2 )

)

converges to 0 in L2. Next, appealing to Slutsky’s theorem (pg. 268 (Resnick 1999)), which states that if
Xn⇒ X and ξn

P→ 0, then Xn +ξn⇒ X , completes the proof.

Proof of Proposition 1. We calculate the bias of estimator V̂0,M(x0) based on (3.1). Note the decom-
position:

E[(C1(X1)−g1(X1))1{Ĉ1,M(X1)≤g1(X1)<C1(X1)}]

= E[(C1(X1)−g1(X1))1{C1(X1)−g1(X1)>0}1{C1(X1)−Ĉ1,M(X1)≥C1(X1)−g1(X1)}]

= E
[
(C1(X1)−g1(X1))1{C1(X1)−g1(X1)>0}

×
(
P
(√

M(C1(X1)−Ĉ1,M(X1))≥
√

M(C1(X1)−g1(X1))
∣∣X1

)
−P

(
Y σ(X1)≥

√
M(C1(X1)−g1(X1))

∣∣X1

))]
+E

[
(C1(X1)−g1(X1))1{C1(X1)−g1(X1)>0}P

(
Y σ(X1)≥

√
M(C1(X1)−g1(X1))

∣∣X1

)]
(3.3)

where Y is an independent standard normal random variable and σ(x) = E

[(
f1(x,X

(1)
2 )

f1(X
(1)
2 )

g2(X
(1)
2 )−C1(x)

)2
]

is assumed to be a continuous function. For the second term in the right hand side of (3.3), we note that:

E
[
(C1(X1)−g1(X1))1{C1(X1)−g1(X1)>0}P

(
Y σ(X1)≥

√
M(C1(X1)−g1(X1))

∣∣X1

)]
= E

[
(C1(X1)−g1(X1))

∣∣∣0 <
C1(X1)−g1(X1)

σ(X1)
≤ Y√

M

]
P
(

0 <
C1(X1)−g1(X1)

σ(X1)
≤ Y√

M

)
.

Then, from Assumption 1 it follows that

L1√
M
≤ P

(
0 <

C1(X1)−g1(X1)

σ(X1)
≤ Y√

M

)
≤ L2√

M

for some constants L1,L2. Further, from Assumption 4, we get

U1√
M
≤ E

[
(C1(X1)−g1(X1))

∣∣∣0 <
C1(X1)−g1(X1)

σ(X1)
≤ Y√

M

]
≤ U2√

M

for some constants U1,U2.
To handle the first term in the right hand side of (3.3), we note from Assumption 2 - 3 that

E

[(
f1(x,X

(1)
2 )

1
M ∑

M
i=1 f1(X

(i)
1 ,X (1)

2 )
g2(X

(1)
2 )

)3
]
< ∞. We know for i.i.d. random variables X1, . . . ,Xn with EX1 =
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0,Var(X1) = 1,γ = EX3
1 , the distribution of the standardized sum Sn = 1√

n ∑
n
j=1 Xj admits a first-order

Edgeworth expansion (pg. 541 (Feller 2008)) uniformly for all x ∈ R, which gives

P(Sn ≤ x) = Φ(x)−φ(x)
(

γ(x2−1)
6
√

n
+O

(
1
n

))
where φ(·) denotes the standard normal density function and Φ(·) denotes the standard normal distribution
function. Therefore, from Lemma 1 it implies we can apply the Edgeworth expansion to show

M
(
P
(√

M(C1(X1)−Ĉ1,M(X1))≥
√

M(C1(X1)−g1(X1))
∣∣X1

)
−P

(
Y σ(X1)≥

√
M(C1(X1)−g1(X1))

∣∣X1

))
→ 0

uniformly for X1 ∈ Rd . From Assumption 3, it follows that appealing to the Dominated Convergence
theorem establishes the order relationship for the first term of (3.1) . We can repeat the same arguments
for the other term in the right hand side of (3.1) to complete the proof.

The following result holds for asymptotic variance of the stochastic mesh estimator.

Proposition 2 Suppose that Assumption 1 - 4 hold. Then, there exists constants K̄,σ > 0 such that
for large enough M and N,

σ

N
≤ Var(V̂0,M(x0))≤

σ

N
+

K̄
M2 .

The variance of estimator Var(V̂0,M(x0)) can be expressed as

Var(V̂0,M(x0)) =
1
N

Var(gτ̂1(X
(1)
τ̂1

)+

(
1− 1

N

)
Cov(gτ̂i(X

(i)
i ),gτ̂ j(X

( j)
τ̂ j

)). (3.4)

It can be shown using Dominated Convergence theorem that Var(gτ̂(Xτ̂))→ Var(gτ(Xτ)). Hence, the
first term in the right hand side of (3.4) contributes Θ

( 1
N

)
and other smaller order terms to overall

variance of the estimator. To handle the covariance term Cov(gτ̂i(X
(i)
i ),gτ̂ j(X

( j)
τ̂ j

)), we show that it can
be written as the sum of a term which is upper bounded by squared-bias and another term given as
E[(gτi(X

(i)
τi )−gτ̂i(X

(i)
τ̂i
))(gτ j(X

( j)
τ j )−gτ̂ j(X

( j)
τ̂ j

))]where recall τi and τ̂i are the optimal and suboptimal stopping

policy for ith Phase 2 path respectively. Using the results proved for bias of estimator Var(V̂0(x0)), this
term can also be shown to contribute O

( 1
M2

)
to the overall variance. The details of the proof methodology

can be found in (Agarwal and Juneja 2012).

4 MULTIPLE TIME-PERIOD PROBLEM

We calculate the asymptotic bias and variance of stochastic mesh estimator for multiple time-period
Bermudan option. Let us denote by FM, the σ -algebra generated by Phase 1 paths (X (i))1≤i≤M.

4.1 Asymptotic Bias

We observe that bias of the estimator can be split as the sum of a term which corresponds to single mistake
on the suboptimal exercise policy and a term which corresponds to more than one mistake. We make the
idea precise as follows:

V0(x0)−E[V̂0,M(x0)] =
T−1

∑
j=1

E[(gτ(Xτ)−g j(Xj))1{τ> j,τ̂= j}]+
T−1

∑
j=1

E[(g j(Xj)−gτ̂(Xτ̂))1{τ= j,τ̂> j}]. (4.1)
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It is easy to see that first term in the right hand side of (4.1) can be written as
T−1

∑
j=1

E[(gτ(Xτ)−g j(Xj))1{τ> j,τ̂= j}] =
T−1

∑
j=1

E[(Cj(Xj)−g j(Xj))1{τ> j,τ̂= j}]. (4.2)

For the second term in the right hand side of (4.1), we first note that for all j, the set {τ̂ > j} is measurable
with respect to the product σ -algebra F j⊗FM. We use this observation to write

E[(g j(Xj)−gτ̂(Xτ̂))1{τ= j,τ̂> j}] = E
[(

g j(Xj)−E[gτ̂ j+1(Xτ̂ j+1)|F j⊗FM]
)

1{τ= j,τ̂> j}
]
. (4.3)

The conditional expectation term in the right hand side of (4.3) can be seen as the expected payoff received
when we use the fixed suboptimal stopping policy starting from fixed Xj. We compare the suboptimal
exercise decision with the optimal stopping policy to get

E[gτ̂ j+1(Xτ̂ j+1)|F j⊗FM] = E[gτ̂ j+1(Xτ̂ j+1)1{τ̂ j+1=τ j+1}|F j⊗FM]+E[gτ̂ j+1(Xτ̂ j+1)1{τ̂ j+1 6=τ j+1}|F j⊗FM]

=Cj(Xj)−E[(gτ j+1(Xτ j+1)−gτ̂ j+1(Xτ̂ j+1))1{τ̂ j+1 6=τ j+1}|F j⊗FM]. (4.4)

It can then be seen from (4.2)-(4.4), that the term in the right hand side of (4.2) simplifies to

V0(x0)−E[V̂0,M(x0)] =
T−1

∑
j=1

E[(Cj(Xj)−g j(Xj))1{τ> j,τ̂= j}]+
T−1

∑
j=1

E[(g j(Xj)−Cj(Xj))1{τ= j,τ̂> j}]

+
T−1

∑
j=1

E
[
E[(gτ j+1(Xτ j+1)−gτ̂ j+1(Xτ̂ j+1))1{τ̂ j+1 6=τ j+1})|F j⊗FM]1{τ= j,τ̂> j}

]
. (4.5)

In the right hand side of (4.5), the first two sums correspond to paths where a single exercise error is
committed using the suboptimal policy whereas the third sum corresponds to paths where more than
one exercise error is committed using the suboptimal policy. We can perform analysis same as the two
time-period problem to show that for all 1≤ j ≤ T −1,

E[(Cj(Xj)−g j(Xj))1{τ> j,τ̂= j}] = Θ

(
1
M

)
,E[(g j(Xj)−Cj(Xj))1{τ= j,τ̂> j}] = Θ

(
1
M

)
. (4.6)

In the third sum, we can show using Assumption 3 and other results in Section 3, that for all 1≤ j≤ T −1,

E[(gτ j+1(Xτ j+1)−gτ̂ j+1(Xτ̂ j+1))1{τ̂ j+1 6=τ j+1})|F j⊗FM]

remains upper bounded by the probability of two exercise errors on a sample path. Hence,

E
[
E[(gτ j+1(Xτ j+1)−gτ̂ j+1(Xτ̂ j+1))1{τ̂ j+1 6=τ j+1})|F j⊗FM]1{τ= j,τ̂> j}

]
= Θ

(
1
M

)
. (4.7)

Therefore, from (4.6) and (4.7), we conclude that the asymptotic bias in (4.5) is given as

V0(x0)−E[V̂0,M(x0)] = Θ

(
1
M

)
.

4.2 Asymptotic Variance

We handle the variance of multiple time-period stochastic mesh estimator in the same way as for the two
time-period problem. We can similarly show using Dominated Convergence theorem that variance of the
individual paths will contribute Θ

( 1
N

)
and other smaller order terms. In the covariance term, we can use the

expansion developed for bias in (4.5) and use the same results to show that the contribution of covariance
to the overall variance of estimator V̂0,M(x0) remains upper bounded by O

( 1
M2

)
. Hence, the variance can

be shown to satisfy
β0

N
≤ Var(V̂0,M(x0))≤

β0

N
+

β1

M2

for some constants β0,β1.
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5 MEAN SQUARE ERROR ANALYSIS

Typically, to perform any numerical study we have a fixed computational budget. In this section, we
analyze how a fixed and large computational budget may be allocated to Phase 1 and Phase 2 to minimize
the mean square error of the stochastic mesh estimator. Let MΓ and NΓ be the number of Phase 1 and
Phase 2 independent sample paths generated for a fixed computational budget Γ. To this end, let c1 denote
the average amount of time required to generate a sample path X and c2 be the average amount of time

required to evaluate ft(X
(1)
t ,X (1)

t+1)

qt+1(X
(1)
t+1)

V̂t+1(X
(1)
t+1). To estimate the continuation value function, on every sample

path (X0,X1, . . . ,XT ) we calculate the average 1
M ∑

M
j=1

ft(Xt ,X
( j)
t+1)

qt+1(X
( j)
t+1)

V̂t+1(X
( j)
t+1) which involves M calculations.

Then, the aggregate effort required to compute V̂0,M(x0) is equal to c1(M+N)+ c2(M2 +NM)T . It then
follows that

c1(MΓ +NΓ)+ c20(M2
Γ +NΓMΓ)T = Γ.

It is evident that for convergence of V̂0,M(x0) to the true value, we need MΓ→ ∞ and NΓ→ ∞ as Γ→ ∞.
Consequently, c2T (M2

Γ
+NΓMΓ)≈ Γ for sufficiently large Γ. Hence, we need to minimize

MSE(V̂0,M(x0)) = Var(V̂0,M(x0))+
(
V0−E[V̂0,M(x0)]

)2

subject to the constraint c2T (M2
Γ
+NΓMΓ)≈ Γ. From our results for two time-period problem in Section

3 and the subsequent discussion for multiple time-period problem in Section 4, we get for large enough
M,N

K̄0

N
+

K̄1

M2 ≤MSE(V̂0,M(x0))≤
K̄0

N
+

K̄2

M2

where K̄0, K̄1 and K̄2 are some constants. In order to minimize MSE(V̂0,M(x0)), we can check that for fixed
computational budget Γ, the optimal M∗

Γ
and N∗

Γ
are given as

M∗Γ = Θ(Γ1/3), N∗Γ = Θ(Γ2/3),

and the optimal MSE(V̂0,M(x0)) decays as Θ(Γ−2/3).

6 LEAST SQUARES METHOD

In this method, the continuation value function of Bermudan option, is parameterized as a linear combination
of pre-specified basis functions. Although very popular and efficient, the essential drawback of least square
method (LSM) algorithm is that the choice of basis functions is specific to the option pricing problem.
Also, in general only a complete (infinite) set of basis functions results in continuation value function
estimators that are consistent for the true option value. In practice, a finite set of basis functions is used
which introduces an approximation error. This approximation error can propagate backwards through the
exercise opportunities and produce estimators that do not converge to the true option value as shown in
Section 7.

Clément, Lamberton, and Protter (2002) addressed the convergence issues and analyzed the asymptotic
convergence rate of ‘interleaving’ LSM option price estimator. We combine their methodology with our
analysis approach to derive the asymptotics for bias and variance of lower biased estimator based on the
least squares method. Once again, we use the two phase algorithm to calculate the option price estimator.
In Phase 1, we generate M independent sample paths of the underlying process X and use LSM algorithm
to estimate the continuation value function. We fix the number of basis functions to m≥ 1 and denote by
e(x) the basis function vector (e1(x), . . . ,em(x)). The continuation value estimator Ĉt(·) based on m basis
functions is then given as Ĉt(Xt) := αt,M ·e(Xt) where αt,M = (At,M)−1 1

M ∑
M
i=1 g

τ̂
(i)
t+1
(X (i)

τ̂
(i)
t+1

)e(X (i)
t ), At,M is an
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m×m matrix, with coefficients given by (At,M)1≤ j,k≤m = 1
M ∑

M
i=1 e j(X

(i)
t )ek(X

(i)
t ), and τ̂

(i)
t is the suboptimal

stopping time based on the LSM algorithm defined as follows:

τ̂
(i)
T = T, τ̂(i)

t = t1{gt(X
(i)
t )≥αt,M ·e(X (i)

t )}+ τ̂
(i)
t+11{gt(X

(i)
t )<αt,M ·e(X (i)

t )}, 1≤ t ≤ T −1.

In Phase 2, we generate a new set of N independent sample paths of X and evaluate the payoff values
on each of them using the suboptimal stopping policy based on the estimated continuation value function
from Phase 1. Then, the final estimator is given as V̂ m

0,M(x0) =
1
N ∑

N
i=1 g

τ̂(i) (X
(i)
t ).

Let Cm
t (·) denote the continuation value function which is exactly equal to the linear combination of

m basis functions. If V m
0 (·) is the option value function when the continuation value function is given as

Cm
t (·), we can show that the bias of the estimator for large enough M satisfies,

α1

M
≤
(
V m

0 (x0)−E[V̂ m
0,M(x0)]

)
≤ α2

M

for some constants α1,α2. The idea of the proof is to use the Central Limit theorem shown for continuation
value estimator in (Clément, Lamberton, and Protter 2002) and argue on the same lines as the stochastic
mesh estimator to show that the result holds. We can also show by similar analysis that for large enough
M,N and for some constants β0,β1, variance of the LSM based option price estimator V̂ m

0,M(x0) satisfies

β0

N
≤ Var(V̂ m

0,M(x0))≤
β0

N
+

β1

M2

Next, we analyze the convergence rate of mean square error of LSM based lower biased estimator. Let MΓ

and NΓ be the number of Phase 1 and Phase 2 independent sample paths generated for a fixed computational
budget Γ. The average cost of generating M independent sample paths is c1M. The coefficient in the
continuation value approximation is calculated using matrix inversion which contributes c′2 to the overall
cost. Thus, repeating the procedure over T exercise opportunities gives the total cost of coefficient evaluation
as c′2T . Next, on each sample path we evaluate the continuation value approximation to compare with
the immediate exercise value. For m basis functions, this contributes c′3mM at every exercise opportunity.
Hence, the total Phase 1 computational burden is given as c1M+ c′2T + c′3mMT. We can immediately see
that in the second phase, computational cost is given as c1N + c′3mNT. Hence, for fixed values of m and
T , the total computational cost denoted by Γ equals k1(M+N) for some constant k1. Therefore, we need
to minimize MSE(V̂ m

0,M(x0)) subject to the constraint k1(M+N)≈ Γ. From the discussion above, we have
for some constants K̄0, K̄1 and K̄2,

K̄0

N
+

K̄1

M2 ≤MSE(V̂ m
0,M(x0))≤

K̄0

N
+

K̄2

M2 .

By simple calculations, we can see that the optimal M∗
Γ

and N∗
Γ

are given as

M∗Γ = Θ(Γ2/3), N∗Γ = Θ(Γ),

for some constant K̄ and the optimal MSE(V̂ m
0,M(x0)) decays as Θ(Γ−1).

7 NUMERICAL EXAMPLES

In this section, we illustrate our theoretical results with the help of numerical examples. We consider a Bermu-
dan call option on the maximum of five assets with the payoff function as gt(Xt) = (max(X (1)

t , . . . ,X (5)
t )−K)+

where K is the strike price. Under the risk-neutral measure, asset prices are assumed to follow correlated
geometric Brownian motion processes, i.e. dX (i)

t = rX (i)
t dt +σiX

(i)
t dW i

t , where W i
t is a standard Brownian
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motion process and the instantaneous correlation of W i and W j is ρi j. For simplicity, we take σi = σ and
ρi j = 0 for all i, j = 1, . . . ,5 and i 6= j. The exercise opportunities are assumed to occur at n equidistant
time intervals t j = jT/(n−1), j = 0,1, . . . ,n−1 where T is the expiry of the option. From the analysis in
Section 3 - Section 5, we know that for sufficiently large values of M and N, the number of Phase 1 and
Phase 2 paths respectively, computational budget Γ satisfies the following relationship: Γ = c1M2 +c2MN
where Γ is measured in computer run time. In order to plot mean square error for different values of (M,N)
given fixed Γ , we first need to estimate the coefficients c1, c2. We perform this task by tabulating the
running time for calculation of the estimator V̂0,M using different values of (M,N) and then regressing the
computational budget over (M,N). We used 10 different values of (M,N) to estimate ĉ1 = 2.02×10−3 and
ĉ2 = 9.81×10−4. Next, for different computational budget, we plot the MSE of lower biased estimator V̂0,M
with respect to M in Figure 1. We observe in the case where computational budget for a single iteration is
16 mins, a choice of M = 12,000 and N = 57,000 achieves an MSE of 0.049 whereas the optimal choice
of M = 16,100 and N = 28,000 achieves an MSE of 0.038. Hence, the optimal choice of parameters
provides 20% improvement over the naive choice. In this example, we set X (1)

0 = X (2)
0 = . . .= X (5)

0 = 90,

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
4

0.03
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0.05

0.06

0.07

0.08

0.09

0.1

M

M
S

E

 

 

C.B. = 10 min

C.B. = 12 min

C.B. = 14 min

C.B. = 16 min

Figure 1: Mean square error of the lower biased estimator calculated using 50 independent samples is
plotted with respect to the number of Phase 1 paths, M. The computational budget (C.B.) indicated is for
single iteration of the algorithm.

r = 5%,σ = 20%,ρ = 0,K = 100, n = 4 and T = 3 years. True value of this option is estimated in Broadie
and Glasserman (2004) to be 16.06.

Next, to validate the theoretical rate of convergence of MSE(V̂0,M), we plot the optimal mean square error
for different values of the computational budget in Figure 2 with log scale on both the axes. The plot illustrates
that for a given computational budget, logarithm of optimal MSE varies as−0.6691× log(Γ)+0.575 which
is in close agreement with the theoretical rate of convergence, i.e. optimal MSE = −2

3 × log(Γ)+ c for
some constant c.

We demonstrate the limitation of least squares method (LSM) for estimating the true option value as
follows. In the setting of previous example, we consider a strangle spread payoff function gt(·) with strikes
50, 90, 110 and 150 as illustrated in the numerical example of Kohler, Krzyżak, and Todorovic (2010) based
on the average of underlying stock prices X (1)

t , · · · ,X (5)
t . Since we calculate the lower biased estimator,

higher estimate values are desired. We calculate the LSM estimator with 100 million Phase 1 and Phase
2 sample paths and the stochastic mesh estimator with 10,000 Phase 1 and 40,000 Phase 2 sample paths.
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Figure 2: Relationship of optimal mean square error of the lower biased estimator for different computational
budget is plotted. The calculations are based on 50 independent samples.

We note in Table 1 that with the same computational budget, LSM estimator fails to converge to the true
option value whereas stochastic mesh estimator provides a better lower bound.

Table 1: Performance of lower biased estimator using LSM and stochastic mesh method (SMM). The
calculations are based on 50 independent samples and the mentioned computational budget (Γ) is for single
iteration.

Estimator type Estimated value (Std. Dev.) Γ (in secs)
LSM with up to 2nd degree polynomials on 24.21 (0.0017) 620

1,X (1)
t , · · · ,X (5)

t ,gt

SMM 24.58 (0.0614) 550

8 CONCLUSION

We compared the optimal convergence rate of lower biased estimator based on stochastic mesh and least
squares method. We showed how to optimally allocate the computational budget in Phase 1 and Phase
2 of the algorithm such that the mean square error of the estimator is minimized. We further conducted
numerical experiments to validate the theoretical results established in this paper.
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